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(Dated: February 27, 2015)

PACS numbers:

h(k) = vk · �⌧x

+ m(k) ⌧z

(1)

|m(0)|
�
⌧
�

x

/�
z

q > !0/v
F

2|m(0)| > !0

⇥ = i�yK (2)

⇧ = ⌧z

(3)

h⌧zi
hz

ep / 12 ⌦ ⌧z

hx

ep / 12 ⌦ ⌧x

�
z

= g
z

D(✏
F

)|h⌧zi|2 (4)

�
x

= g
z

D(✏
F

)|h⌧xi|2 (5)

�
�

= g
�

D(✏
F

)|hh�

epi|2 (6)

�q�

' 2⇡
X

k

X

nn

0

|hkn|hep|k� qn0i|2(fkn

� fk�qn

0
)�(Ekn

� Ek�qn

0 � !q) (7)

!⇤
q�

' !q�

+

X

k

X

nn

0

|hkn|hep|k� qn0i|2 fkn

� fk�qn

0

Ekn

� Ek�qn

0 � !q
(8)

E⇤
kn

' Ekn

+

X

qn

0

|hkn|hep|k� qn0i|2

Ekn

� Ek�qn

0
(9)

⇧(q, !) =

1

V

X

k

X

nn

0

|hkn|Ue�ph|k� qn0i|2 fkn

� fk�qn

0

Ekn

� Ek�qn

0 � ! � i0+
(10)

h0
ep(r) = u0(r) 12 ⌦ 12 (11)

Time-reversal and inversion symmetry



in k-space

Trivial insulator

E

k

Topological insulator

E

k

Equations for PPT slides

Ion Garate
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Part I:
Effect of phonons on band topology

I. Garate, PRL 110, 046402 (2013). 

K. Saha and I. Garate, PRB 89, 205103 (2014).
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FIG. 1: (Color online) (a) and (b) Expectation value of the
electronic parity operator, ⟨τ z⟩ (represented by arrows), as a
function of momentum. (c) and (d) Fermi surface averages of
|⟨τ z⟩|2 and |⟨τx⟩|2 (cf. Eq. (7)), as a function of the Fermi
energy, for m = −0.2 eV (c) and m = 0.2 eV (d). The rest of
the band parameters are the same as those in Ref. [3].

number for the state |ukn⟩ with a Fermi energy ϵF . Also,

gλnn′(k,q) = ⟨ukn|ĝλ(q)|uk−qn′⟩, (3)

where ĝλ(q) = ĝλ(−q)† is the electron-phonon vertex
operator in the low-energy electronic subspace [6, 7].

In a centrosymmetric crystal, lattice vibrations are ei-
ther even or odd under spatial inversion. Each of these
modes couples to electrons and can, as we shall see, in-
herit signatures of the underlying band topology. For the
model of Eq. (1) and for q ≃ 0 optical phonons, inversion
and time-reversal symmetries dictate [6]

ĝeven(q) ≃ g0(q̂) + gz(q̂)τ
z

ĝodd(q) ≃ gx(q̂)τ
x + g′(q̂) · στy, (4)

where “even” (“odd”) denotes the coupling of elec-
trons to parity-even (parity-odd) phonon modes, with
[ĝeven, τz] = 0 and {ĝodd, τz} = 0. Inversion symmetry
guarantees that ĝeven and ĝodd will not be mixed in a sin-
gle phonon mode. Also, q̂ = q/q, and the coefficients gi
(i = 0, x, z) and g′i (i = x, y, z) can be obtained from the
atomic displacements in the particular phonon mode [6].
Physically, g0 and gz lead to phonon-induced modula-
tions of the chemical potential and the Dirac mass, re-
spectively. Next, we identify ways in which ĝλ can trans-

fer the information about electronic band topology to the
phonon sector.

Intraband phonon damping.– The main electronic
mechanism contributing to phonon linewidths is the scat-
tering of phonons off electron-hole pairs. The rate of
this process is γλ(q) ≡ −ImΠλ(q,ωqλ). In this work,
we focus on long-wavelength optical phonons and on low
temperatures.

We begin by considering the commonly realized case in
which the phonon frequency is smaller than the bandgap
of the insulator. In this case, the “insulator” must be
doped in order for carriers to absorb phonons and in-
duce a linewidth γλia. The subscript “ia” is shorthand for
“intraband” and makes it explicit that phonons decay
into particle-hole pairs in the vicinity of the Fermi sur-
face. Assuming that the distance from the Fermi level
to the bulk band edge is large compared to the phonon
frequency, we have

γλia(q ≃ 0) ≃ πηD(ϵF )|gλia(kF , q̂)|2δ(v̂F · q̂− η), (5)

where D(ϵF ) is the electronic density of states at the
Fermi level, kF is the Fermi wave vector, vF = vF v̂F

is the Fermi velocity, η ≡ ω0λ/(qvF ), δ(x) is the Dirac
delta, and |gλia(k, q̂)|2 denotes the sum of |gλnn′ |2 over
the two degenerate bands at momentum k and energy
Ek (hence the label “intraband”). In addition, O =
∑

k Oδ(Ek − ϵF )/(VD(ϵF )).
Equation (5) contains information about the electronic

band topology. The simplest way to see this is to imag-
ine a parity-even phonon mode and a parity-odd phonon
mode that couple to electrons purely through ĝz ≡ gzτz

and ĝx ≡ gxτx, respectively. More general couplings with
g0 ̸= 0 and g′i ̸= 0 will be discussed below. From Eqs. (1),
(3) and (5), the linewidths of these two phonon modes
are

γjia(q ≃ 0) ≃ |gj(q̂)|2D(ϵF )|⟨τ j⟩ia|2
πη

4
Θ(1− η), (6)

where j ∈ {x, z}, Θ(x) is the Heaviside function and

|⟨τz⟩ia|2 = 1− |⟨τx⟩ia|2 = M2
kF

/(α2k2F +M2
kF

). (7)

Note that |⟨τ j⟩ia|2 ∈ [0, 1] (cf. Fig. 1). In particular,
when MkF

= 0, |⟨τz⟩ia|2 = 0 and |⟨τx⟩ia|2 = 1. Com-
bining Eqs. (6) and (7) with Fig. 1, it follows that γjia
reflects the orbital texture, and therefore the topology,
of the bulk bands. In order clarify this point, we elimi-
nate the non-topological features coming from D(ϵF ) by
considering the ratio γxia/γ

z
ia ≃ (g2x/g

2
z)|⟨τx⟩ia|2/|⟨τz⟩ia|2.

