Interplay between electronic topology and phonons in Dirac materials

Ion Garate
Kush Saha (postdoc \rightarrow UC Irvine)
Katherine Légaré (undergrad intern)
I SHERERTEDOOKE

Prelude: Dirac materials

A recent review:

Ando, JPSJ 82, 102001 (2013).

3D (massive) Dirac fermions in crystals

$$
h(\mathbf{k})=v \mathbf{k} \cdot \boldsymbol{\sigma} \tau^{x}+m(\mathbf{k}) \tau^{z}
$$

$$
\begin{aligned}
& \boldsymbol{\sigma}=\text { spin } \\
& \boldsymbol{\tau}=\text { orbital (parity) }
\end{aligned}
$$

Time-reversal and inversion symmetry

$$
m(\mathbf{k})=m+t k^{2}
$$

$\left\langle\tau^{z}\right\rangle$ in k-space

Trivial insulator

$$
m t>0
$$

Topological insulator

Part I:
 Effect of phonons on band topology

I. Garate, PRL 110, 046402 (2013).
K. Saha and I. Garate, PRB 89, 205103 (2014).

Electron-phonon interaction

Electron-phonon interaction

Long wavelength + local-in-space

Electron-phonon coupling	Phonon parity
$\mathbf{1}_{2} \otimes \mathbf{1}_{2}$	Even

Effect of phonons on energy gap

$$
\Delta E_{\mathbf{0} n}=\sum_{n^{\prime} \mathbf{q}} g_{\mathbf{q}}^{2} \frac{\left|\left\langle n \mathbf{0} \mid n^{\prime} \mathbf{q}\right\rangle\right|^{2}}{E_{\mathbf{0} n}-E_{\mathbf{q} n^{\prime}}}=\text { intraband }+ \text { interband }
$$

Intraband transitions

Interband transitions

Electron-phonon matrix elements

Trivial insulator

$$
\left|\left\langle\mathbf{0} n \mid \mathbf{q} n^{\prime}\right\rangle\right|^{2}
$$

Electron-phonon matrix elements

Phonon-induced topological insulation

Sthighngertekaqteont-piteonon coupling

Thermal topological transition (crossover).

Part II:
 Back action of band topology on phonons

K. Saha, K. Légaré and I. Garate
arXiv: 1506.02621

Phonon linewidth

Case I: Phonon frequency < Bandgap

Small (but nonzero) q

Electronic DOS at Fermi level

Raman-active phonon	IR-active phonon
$h_{\mathrm{ep}}^{z} \propto \mathbf{1}_{2} \otimes \tau^{z}$	$h_{\mathrm{ep}}^{x} \propto \mathbf{1}_{2} \otimes \tau^{x}$
$\gamma_{z}=g_{z} D\left(\epsilon_{F}\right) \overline{\left\|\left\langle\tau^{z}\right\rangle\right\|^{2}}$	$\gamma_{x}=g_{z} D\left(\epsilon_{F}\right) \overline{\left\|\left\langle\tau^{x}\right\rangle\right\|^{2}}$

Matrix elements (I): topological phase

Bulk conduction band

Matrix elements (II): trivial phase

Bulk conduction band

Phonon linewidth

Case II: Phonon frequency > Bandgap

q=0 linewidth:

A property of interband matrix elements:

$$
\left.\left.\left|\langle\mathrm{v} \mathbf{k}| \tau^{z}\right| \mathrm{ck}\right\rangle\left.\right|^{2}=\left|\langle\mathrm{c} \mathbf{k}| \tau^{x}\right| \mathrm{ck}\right\rangle\left.\right|^{2}
$$

Theoretical prediction

Experiments?

Phonon anomaly
A. Bera et al., PRL 110, 107401 (2013).

- Linewidths are hard to measure
- Anharmonic contribution

Summary and Conclusions

Phonons can change the electronic band topology

Phonons can inherit unique signatures of the electronic band topology

Interesting interplay between phonons and electronic band topology

Dirac fermions (spin ½)

Jackiw-Rebbi zero mode

[PRD 13,3398 (1976)]
Dirac fermions in 1D

"Domain wall":

Insensitive to details of the Hamiltonian

Topological insulators

Topological phases in superconducting circuits

Roushan et al., Nature (2014)

