

Superconductivity in the presence of spin-orbit coupling old dog, new tricks

Karen Michaeli

Stable finite momentum pairing

$Al^{3+}O_{2}^{4-}$
$La^{3+}O^{2-}$
$Al^{3+}O_2^{4-}$
$La^{3+}O^{2-}$
$Al^{3+}O_2^{4-}$
$La^{3+}O^{2-}$
$Al^{3+}O_2^{4-}$
$La^{3+}O^{2-}$
$Ti^{4+}O_2^{4-}$
$Sr^{2+}O^{2-}$
$Ti^{4+}O_2^{4-}$
$Sr^{2+}O^{2-}$

Oxide heterostructures

Peculiar s.c phasemagnetization relation

Critical magnetic field

Enhancement of T_c

2.1nm

H. Gardner, et al, 2011

Enhancement of T_c

 $\mu_0 H(T)$

H. Gardner, et al, 2011

Electronic spectrum

Magnetic field

The two Rashba bands in the presence of a Zeeman field:

 $\vec{B} = B\hat{x}$

$$\varepsilon_{k}^{\pm} = \frac{kk^{2}}{22m} \pm \frac{kk^{2}}{k} \sqrt{k_{x}^{2} + (k_{y} + \mu_{0}B/\alpha)^{2}}$$

Magnetic field

The two Rashba bands in the presence of a Zeeman field:

 $\vec{B} = B\hat{x}$

$$\varepsilon_k^{\pm} = \frac{k^2}{2m} \pm \alpha \sqrt{k_x^2 + (k_y + \mu_0 B/\alpha)^2}$$

Magnetic field

The two Rashba bands in the presence of a Zeeman field:

 $\vec{B} = B\hat{x}$

$$\varepsilon_{k}^{\pm} = \frac{k^{2}}{2m} \pm \alpha \sqrt{k_{x}^{2} + (k_{y} + \mu_{0}B/\alpha)^{2}}$$

$$F_{k}^{\pm} = \frac{k^{2}}{2m} \pm \alpha \sqrt{k_{x}^{2} + (k_{y} + \mu_{0}B/\alpha)^{2}}$$

$$\varepsilon_{k+q/2}^{\pm} \approx \frac{k^{2}}{2m} \pm \alpha |\vec{k}| + \frac{1}{2} (V_{F}q \pm 2\mu_{0}B) \sin \theta$$

$$\varepsilon_{-k+q/2}^{\pm} \approx \frac{k^{2}}{2m} \pm \alpha |\vec{k}| + \frac{1}{2} (V_{F}q \pm 2\mu_{0}B) \sin \theta$$

The FFLO state and spin-orbit

 k_{v}

k_x

$$\varepsilon_{k+q/2}^{\pm} \approx \frac{k^2}{2m} \pm \alpha |\vec{k}| + \frac{1}{2} \left(V_F q \pm 2\mu_0 B \right) \sin \theta$$
$$\varepsilon_{-k+q/2}^{\pm} \approx \frac{k^2}{2m} \pm \alpha |\vec{k}| + \frac{1}{2} \left(V_F q \pm 2\mu_0 B \right) \sin \theta$$
$$q = \frac{2\mu_0 B}{v_F}$$

The FFLO state and spin-orbit

$$\varepsilon_{k+q/2}^{\pm} \approx \frac{k^2}{2m} \pm \alpha |\vec{k}| + \frac{1}{2} \left(V_F q \pm 2\mu_0 B \right) \sin \theta$$
$$\varepsilon_{-k+q/2}^{\pm} \approx \frac{k^2}{2m} \pm \alpha |\vec{k}| + \frac{1}{2} \left(V_F q \pm 2\mu_0 B \right) \sin \theta$$
$$q = \frac{2\mu_0 B}{v_F}$$

Pairs of electrons in the - band are not affected by the magnetic field

Pairs of electrons in the + band feel the decoherence effect of the magnetic field

The critical field is mainly determined by the + band

k_x

The FFLO state and spin-orbit

$$\mu_0 B_c \sim \Delta_0 \left(\frac{\Delta_{so}}{\Delta_0}\right)^x$$

$$\Delta(\vec{r}) = \Delta e^{i\vec{q}\cdot\vec{r}}$$

The FFLO state

P. Fulde and R. A. Ferrell, 1964 A. I. Larkin and Yu. N. Ovchinnikov, 1964

Effect of disorder

KM, A. C. Potter, and P. A. Lee, PRL 2012

Free energy

Superconducting order parameter:

$$\Delta(\mathbf{q}) = U \sum_{\mathbf{k}} \left[\Psi_{\mathbf{k},\uparrow} \Psi_{-\mathbf{k}+\mathbf{q},\downarrow} - \Psi_{\mathbf{k},\downarrow} \Psi_{-\mathbf{k}+\mathbf{q},\uparrow} \right] \qquad \Delta = |\Delta| \exp^{i\Phi}$$

Magnetization:

$$\vec{M}(\mathbf{q}) = \mu_B \sum_{\mathbf{k}} \Psi_{\mathbf{k},\alpha}^{\dagger} \vec{\sigma}_{\alpha,\beta} \Psi_{\mathbf{k}+\mathbf{q},\beta}$$

$$F = \frac{\rho_s}{2} \left(\vec{\nabla} \Phi(\mathbf{r}) - 2e\vec{A}(\mathbf{r}) \right)^2 + \kappa \left[\left(\vec{\nabla} \Phi(\mathbf{r}) - 2e\vec{A}(\mathbf{r}) \right) \times \vec{H}_T(\mathbf{r}) \right] \cdot \hat{z}$$