For fixed bandgap, Eq. (6) predicts a strong maximum
for γxia/γ

z
ia as a function of ϵF in the topological phase

(but not in the trivial phase) becauseMkF
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FIG. 1: (Color online) (a) and (b) Expectation value of the
electronic parity operator, ⟨τ z⟩ (represented by arrows), as a
function of momentum. (c) and (d) Fermi surface averages of
|⟨τ z⟩|2 and |⟨τx⟩|2 (cf. Eq. (7)), as a function of the Fermi
energy, for m = −0.2 eV (c) and m = 0.2 eV (d). The rest of
the band parameters are the same as those in Ref. [3].

number for the state |ukn⟩ with a Fermi energy ϵF . Also,

gλnn′(k,q) = ⟨ukn|ĝλ(q)|uk−qn′⟩, (3)

where ĝλ(q) = ĝλ(−q)† is the electron-phonon vertex
operator in the low-energy electronic subspace [6, 7].

In a centrosymmetric crystal, lattice vibrations are ei-
ther even or odd under spatial inversion. Each of these
modes couples to electrons and can, as we shall see, in-
herit signatures of the underlying band topology. For the
model of Eq. (1) and for q ≃ 0 optical phonons, inversion
and time-reversal symmetries dictate [6]

ĝeven(q) ≃ g0(q̂) + gz(q̂)τ
z

ĝodd(q) ≃ gx(q̂)τ
x + g′(q̂) · στy, (4)

where “even” (“odd”) denotes the coupling of elec-
trons to parity-even (parity-odd) phonon modes, with
[ĝeven, τz] = 0 and {ĝodd, τz} = 0. Inversion symmetry
guarantees that ĝeven and ĝodd will not be mixed in a sin-
gle phonon mode. Also, q̂ = q/q, and the coefficients gi
(i = 0, x, z) and g′i (i = x, y, z) can be obtained from the
atomic displacements in the particular phonon mode [6].
Physically, g0 and gz lead to phonon-induced modula-
tions of the chemical potential and the Dirac mass, re-
spectively. Next, we identify ways in which ĝλ can trans-

fer the information about electronic band topology to the
phonon sector.

Intraband phonon damping.– The main electronic
mechanism contributing to phonon linewidths is the scat-
tering of phonons off electron-hole pairs. The rate of
this process is γλ(q) ≡ −ImΠλ(q,ωqλ). In this work,
we focus on long-wavelength optical phonons and on low
temperatures.

We begin by considering the commonly realized case in
which the phonon frequency is smaller than the bandgap
of the insulator. In this case, the “insulator” must be
doped in order for carriers to absorb phonons and in-
duce a linewidth γλia. The subscript “ia” is shorthand for
“intraband” and makes it explicit that phonons decay
into particle-hole pairs in the vicinity of the Fermi sur-
face. Assuming that the distance from the Fermi level
to the bulk band edge is large compared to the phonon
frequency, we have

γλia(q ≃ 0) ≃ πηD(ϵF )|gλia(kF , q̂)|2δ(v̂F · q̂− η), (5)

where D(ϵF ) is the electronic density of states at the
Fermi level, kF is the Fermi wave vector, vF = vF v̂F

is the Fermi velocity, η ≡ ω0λ/(qvF ), δ(x) is the Dirac
delta, and |gλia(k, q̂)|2 denotes the sum of |gλnn′ |2 over
the two degenerate bands at momentum k and energy
Ek (hence the label “intraband”). In addition, O =
∑

k Oδ(Ek − ϵF )/(VD(ϵF )).
Equation (5) contains information about the electronic

band topology. The simplest way to see this is to imag-
ine a parity-even phonon mode and a parity-odd phonon
mode that couple to electrons purely through ĝz ≡ gzτz

and ĝx ≡ gxτx, respectively. More general couplings with
g0 ̸= 0 and g′i ̸= 0 will be discussed below. From Eqs. (1),
(3) and (5), the linewidths of these two phonon modes
are

γjia(q ≃ 0) ≃ |gj(q̂)|2D(ϵF )|⟨τ j⟩ia|2
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Note that |⟨τ j⟩ia|2 ∈ [0, 1] (cf. Fig. 1). In particular,
when MkF

= 0, |⟨τz⟩ia|2 = 0 and |⟨τx⟩ia|2 = 1. Com-
bining Eqs. (6) and (7) with Fig. 1, it follows that γjia
reflects the orbital texture, and therefore the topology,
of the bulk bands. In order clarify this point, we elimi-
nate the non-topological features coming from D(ϵF ) by
considering the ratio γxia/γ

z
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where ĝλ(q) = ĝλ(−q)† is the electron-phonon vertex
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guarantees that ĝeven and ĝodd will not be mixed in a sin-
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(i = 0, x, z) and g′i (i = x, y, z) can be obtained from the
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spectively. Next, we identify ways in which ĝλ can trans-
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where D(ϵF ) is the electronic density of states at the
Fermi level, kF is the Fermi wave vector, vF = vF v̂F

is the Fermi velocity, η ≡ ω0λ/(qvF ), δ(x) is the Dirac
delta, and |gλia(k, q̂)|2 denotes the sum of |gλnn′ |2 over
the two degenerate bands at momentum k and energy
Ek (hence the label “intraband”). In addition, O =
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k Oδ(Ek − ϵF )/(VD(ϵF )).
Equation (5) contains information about the electronic

band topology. The simplest way to see this is to imag-
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mode that couple to electrons purely through ĝz ≡ gzτz

and ĝx ≡ gxτx, respectively. More general couplings with
g0 ̸= 0 and g′i ̸= 0 will be discussed below. From Eqs. (1),
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are
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where j ∈ {x, z}, Θ(x) is the Heaviside function and
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). (7)

Note that |⟨τ j⟩ia|2 ∈ [0, 1] (cf. Fig. 1). In particular,
when MkF

= 0, |⟨τz⟩ia|2 = 0 and |⟨τx⟩ia|2 = 1. Com-
bining Eqs. (6) and (7) with Fig. 1, it follows that γjia
reflects the orbital texture, and therefore the topology,
of the bulk bands. In order clarify this point, we elimi-
nate the non-topological features coming from D(ϵF ) by
considering the ratio γxia/γ
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For fixed bandgap, Eq. (6) predicts a strong maximum
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FIG. 1: (Color online) (a) and (b) Expectation value of the
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function of momentum. (c) and (d) Fermi surface averages of
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where ĝλ(q) = ĝλ(−q)† is the electron-phonon vertex
operator in the low-energy electronic subspace [6, 7].

