Interplay between electronic topology and phonons in Dirac materials

> Ion Garate Kush Saha (postdoc \rightarrow UC Irvine) Katherine Légaré (undergrad intern)

SHERBROOKE

RQMP

Prelude: Dirac materials

A recent review:

Ando, JPSJ 82, 102001 (2013).

3D (massive) Dirac fermions in crystals

$$h(\mathbf{k}) = v\mathbf{k} \cdot \boldsymbol{\sigma} \tau^x + m(\mathbf{k}) \, \tau^z$$

$$oldsymbol{\sigma}$$
 = spin
 $oldsymbol{ au}$ = orbital (parity)

Time-reversal and inversion symmetry

$$m(\mathbf{k}) = m + tk^2$$

 $\langle \tau^z \rangle$ in k-space

Trivial insulator

Topological insulator

Part I: Effect of phonons on band topology

I. Garate, PRL 110, 046402 (2013).

K. Saha and I. Garate, PRB 89, 205103 (2014).

Electron-phonon interaction

Electron-phonon interaction

Long wavelength + local-in-space

Electron-phonon coupling	Phonon parity
$1_2\otimes1_2$	Even

Effect of phonons on energy gap

$$\Delta E_{\mathbf{0}n} = \sum_{n'\mathbf{q}} g_{\mathbf{q}}^2 \frac{|\langle n\mathbf{0}|n'\mathbf{q}\rangle|^2}{E_{\mathbf{0}n} - E_{\mathbf{q}n'}} = \text{intraband + interband}$$

Intraband transitions

Interband transitions

Electron-phonon matrix elements $|\langle \mathbf{0}n|\mathbf{q}n' angle|^2$ **Trivial insulator** Intraband ► k Interband Arrows = orbital pseudospin

Electron-phonon matrix elements

Phonon-induced topological insulation

Thermal topological transition (crossover).

Part II: Back action of band topology on phonons

K. Saha, K. Légaré and I. Garate

arXiv: 1506.02621

Phonon linewidth

Case I: Phonon frequency < Bandgap

Raman-active phonon	IR-active phonon
$h^z_{ m ep} \propto {f 1}_2 \otimes au^z$	$h_{ m ep}^x \propto {f 1}_2 \otimes au^x$
$\gamma_z = g_z D(\epsilon_F) \overline{ \langle \tau^z \rangle ^2}$	$\gamma_x = g_z D(\epsilon_F) \overline{ \langle \tau^x \rangle ^2}$

Matrix elements (I): topological phase

Bulk conduction band

Matrix elements (II): trivial phase

Bulk conduction band

Phonon linewidth

Case II: Phonon frequency > Bandgap

q=0 linewidth:

$$\gamma_{\lambda} = g_{\lambda} D_{\text{joint}}(\omega_0) \overline{|\langle \mathbf{c} | h_{\text{ep}} | \mathbf{v} \rangle|^2}$$

Joint DOS Interband matrix element

A property of interband matrix elements:

$$|\langle \mathbf{v}\mathbf{k}|\tau^{z}|\mathbf{c}\mathbf{k}\rangle|^{2} = |\langle \mathbf{c}\mathbf{k}|\tau^{x}|\mathbf{c}\mathbf{k}\rangle|^{2}$$

Theoretical prediction

Experiments?

A. Bera *et al.*, PRL **110**, 107401 (2013).

- Linewidths are hard to measure
- Anharmonic contribution

Summary and Conclusions

Phonons can change the electronic band topology

Phonons can inherit unique signatures of the electronic band topology

Interesting interplay between phonons and electronic band topology

Dirac fermions (spin ¹/₂)

Jackiw-Rebbi zero mode

Insensitive to details of the Hamiltonian

Topological insulators

Topological phases in superconducting circuits

Roushan et al., Nature (2014)

Examples of topological Dirac materials

CdTe/HgTe/CdTe AlSb/InAs/GaSb/AlSb $Bi_{1-x}Sb_x$ Sb Bi2Se3 Bi2Te3 Sb₂Te₃ Bi2Te2Se (Bi,Sb)₂Te₃ $Bi_{2-x}Sb_{x}Te_{3-y}Se_{y}$ Bi2Te1.6S1.4 Bi11Sb0.9Te2S Sb₂Te₂Se Bi₂(Te,Se)₂(Se,S)

TlBiSe₂ TlBiTe₂ TlBi(S,Se)2 PbBi2Te4 PbSb₂Te₄ GeBi2Te4 PbBi₄Te₇ GeBi4-rSbrTe7 (PbSe)₅(Bi₂Se₃)₆ $(Bi_2)(Bi_2Se_{2.6}S_{0.4})$ (Bi₂)(Bi₂Te₃)₂ SnTe $Pb_{1-x}Sn_xTe$ Pb0.77Sn0.23Se Bi bilayer

Ag₂Te SmB₆ Bi₁₄Rh₃I₉ *R*BiPt (R = Lu, Dy, Gd) Nd₂(Ir_{1-x}Rh_x)₂O₇

Topological quantum phase transition

"External parameter": doping, pressure...

(Experiment: Xu *et al.*, Science **332**, 560 (2011))

Can there be a thermal topological transition?

Electron-phonon interaction

We focus on two types:

1) Parity-even phonon (Raman active)

 $h_{
m ep} \propto {f 1}_2 \otimes au^z$

2) Parity-odd phonon (infrared active)

 $h_{
m ep} \propto {f 1}_2 \otimes au^x$

Influence of band topology on phonons

Experiment in Sb₂Se₃

Electron-phonon interaction

Long wavelength + local-in-space

Electron-phonon coupling	Phonon parity
$h^0_{ m ep}({f r})=u_0({f r})~{f 1}_2\otimes{f 1}_2$	Even
$h_{\mathrm{ep}}^{z}(\mathbf{r}) = u_{z}(\mathbf{r}) \ 1_{2} \otimes \tau^{z}$	Even
$h_{\mathrm{ep}}^{x}(\mathbf{r}) = u_{x}(\mathbf{r}) \ 1_{2} \otimes \tau^{x}$	Odd
$h_{\mathrm{ep}}^{iy}(\mathbf{r}) = u_{iy}(\mathbf{r}) \ \sigma^i \otimes \tau^y$	Odd

Theoretical issue

Thus far we have assumed that a parity-even phonon mode can couple to electrons purely through

$$h_{
m ep} \propto \mathbf{1}_2 \otimes \tau^z$$

In general, it could also couple to electrons via

$$h_{
m ep} \propto {f 1}_2 \otimes {f 1}_2$$

The latter is not sensitive to band topology and therefore can mask the effect of the former.

Dirac insulator with small energy gap

Intraband transitions dominate \rightarrow phonons decrease bandgap