Examples of topological Dirac materials

$\mathrm{CdTe} / \mathrm{HgTe} / \mathrm{CdTe}$	TlBiSe_{2}	$\mathrm{Ag}_{2} \mathrm{Te}$
$\mathrm{AlSb} / \mathrm{InAs} / \mathrm{GaSb} / \mathrm{AlSb}$	TlBiTe_{2}	SmB_{6}
$\mathrm{Bi}_{1-x} \mathrm{Sb}_{x}$	$\mathrm{TlBi}(\mathrm{S}, \mathrm{Se})_{2}$	$\mathrm{Bi}_{14} \mathrm{Rh}_{3} \mathrm{I}_{9}$
Sb	$\mathrm{PbBi}_{2} \mathrm{Te}_{4}$	$R \mathrm{BiPt}(R=\mathrm{Lu}, \mathrm{Dy}, \mathrm{Gd})$
$\mathrm{Bi}_{2} \mathrm{Se}_{3}$	$\mathrm{PbSb}_{2} \mathrm{Te}_{4}$	$\mathrm{Nd}_{2}\left(\mathrm{Ir}_{1-x} \mathrm{Rh}_{x}\right)_{2} \mathrm{O}_{7}$
$\mathrm{Bi}_{2} \mathrm{Te}_{3}$	$\mathrm{GeBi}_{2} \mathrm{Te}_{4}$	
$\mathrm{Sb}_{2} \mathrm{Te}_{3}$	$\mathrm{PbBi}_{4} \mathrm{Te}_{7}$	
$\mathrm{Bi}_{2} \mathrm{Te}_{2} \mathrm{Se}$	$\mathrm{GeBi}_{4-x} \mathrm{Sb}_{x} \mathrm{Te}_{7}$	
$(\mathrm{Bi}, \mathrm{Sb})_{2} \mathrm{Te}_{3}$	$(\mathrm{PbSe})_{5}\left(\mathrm{Bi}_{2} \mathrm{Se}_{3}\right)_{6}$	
$\mathrm{Bi}_{2-x} \mathrm{Sb}_{x} \mathrm{Te}_{3-y} \mathrm{Se}_{y}$	$\left(\mathrm{Bi}_{2}\right)\left(\mathrm{Bi}_{2} \mathrm{Se}_{2.6} \mathrm{~S}_{0.4}\right)$	
$\mathrm{Bi}_{2} \mathrm{Te}_{1.6} \mathrm{~S}_{1.4}$	$\left(\mathrm{Bi}_{2}\right)\left(\mathrm{Bi}_{2} \mathrm{Te}_{3}\right)_{2}$	
$\mathrm{Bi}_{1.1} \mathrm{Sb}_{0.9} \mathrm{Te}_{2} \mathrm{~S}$	SnTe	
$\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$	$\mathrm{Pb}_{1-x} \mathrm{Sn}_{x} \mathrm{Te}$	
$\mathrm{Bi}_{2}(\mathrm{Te}, \mathrm{Se})_{2}(\mathrm{Se}, \mathrm{S})$	$\mathrm{Pb}_{0.77} \mathrm{Sn}_{0.23} \mathrm{Se}$	
	Bi bilayer	

Topological quantum phase transition

Topologically nontrivial

"External parameter": doping, pressure...
(Experiment: Xu et al., Science 332, 560 (2011))
Can there be a thermal topological transition?

Electron-phonon interaction

We focus on two types:

1) Parity-even phonon (Raman active)

$$
h_{\mathrm{ep}} \propto \mathbf{1}_{2} \otimes \tau^{z}
$$

2) Parity-odd phonon (infrared active)

$$
h_{\mathrm{ep}} \propto \mathbf{1}_{2} \otimes \tau^{x}
$$

Influence of band topology on phonons

Experiment in $\mathrm{Sb}_{2} \mathrm{Se}_{3}$

Electron-phonon interaction

Long wavelength + local-in-space

Electron-phonon coupling	Phonon parity
$h_{\mathrm{ep}}^{0}(\mathbf{r})=u_{0}(\mathbf{r}) \mathbf{1}_{2} \otimes \mathbf{1}_{2}$	Even
$h_{\mathrm{ep}}^{z}(\mathbf{r})=u_{z}(\mathbf{r}) \mathbf{1}_{2} \otimes \tau^{z}$	Even
$h_{\mathrm{ep}}^{x}(\mathbf{r})=u_{x}(\mathbf{r}) \mathbf{1}_{2} \otimes \tau^{x}$	Odd
$h_{\mathrm{ep}}^{i y}(\mathbf{r})=u_{i y}(\mathbf{r}) \sigma^{i} \otimes \tau^{y}$	Odd

Theoretical issue

Thus far we have assumed that a parity-even phonon mode can couple to electrons purely through

$$
h_{\mathrm{ep}} \propto \mathbf{1}_{2} \otimes \tau^{z}
$$

In general, it could also couple to electrons via

$$
h_{\mathrm{ep}} \propto \mathbf{1}_{2} \otimes \mathbf{1}_{2}
$$

The latter is not sensitive to band topology and therefore can mask the effect of the former.

Dirac insulator with small energy gap

Intraband transitions dominate
\rightarrow phonons decrease bandgap