In a centrosymmetric crystal, lattice vibrations are ei-
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modes couples to electrons and can, as we shall see, in-
herit signatures of the underlying band topology. For the
model of Eq. (1) and for q ≃ 0 optical phonons, inversion
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ĝodd(q) ≃ gx(q̂)τ
x + g′(q̂) · στy, (4)

where “even” (“odd”) denotes the coupling of elec-
trons to parity-even (parity-odd) phonon modes, with
[ĝeven, τz] = 0 and {ĝodd, τz} = 0. Inversion symmetry
guarantees that ĝeven and ĝodd will not be mixed in a sin-
gle phonon mode. Also, q̂ = q/q, and the coefficients gi
(i = 0, x, z) and g′i (i = x, y, z) can be obtained from the
atomic displacements in the particular phonon mode [6].
Physically, g0 and gz lead to phonon-induced modula-
tions of the chemical potential and the Dirac mass, re-
spectively. Next, we identify ways in which ĝλ can trans-

fer the information about electronic band topology to the
phonon sector.

Intraband phonon damping.– The main electronic
mechanism contributing to phonon linewidths is the scat-
tering of phonons off electron-hole pairs. The rate of
this process is γλ(q) ≡ −ImΠλ(q,ωqλ). In this work,
we focus on long-wavelength optical phonons and on low
temperatures.

We begin by considering the commonly realized case in
which the phonon frequency is smaller than the bandgap
of the insulator. In this case, the “insulator” must be
doped in order for carriers to absorb phonons and in-
duce a linewidth γλia. The subscript “ia” is shorthand for
“intraband” and makes it explicit that phonons decay
into particle-hole pairs in the vicinity of the Fermi sur-
face. Assuming that the distance from the Fermi level
to the bulk band edge is large compared to the phonon
frequency, we have

γλia(q ≃ 0) ≃ πηD(ϵF )|gλia(kF , q̂)|2δ(v̂F · q̂− η), (5)

where D(ϵF ) is the electronic density of states at the
Fermi level, kF is the Fermi wave vector, vF = vF v̂F

is the Fermi velocity, η ≡ ω0λ/(qvF ), δ(x) is the Dirac
delta, and |gλia(k, q̂)|2 denotes the sum of |gλnn′ |2 over
the two degenerate bands at momentum k and energy
Ek (hence the label “intraband”). In addition, O =
∑

k Oδ(Ek − ϵF )/(VD(ϵF )).
Equation (5) contains information about the electronic

band topology. The simplest way to see this is to imag-
ine a parity-even phonon mode and a parity-odd phonon
mode that couple to electrons purely through ĝz ≡ gzτz

and ĝx ≡ gxτx, respectively. More general couplings with
g0 ̸= 0 and g′i ̸= 0 will be discussed below. From Eqs. (1),
(3) and (5), the linewidths of these two phonon modes
are

γjia(q ≃ 0) ≃ |gj(q̂)|2D(ϵF )|⟨τ j⟩ia|2
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where j ∈ {x, z}, Θ(x) is the Heaviside function and

|⟨τz⟩ia|2 = 1− |⟨τx⟩ia|2 = M2
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/(α2k2F +M2
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). (7)

Note that |⟨τ j⟩ia|2 ∈ [0, 1] (cf. Fig. 1). In particular,
when MkF

= 0, |⟨τz⟩ia|2 = 0 and |⟨τx⟩ia|2 = 1. Com-
bining Eqs. (6) and (7) with Fig. 1, it follows that γjia
reflects the orbital texture, and therefore the topology,
of the bulk bands. In order clarify this point, we elimi-
nate the non-topological features coming from D(ϵF ) by
considering the ratio γxia/γ

z
ia ≃ (g2x/g

2
z)|⟨τx⟩ia|2/|⟨τz⟩ia|2.

For fixed bandgap, Eq. (6) predicts a strong maximum
for γxia/γ

z
ia as a function of ϵF in the topological phase

(but not in the trivial phase) becauseMkF
crosses zero as

a function of ϵF in the topological phase (but not in the
trivial phase). This difference in behavior between the
trivial and topological phases is significant for a sizeable
|m|, but becomes gradually weaker as the energy gap



Electron-phonon interaction 

Electron-phonon coupling Phonon parity

Even

Even

Odd

Odd

Long wavelength + local-in-space

2

h⌧zi
hz

ep

/ 1
2

⌦ ⌧z

hx

ep

/ 1
2

⌦ ⌧x

�
�

= g
�

D
joint

(!
0

)|hck|h
ep

|vki|2 (10)

�
x

= g
z

D(✏
F

)|h⌧xi|2 (11)

�
z

= g
z

D(✏
F

)|h⌧zi|2 (12)

�
x

= g
z

D(✏
F

)|h⌧xi|2 (13)

�
�

= g
�

D(✏
F

)|hh�

ep

i|2 (14)

�q�

' 2⇡
X

k

X

nn

0

|hkn|h
ep

|k� qn0i|2(fkn

� fk�qn

0
)�(Ekn

� Ek�qn

0 � !q) (15)

!⇤
q�

' !q�

+

X

k

X

nn

0

|hkn|h
ep

|k� qn0i|2 fkn

� fk�qn

0

Ekn

� Ek�qn

0 � !q
(16)

E⇤
kn

' Ekn

+

X

qn

0

|hkn|h
ep

|k� qn0i|2
Ekn

� Ek�qn

0
(17)

⇧(q, !) =

1

V

X

k

X

nn

0

|hkn|U
e�ph

|k� qn0i|2 fkn

� fk�qn

0

Ekn

� Ek�qn

0 � ! � i0+

(18)

h0

ep

(r) = u
0

(r) 1
2

⌦ 1
2

(19)

hx

ep

(r) = u
x

(r) 1
2

⌦ ⌧x

(20)

hz

ep

(r) = u
z

(r) 1
2

⌦ ⌧z

(21)

hiy

ep

(r) = u
iy

(r) �i ⌦ ⌧y

(22)

2

h⌧zi
hz

ep

/ 1
2

⌦ ⌧z

hx

ep

/ 1
2

⌦ ⌧x

�
�

= g
�

D
joint

(!
0

)|hck|h
ep

|vki|2 (10)

�
x

= g
z

D(✏
F

)|h⌧xi|2 (11)

�
z

= g
z

D(✏
F

)|h⌧zi|2 (12)

�
x

= g
z

D(✏
F

)|h⌧xi|2 (13)

�
�

= g
�

D(✏
F

)|hh�

ep

i|2 (14)

�q�

' 2⇡
X

k

X

nn

0

|hkn|h
ep

|k� qn0i|2(fkn

� fk�qn

0
)�(Ekn

� Ek�qn

0 � !q) (15)

!⇤
q�

' !q�

+

X

k

X

nn

0

|hkn|h
ep

|k� qn0i|2 fkn

� fk�qn

0

Ekn

� Ek�qn

0 � !q
(16)

E⇤
kn

' Ekn

+

X

qn

0

|hkn|h
ep

|k� qn0i|2
Ekn

� Ek�qn

0
(17)

⇧(q, !) =

1

V

X

k

X

nn

0

|hkn|U
e�ph

|k� qn0i|2 fkn

� fk�qn

0

Ekn

� Ek�qn

0 � ! � i0+

(18)

h0

ep

(r) = u
0

(r) 1
2

⌦ 1
2

(19)

hx

ep

(r) = u
x

(r) 1
2

⌦ ⌧x

(20)

hz

ep

(r) = u
z

(r) 1
2

⌦ ⌧z

(21)

hiy

ep

(r) = u
iy

(r) �i ⌦ ⌧y

(22)

2

h⌧zi
hz

ep

/ 1
2

⌦ ⌧z

hx

ep

/ 1
2

⌦ ⌧x

�
�

= g
�

D
joint

(!
0

)|hck|h
ep

|vki|2 (10)

�
x

= g
z

D(✏
F

)|h⌧xi|2 (11)

�
z

= g
z

D(✏
F

)|h⌧zi|2 (12)

�
x

= g
z

D(✏
F

)|h⌧xi|2 (13)

�
�

= g
�

D(✏
F

)|hh�

ep

i|2 (14)

�q�

' 2⇡
X

k

X

nn

0

|hkn|h
ep

|k� qn0i|2(fkn

� fk�qn

0
)�(Ekn

� Ek�qn

0 � !q) (15)

!⇤
q�

' !q�

+

X

k

X

nn

0

|hkn|h
ep

|k� qn0i|2 fkn

� fk�qn

0

Ekn

� Ek�qn

0 � !q
(16)

E⇤
kn

' Ekn

+

X

qn

0

|hkn|h
ep

|k� qn0i|2
Ekn

� Ek�qn

0
(17)

⇧(q, !) =

1

V

X

k

X

nn

0

|hkn|U
e�ph

|k� qn0i|2 fkn

� fk�qn

0

Ekn

� Ek�qn

0 � ! � i0+

(18)

h0

ep

(r) = u
0

(r) 1
2

⌦ 1
2

(19)

hx

ep

(r) = u
x

(r) 1
2

⌦ ⌧x

(20)

hz

ep

(r) = u
z

(r) 1
2

⌦ ⌧z

(21)

hiy

ep

(r) = u
iy

(r) �i ⌦ ⌧y

(22)

2

h⌧zi
hz

ep

/ 1
2

⌦ ⌧z

hx

ep

/ 1
2

⌦ ⌧x

�
�

= g
�

D
joint

(!
0

)|hck|h
ep

|vki|2 (10)

�
x

= g
z

D(✏
F

)|h⌧xi|2 (11)

�
z

= g
z

D(✏
F

)|h⌧zi|2 (12)

�
x

= g
z

D(✏
F

)|h⌧xi|2 (13)

�
�

= g
�

D(✏
F

)|hh�

ep

i|2 (14)

�q�

' 2⇡
X

k

X

nn

0

|hkn|h
ep

|k� qn0i|2(fkn

� fk�qn

0
)�(Ekn

� Ek�qn

0 � !q) (15)

!⇤
q�

' !q�

+

X

k

X

nn

0

|hkn|h
ep

|k� qn0i|2 fkn

� fk�qn

0

Ekn

� Ek�qn

0 � !q
(16)

E⇤
kn

' Ekn

+

X

qn

0

|hkn|h
ep

|k� qn0i|2
Ekn

� Ek�qn

0
(17)

⇧(q, !) =

1

V

X

k

X

nn

0

|hkn|U
e�ph

|k� qn0i|2 fkn

� fk�qn

0

Ekn

� Ek�qn

0 � ! � i0+

(18)

h0

ep

(r) = u
0

(r) 1
2

⌦ 1
2

(19)

hx

ep

(r) = u
x

(r) 1
2

⌦ ⌧x

(20)

hz

ep

(r) = u
z

(r) 1
2

⌦ ⌧z

(21)

hiy

ep

(r) = u
iy

(r) �i ⌦ ⌧y

(22)



Effect of phonons on energy gap

Intraband transitions

= intraband + interband

Typing Equations for Slides

Ion Garate

May 7, 2014

�E0n =

X
n0q

g2
q
|hn0|n0qi|2
E0n � Eqn0

(1)

E⇤
g 6= 2m⇤

Eg = 2m
An(R) = ihn,R|rR|n,Ri
� = 0

� = 1

d|Eg|/dT < 0

d|Eg|/dT > 0

0n
kn0

�so < 1mK

nK = nK0

nK = �nK0

nChern = nK + nK0
= sgn(mH)

|+i
|�i
nK =

1
2 sgn(vx

Kvy
KmK)

dz(q) = mS dz(q) = mH⌧z

|dz(0)|
h(q) = v ⌧z�x qx + v �yqy + dz(q)�z

h(d) = d · �
|±i
E± = ±|d|
!c = eB/(mc)
c py/(eB)

�⇡/a ⇡/a h(k) = dx(k)�x
+ dy(k)�y

Fn(R) = rR ⇥An(R)

�P =

e

2⇡

X
n2occ

I
C

An(R) · dR =

e

2⇡

X
n2occ

Z
S

Fn(R) · dS = nChern ⇥ e (2)

An(R) = ihun(R)|rR|un(R)i
h(k, t) = h(k, t + ⌧)

1

E

k

E

k

Interband transitions



Electron-phonon matrix elements

Trivial insulator

E

k

Arrows = orbital pseudospin q

Interband

Intraband

1

0

Equations for PPT slides

Ion Garate
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(Dated: February 27, 2015)

PACS numbers:

h(k) = vk · �⌧x

+ m(k) ⌧z

(1)

|m(0)|
�
⌧

⇥ = i�yK (2)

⇧ = ⌧z

(3)

h⌧zi
hz

ep / 12 ⌦ ⌧z

hx

ep / 12 ⌦ ⌧x

�
z

= g
z

D(✏
F

)|h⌧zi|2 (4)

�
x

= g
z

D(✏
F

)|h⌧xi|2 (5)

�
�

= g
�

D(✏
F

)|hh�

epi|2 (6)

�q�

' 2⇡
X

k

X

nn

0

|hkn|hep|k� qn0i|2(fkn

� fk�qn

0
)�(Ekn

� Ek�qn

0 � !q) (7)

!⇤
q�

' !q�

+

X

k

X

nn

0

|hkn|hep|k� qn0i|2 fkn

� fk�qn

0

Ekn

� Ek�qn

0 � !q
(8)

E⇤
kn

' Ekn

+

X

qn

0

|hkn|hep|k� qn0i|2

Ekn

� Ek�qn

0
(9)

⇧(q, !) =

1

V

X

k

X

nn

0

|hkn|Ue�ph|k� qn0i|2 fkn

� fk�qn

0

Ekn

� Ek�qn

0 � ! � i0+
(10)

h0
ep(r) = u0(r) 12 ⌦ 12 (11)

hx

ep(r) = u
x

(r) 12 ⌦ ⌧x

(12)

hz

ep(r) = u
z

(r) 12 ⌦ ⌧z

(13)

hiy

ep(r) = u
iy

(r) �i ⌦ ⌧y

(14)

Small (but nonzero) q

Fermi-surface average



Matrix elements (I): topological phase

Equations for PPT slides

Ion Garate
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3

decreases, ultimately disappearing whenm → 0. In other
words, γxia/γ

z
ia contains no signatures of band topology

near the topological quantum critical point. Figure 2a
confirms our analytical statements in a lattice model, for
which Eq. (5) is solved numerically.

Alternatively, in a sample with fixed carrier density,
γxia/γ

z
ia shows a pronounced maximum as a function of m

in the topological phase only. The maximum takes place
atm∗ ≃ −βk2F , whereMkF

undergoes a sign change. Mo-
tivated by recent claims of pressure-induced band inver-
sions in Sb2Se3 and Pb1−xSnxSe [8, 9], in Fig. 2b we plot
γxia/γ

z
ia as a function of pressure, using a lattice model.

This corroborates the emergence of a “topology-induced”
maximum in γxia/γ

z
ia.

In the preceding discussion of γxia, we have assumed a
parity-odd phonon mode that couples to electrons purely
through τx (g′i = 0 in Eq. (4)). In general, such a phonon
can also couple to electrons through the term g′ · στy.
However, we have verified that this coupling produces
qualitatively similar features as τx.
Similarly, when discussing γzia, we have imagined a

parity-even phonon mode that couples to electrons purely
through τz (g0 = 0 in Eq. (4)). Nonetheless, symmetry
allows a mixture of τz and the identity matrix 1 [11].
The latter produces intraband matrix elements that are
insensitive to the orbital texture of the insulator, since
⟨ukn|1|ukn⟩ = 1. Consequently, the effect of g0 ̸= 0 is to
dilute away the topological features of γzia. Although this
constitutes a problem towards the realization of Fig. 2
in real materials, we find that the maximum in γxia/γ

z
ia

remains pinned to the topological side if |gz| > |g0|.
Interband phonon damping.– Thus far, we have consid-

ered the linewidths of phonons with ω0λ < 2|m|. Herein,
we investigate the case ω0λ > 2|m|, relevant to Dirac
insulators with particularly small bandgaps and/or high-
frequency phonon modes. In this case, a phonon is ab-
sorbed by an electron in the bulk valence band, which
gets promoted to the bulk conduction band. The asso-
ciated phonon linewidth is γλie, where the subscript “ie”
is shorthand for “interband”. Assuming for the moment
that ϵF is inside the bulk gap, Eq. (33) yields

γλie(q ≃ 0) ≃ πDjoint(ω0λ)|gλie(k, q̂)|2, (8)

where Djoint(ω) =
∑

k δ(Ekc − Ekv − ω)/V is the joint
density of states, Ekc and Ekv are the bulk conduction
(c) and valence (v) band energies. In addition, |gλie|2 =
∑

n∈v,n′∈c |gλnn′ |2 and |gλie|2 =
∑

k |gλie|2δ(Ekc − Ekv −
ω0λ)/(VDjoint).
From Eqs. (1) and (3), we obtain |gzie(k, 0)|2 =

|gxia(k, 0)|2 and |gxie(k, 0)|2 = |gzia(k, 0)|2. Therefore, γλie is
as sensitive as γλia to the band topology of the Dirac insu-
lator (with x and z interchanged). More so, an important
advantage of γλie over γλia is that we may effectively take
ĝeven = ĝz regardless of the value of g0 in Eq. (4), because
⟨ukn|1|ukn′⟩ = 0 for interband transitions. Accordingly,
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FIG. 2: (Color online) (a) γx
ia/γ

z
ia as a function of the Fermi

energy and the bulk carrier density, for m = ±0.1 eV. A
prominent maximum emerges in the topological phase only,
due to the momentum-space orbital texture of the electronic
eigenstates. (b) γx

ia/γ
z
ia as a function of pressure P . We use

m = α(P − Pc), where Pc is the critical pressure for a band
inversion and α is a coefficient that can be obtained e.g. from
experiment [8]. The bulk carrier density is n ≃ n0(1 + P/B),
where n0 is the density at P = 0 and B is the bulk modu-
lus. The maximum of γx

ia/γ
z
ia appears at P = P ∗. Inset: The

dependence of P ∗ on n0. As n0 decreases, P ∗ approaches
Pc, making it more difficult to identify trivial and topolog-
ical phases solely from phonon measurements. Throughout
this figure, we have used a tetragonal lattice regularization
of Eq. (1). Because α,β, γ are not tabulated for Sb2Se3, we
have replaced them with those of Sb2Te3 [4]. For the bulk
modulus, we have used B = 30GPa [10].

the topological signatures in γλie are more robust than
those in γλia.
In a sample with fixed carrier density, γxie/γ

z
ie contains

a minimum as a function of m at m∗ ≃ −ω2
0β/(4α

2),
i.e. only in the topological phase [12]. This result has
the same origin as the maximum of γxia/γ

z
ia discussed

above, and it holds for doped samples as well so long as
αkF /ω0 ≪ 1. Figure 3 confirms this for a lattice model.
Discussion.– In sum, there are three reasons why the

linewidths of bulk, long-wavelength optical phonons can
inherit distinct signatures of the electronic band topol-
ogy. First, phonon linewidths are proportional to the
square of energy-resolved electron-phonon matrix ele-
ments. Second, in a centrosymmetric crystal, the cou-
pling of a optical q ≃ 0 phonon to electrons either com-
mutes or anticommutes with the electronic parity oper-
ator. Third, the momentum-space texture of the expec-
tation value of the electronic parity operator determines
the band topology of a Dirac insulator.

Phonon frequencies, which we have barely mentioned
thus far, are much less sensitive than phonon linewidths
to the electronic band topology. This is because the real
part of Eq. (33) contains a sum over electron-phonon
matrix elements at multiple energies, with weights that
depend on non-topological details of the energy bands.
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3

decreases, ultimately disappearing whenm → 0. In other
words, γxia/γ

z
ia contains no signatures of band topology

near the topological quantum critical point. Figure 2a
confirms our analytical statements in a lattice model, for
which Eq. (5) is solved numerically.
Alternatively, in a sample with fixed carrier density,

γxia/γ
z
ia shows a pronounced maximum as a function of m

in the topological phase only. The maximum takes place
atm∗ ≃ −βk2F , whereMkF

undergoes a sign change. Mo-
tivated by recent claims of pressure-induced band inver-
sions in Sb2Se3 and Pb1−xSnxSe [8, 9], in Fig. 2b we plot
γxia/γ

z
ia as a function of pressure, using a lattice model.

This corroborates the emergence of a “topology-induced”
maximum in γxia/γ

z
ia.

In the preceding discussion of γxia, we have assumed a
parity-odd phonon mode that couples to electrons purely
through τx (g′i = 0 in Eq. (4)). In general, such a phonon
can also couple to electrons through the term g′ · στy.
However, we have verified that this coupling produces
qualitatively similar features as τx.
Similarly, when discussing γzia, we have imagined a

parity-even phonon mode that couples to electrons purely
through τz (g0 = 0 in Eq. (4)). Nonetheless, symmetry
allows a mixture of τz and the identity matrix 1 [11].
The latter produces intraband matrix elements that are
insensitive to the orbital texture of the insulator, since
⟨ukn|1|ukn⟩ = 1. Consequently, the effect of g0 ̸= 0 is to
dilute away the topological features of γzia. Although this
constitutes a problem towards the realization of Fig. 2
in real materials, we find that the maximum in γxia/γ

z
ia

remains pinned to the topological side if |gz| > |g0|.
Interband phonon damping.– Thus far, we have consid-

ered the linewidths of phonons with ω0λ < 2|m|. Herein,
we investigate the case ω0λ > 2|m|, relevant to Dirac
insulators with particularly small bandgaps and/or high-
frequency phonon modes. In this case, a phonon is ab-
sorbed by an electron in the bulk valence band, which
gets promoted to the bulk conduction band. The asso-
ciated phonon linewidth is γλie, where the subscript “ie”
is shorthand for “interband”. Assuming for the moment
that ϵF is inside the bulk gap, Eq. (33) yields

γλie(q ≃ 0) ≃ πDjoint(ω0λ)|gλie(k, q̂)|2, (8)

where Djoint(ω) =
∑

k δ(Ekc − Ekv − ω)/V is the joint
density of states, Ekc and Ekv are the bulk conduction
(c) and valence (v) band energies. In addition, |gλie|2 =
∑

n∈v,n′∈c |gλnn′ |2 and |gλie|2 =
∑

k |gλie|2δ(Ekc − Ekv −
ω0λ)/(VDjoint).
From Eqs. (1) and (3), we obtain |gzie(k, 0)|2 =

|gxia(k, 0)|2 and |gxie(k, 0)|2 = |gzia(k, 0)|2. Therefore, γλie is
as sensitive as γλia to the band topology of the Dirac insu-
lator (with x and z interchanged). More so, an important
advantage of γλie over γλia is that we may effectively take
ĝeven = ĝz regardless of the value of g0 in Eq. (4), because
⟨ukn|1|ukn′⟩ = 0 for interband transitions. Accordingly,
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FIG. 2: (Color online) (a) γx
ia/γ

z
ia as a function of the Fermi

energy and the bulk carrier density, for m = ±0.1 eV. A
prominent maximum emerges in the topological phase only,
due to the momentum-space orbital texture of the electronic
eigenstates. (b) γx

ia/γ
z
ia as a function of pressure P . We use

m = α(P − Pc), where Pc is the critical pressure for a band
inversion and α is a coefficient that can be obtained e.g. from
experiment [8]. The bulk carrier density is n ≃ n0(1 + P/B),
where n0 is the density at P = 0 and B is the bulk modu-
lus. The maximum of γx

ia/γ
z
ia appears at P = P ∗. Inset: The

dependence of P ∗ on n0. As n0 decreases, P ∗ approaches
Pc, making it more difficult to identify trivial and topolog-
ical phases solely from phonon measurements. Throughout
this figure, we have used a tetragonal lattice regularization
of Eq. (1). Because α,β, γ are not tabulated for Sb2Se3, we
have replaced them with those of Sb2Te3 [4]. For the bulk
modulus, we have used B = 30GPa [10].

the topological signatures in γλie are more robust than
those in γλia.
In a sample with fixed carrier density, γxie/γ

z
ie contains

a minimum as a function of m at m∗ ≃ −ω2
0β/(4α

2),
i.e. only in the topological phase [12]. This result has
the same origin as the maximum of γxia/γ

z
ia discussed

above, and it holds for doped samples as well so long as
αkF /ω0 ≪ 1. Figure 3 confirms this for a lattice model.
Discussion.– In sum, there are three reasons why the

linewidths of bulk, long-wavelength optical phonons can
inherit distinct signatures of the electronic band topol-
ogy. First, phonon linewidths are proportional to the
square of energy-resolved electron-phonon matrix ele-
ments. Second, in a centrosymmetric crystal, the cou-
pling of a optical q ≃ 0 phonon to electrons either com-
mutes or anticommutes with the electronic parity oper-
ator. Third, the momentum-space texture of the expec-
tation value of the electronic parity operator determines
the band topology of a Dirac insulator.
Phonon frequencies, which we have barely mentioned

thus far, are much less sensitive than phonon linewidths
to the electronic band topology. This is because the real
part of Eq. (33) contains a sum over electron-phonon
matrix elements at multiple energies, with weights that
depend on non-topological details of the energy bands.
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maximum in γxia/γ
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In the preceding discussion of γxia, we have assumed a
parity-odd phonon mode that couples to electrons purely
through τx (g′i = 0 in Eq. (4)). In general, such a phonon
can also couple to electrons through the term g′ · στy.
However, we have verified that this coupling produces
qualitatively similar features as τx.
Similarly, when discussing γzia, we have imagined a

parity-even phonon mode that couples to electrons purely
through τz (g0 = 0 in Eq. (4)). Nonetheless, symmetry
allows a mixture of τz and the identity matrix 1 [11].
The latter produces intraband matrix elements that are
insensitive to the orbital texture of the insulator, since
⟨ukn|1|ukn⟩ = 1. Consequently, the effect of g0 ̸= 0 is to
dilute away the topological features of γzia. Although this
constitutes a problem towards the realization of Fig. 2
in real materials, we find that the maximum in γxia/γ
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remains pinned to the topological side if |gz| > |g0|.
Interband phonon damping.– Thus far, we have consid-

ered the linewidths of phonons with ω0λ < 2|m|. Herein,
we investigate the case ω0λ > 2|m|, relevant to Dirac
insulators with particularly small bandgaps and/or high-
frequency phonon modes. In this case, a phonon is ab-
sorbed by an electron in the bulk valence band, which
gets promoted to the bulk conduction band. The asso-
ciated phonon linewidth is γλie, where the subscript “ie”
is shorthand for “interband”. Assuming for the moment
that ϵF is inside the bulk gap, Eq. (33) yields

γλie(q ≃ 0) ≃ πDjoint(ω0λ)|gλie(k, q̂)|2, (8)

where Djoint(ω) =
∑

k δ(Ekc − Ekv − ω)/V is the joint
density of states, Ekc and Ekv are the bulk conduction
(c) and valence (v) band energies. In addition, |gλie|2 =
∑

n∈v,n′∈c |gλnn′ |2 and |gλie|2 =
∑

k |gλie|2δ(Ekc − Ekv −
ω0λ)/(VDjoint).
From Eqs. (1) and (3), we obtain |gzie(k, 0)|2 =

|gxia(k, 0)|2 and |gxie(k, 0)|2 = |gzia(k, 0)|2. Therefore, γλie is
as sensitive as γλia to the band topology of the Dirac insu-
lator (with x and z interchanged). More so, an important
advantage of γλie over γλia is that we may effectively take
ĝeven = ĝz regardless of the value of g0 in Eq. (4), because
⟨ukn|1|ukn′⟩ = 0 for interband transitions. Accordingly,
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FIG. 2: (Color online) (a) γx
ia/γ

z
ia as a function of the Fermi

energy and the bulk carrier density, for m = ±0.1 eV. A
prominent maximum emerges in the topological phase only,
due to the momentum-space orbital texture of the electronic
eigenstates. (b) γx

ia/γ
z
ia as a function of pressure P . We use

m = α(P − Pc), where Pc is the critical pressure for a band
inversion and α is a coefficient that can be obtained e.g. from
experiment [8]. The bulk carrier density is n ≃ n0(1 + P/B),
where n0 is the density at P = 0 and B is the bulk modu-
lus. The maximum of γx

ia/γ
z
ia appears at P = P ∗. Inset: The

dependence of P ∗ on n0. As n0 decreases, P ∗ approaches
Pc, making it more difficult to identify trivial and topolog-
ical phases solely from phonon measurements. Throughout
this figure, we have used a tetragonal lattice regularization
of Eq. (1). Because α,β, γ are not tabulated for Sb2Se3, we
have replaced them with those of Sb2Te3 [4]. For the bulk
modulus, we have used B = 30GPa [10].

the topological signatures in γλie are more robust than
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ie contains

a minimum as a function of m at m∗ ≃ −ω2
0β/(4α

2),
i.e. only in the topological phase [12]. This result has
the same origin as the maximum of γxia/γ

z
ia discussed

above, and it holds for doped samples as well so long as
αkF /ω0 ≪ 1. Figure 3 confirms this for a lattice model.
Discussion.– In sum, there are three reasons why the

linewidths of bulk, long-wavelength optical phonons can
inherit distinct signatures of the electronic band topol-
ogy. First, phonon linewidths are proportional to the
square of energy-resolved electron-phonon matrix ele-
ments. Second, in a centrosymmetric crystal, the cou-
pling of a optical q ≃ 0 phonon to electrons either com-
mutes or anticommutes with the electronic parity oper-
ator. Third, the momentum-space texture of the expec-
tation value of the electronic parity operator determines
the band topology of a Dirac insulator.
Phonon frequencies, which we have barely mentioned

thus far, are much less sensitive than phonon linewidths
to the electronic band topology. This is because the real
part of Eq. (33) contains a sum over electron-phonon
matrix elements at multiple energies, with weights that
depend on non-topological details of the energy bands.
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FIG. 3: (Color online) γx
ie/γ

z
ie as a function of the Dirac

mass m, where the rest of the band parameters correspond to
Sb2Te3 (a) or Bi2Se3 (b). The minimum of γx

ie/γ
z
ie occuring

in the topological side is a direct manifestation of the orbital
texture in Fig. 1. Throughout this figure, we have used a
tetragonal lattice regularization of Eq. (1) with the band pa-
rameters taken from Ref. [4]. The Fermi level is assumed to
be inside the bulk gap.

This notwithstanding, a recent experiment [8] in Sb2Se3
has attributed a kink in the pressure-dependence of the
phonon frequency to a band inversion. Our calcula-
tions [6] do not support such interpretation.

The main tools to measure q ≃ 0 phonon linewidths are
Raman spectroscopy (for parity-even phonons), infrared
spectroscopy (for parity-odd phonons) and inelastic neu-
tron scattering [13]. In a clean material with ω0λτ ≫ 1
(where τ is the disorder scattering time), γλia vanishes
unless q > ω0λ/vF [14]. Since ω0λ/vF typically exceeds
the photon wave vector used in optical spectroscopies,
γλia should be measured with neutrons. In contrast, γλie
remains nonzero at q = 0 and is thus amenable to optics.
For Bi2Se3, we estimate γλie, ia ! 1 cm−1, which nears the
experimental resolution [15].

Aside from electron-phonon interactions, anharmonic
lattice effects contribute to the phonon linewidth. To
leading order, phonon-phonon interactions contain no in-
formation about the electronic band topology and are
independent from the carrier density. Therefore, the
anharmonic part can be subtracted by measuring the
linewidths with respect to a baseline carrier density.

In view of our results, it is natural to ask whether
any other physical observable involving Fermi’s golden
rule, such as conductivity, might be sensitive to elec-
tronic band topology on the same footing as the phonon
linewidths. The answer is generally negative. For ex-
ample, the optical conductivity cannot clearly differenti-
ate between trivial and nontrivial orbital textures in the
bulk bands because the velocity operator mixes 1, τx,
and τz [16].

To conclude, we have proven that it is in principle
possible to infer the strong topological invariant of a
centrosymmetric Dirac insulator from the linewidths of

bulk, long-wavelength optical phonons. It will be desir-
able to complement our theory with first principles elec-
tronic structure calculations, and to search for similar
insights in other contexts (cold atoms, photonic crystals,
quantum memories) where the interplay between topol-
ogy and dissipation may be crucial.
Acknowledgements.– We are grateful to K. Pal and U.

Waghmare for sharing useful information about Ref. [8].
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FIG. 2: (color online)–(a) Raman shift versus pressure plot. Solid lines are linear fits to the ob-

served frequencies. The numbers next to the straight lines are the fitted values of dω
dP in cm−1/GPa.

The error bars, if not seen, are less than the size of the symbol. Fig.(b) shows FWHM of the M1

mode (solid points) as a function of pressure and the dashed line is drawn as guide to the eyes.

Fig.(c) shows the First-principles calculations of electronic structure near the gap as a function of

pressure in the neighborhood of transition (Pc=2 GPa).
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3

Figure S1. Device architecture. (a) Optical image of the device showing two coupled gmon transmons on the top half
of the chip and the two coupled gmons used in this work on the lower half (zoomed-in view in inset). (b) The layout of the
two-qubit gmon system. We supply bias currents using the lower blue lines to tune the inductance of the coupler junction
(middle) and the qubit frequencies (left, right). We apply microwave pulses to each qubit via the gray trace. We read out the
state of the qubits dispersively via readout resonators: each qubit is capacitively coupled to a resonator (green lines; meandered
lines in inset of (a)).

1. THE GMON QUBITS

1.1. The gmon coupling architecture

In this work we implemented an adjustable inductive coupling between two qubits. Adjustable coupling has typically
been difficult with superconducting qubits, as fixed capacitive coupling may only be modified by detuning, so it has
the problems of limited on/off range and crosstalk. Here we use a novel qubit design called the gmon, which allows
a continuous variation of the inter-qubit coupling strength g over nanosecond time scales without any degradation in
the coherence of the constituent Xmon qubits [1, 2]. The adjustable inductive coupling between the transmons allows
g/2⇡ to be varied between �5 MHz and 55 MHz, including zero, without changing the bare qubit frequencies. The
device was fabricated using standard optical and e-beam lithography techniques, discussed in recent works of our
group such as [3]. The experiment was performed at the base temperature of a dilution fridge (⇠20 mK).

1.2. Basic design principle of the gmon

As shown in Fig. S1, the gmon design is based on the Xmon qubit design. One important feature of the Xmon
design [4] is the single-ended ground in contrast to differential or floating grounds. In the absence of adjustable
coupling, the SQUID loops (Fig. S1(b)) would be directly connected to the ground plane. This design feature gives
us the ability to capacitively couple qubits with elements such as the drive lines, the readout resonators, and nearby
qubits. In the gmon architecture, instead of immediately terminating the qubit SQUID to ground, we add a linear
inductor (the meandering CPW element colored in purple and labeled "tapping inductance") between the SQUID
and ground(CPW stands for coplanar waveguides). This creates a node (where the purple CPW meets the horizontal
blue CPW) that allows us to couple the two qubits. The two qubits then can be connected with a CPW line. This
connecting line is interrupted with a Josephson junction, which acts as a tunable inductor that can be used to tune
the inter-qubit coupling strength g, hence the name gmon.

The basic operation of the gmon can be understood from a simple linear circuit model. An excitation created in Q1
will mostly flow to ground through its tapping inductance, but a small fraction will flow to the tapping inductance of
Q2, generating a flux in Q2. The mutual inductance resulting from the flux in Q2 due to an excitation current in Q1
can be calculated from simple current division, and the coupling strength is proportional to this mutual inductance
to high accuracy [1, 2]. The current division ratio, which sets the coupling strength g, can be varied by changing the
superconducting phase difference across the tunable inductance. This is done by flux biasing its junction, using the
current line labeled "coupler tuning" in panel (b).

An important advantage of this architecture is that it prevents crosstalk, a serious hurdle for many other experi-

Topological phases in superconducting circuits

Roushan et al., Nature (2014)



Examples of topological Dirac materials
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Can there be a thermal topological transition?



Electron-phonon interaction 

1) Parity-even phonon (Raman active)
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2) Parity-odd phonon (infrared active)
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We focus on two types:



Experiment in Sb2Se3

Influence of band topology on phonons
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FIG. 2: (color online)–(a) Raman shift versus pressure plot. Solid lines are linear fits to the ob-

served frequencies. The numbers next to the straight lines are the fitted values of dω
dP in cm−1/GPa.

The error bars, if not seen, are less than the size of the symbol. Fig.(b) shows FWHM of the M1

mode (solid points) as a function of pressure and the dashed line is drawn as guide to the eyes.

Fig.(c) shows the First-principles calculations of electronic structure near the gap as a function of

pressure in the neighborhood of transition (Pc=2 GPa).
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A. Bera et al., PRL 110, 107401 (2013). 

Phonon anomaly

Topological phase transition?



Electron-phonon interaction 

Electron-phonon coupling Phonon parity
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Theoretical issue

Thus far we have assumed that a parity-even phonon mode can 
couple to electrons purely through 
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In general,  it could also couple to electrons via 
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The latter is not sensitive to band topology and therefore can 
mask the effect of the former.
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