Free energy

Current and magnetization

V.M. Edelstein, 1995

$$\vec{J} = -e\rho_s \left[\vec{\nabla}\Phi(\mathbf{r}) - 2e\vec{A}(\mathbf{r})\right] - e\kappa \left[\vec{H}_T \times \hat{z}\right]$$

$$ec{M} = rac{\kappa \chi}{\chi_s} \hat{z} \times \left[ec{
abla} \Phi(\mathbf{r}) - 2e ec{A}(\mathbf{r})
ight] + \chi ec{H}_{ext}$$
 $\chi =$

$\chi = \frac{\chi_s}{1 - \chi_s U/g^2 \mu_B^2}$

The superconducting current carries magnetization

Current and magnetization

V.M. Edelstein, 1995

$$\vec{J} = -e\rho_s \left[\vec{\nabla}\Phi(\mathbf{r}) - 2e\vec{A}(\mathbf{r})\right] - \frac{e\kappa}{H_T} \left[\vec{H}_T \times \hat{z}\right]$$

$$\vec{M} = \frac{\kappa \chi}{\chi_s} \hat{z} \times \left[\vec{\nabla} \Phi(\mathbf{r}) - 2e\vec{A}(\mathbf{r}) \right] + \chi \vec{H}_{ext}$$

$$\chi = \frac{\chi_s}{1 - \chi_s U/g^2 \mu_B^2}$$

S.-K. Yip, 2005 M. K. Kashyap and D. F. Agterberg, 2013

$$F = \frac{\rho_s}{2} \left(\vec{\nabla} \Phi(\mathbf{r}) - 2e\vec{A}(\mathbf{r}) \right)^2 + \kappa \left[\left(\vec{\nabla} \Phi(\mathbf{r}) - 2e\vec{A}(\mathbf{r}) \right) \times \vec{H}_T(\mathbf{r}) \right] \cdot \hat{z}$$

$$-\frac{\chi_s}{2}H_T^2 + \frac{U}{2\mu_B^2}M^2$$

$$\begin{split} F &= -\rho_s \sum_{\vec{i},\hat{\mu}} \cos\left(\Phi_{\vec{i}+\hat{\mu}} - \Phi_{\vec{i}}\right) + \kappa \sum_{\vec{i},\hat{\mu},\hat{\eta}} \varepsilon_{\mu\eta z} \sin\left(\Phi_{\vec{i}+\hat{\mu}} - \Phi_{\vec{i}}\right) \frac{H_{\vec{i}}^{\eta} + H_{\vec{i}+\hat{\mu}}^{\eta}}{2} \\ &- \frac{\chi_s}{2} H^2 + \frac{U}{2\mu_B^2} M^2 \end{split}$$

Free energy

$$F = -\rho_s \sum_{\vec{i},\hat{\mu}} \cos\left(\Phi_{\vec{i}+\hat{\mu}} - \Phi_{\vec{i}}\right)$$

$$-\kappa^2 \frac{\chi U}{2\chi_s \mu_B^2} \sum_{\vec{i},\hat{\mu}} \left[\sin\left(\Phi_{\vec{i}+\hat{\mu}} - \Phi_{\vec{i}}\right) + \sin\left(\Phi_{\vec{i}} - \Phi_{\vec{i}-\hat{\mu}}\right) \right]^2$$

 $\vec{S}_{\vec{i}} = \begin{pmatrix} \cos \Phi_{\vec{i}} \\ \sin \Phi_{\vec{i}} \end{pmatrix}$

Magnetic Field

$$\begin{split} F &= -\rho_s \sum_{\vec{i},\hat{\mu}} \left\{ \vec{S}_i \cdot \vec{S}_{i+\hat{\mu}} + \frac{\tilde{\kappa}}{\rho_s} \left[\vec{S}_{\vec{i}+\hat{\mu}} \times \vec{S}_{\vec{i}} + \vec{S}_{\vec{i}} \times \vec{S}_{\vec{i}-\hat{\mu}} \right]^2 \right\} \\ &+ \gamma \sum_{\vec{i},\hat{\mu}} \hat{z} \cdot \left(\hat{\mu} \times \vec{H}_{ext} \right) \vec{S}_{\vec{i}+\hat{\mu}} \times \vec{S}_{\vec{i}} \end{split}$$

$$\rho_s \to \sqrt{\rho_s^2 + (\gamma H_{ext})^2}$$

Helical phase for all values of $\ \widetilde{\kappa}$

$Al^{3+}O_{2}^{4-}$ $La^{3+}O_{2}^{4-}$ $Al^{3+}O_{2}^{4-}$ $La^{3+}O_{2}^{4-}$ $La^{3+}O_{2}^{4-}$ $Al^{3+}O_{2}^{4-}$ $La^{3+}O_{2}^{4-}$ $La^{3+}O_{2}^{4-}$ $La^{3+}O_{2}^{4-}$ $La^{3+}O_{2}^{4-}$
$La^{3+}O^{2-}$ $Al^{3+}O^{4-}_{2}$ $La^{3+}O^{2-}_{2}$ $Al^{3+}O^{4-}_{2}$ $La^{3+}O^{2-}_{2}$ $Al^{3+}O^{4-}_{2}$ $La^{3+}O^{2-}_{2}$ $La^{3+}O^{2-}_{2}$ $La^{3+}O^{2-}_{2}$
$Al^{3+}O_{2}^{4-}$ $La^{3+}O_{2}^{2-}$ $Al^{3+}O_{2}^{4-}$ $La^{3+}O_{2}^{2-}$ $Al^{3+}O_{2}^{4-}$ $La^{3+}O_{2}^{2-}$ $Ti^{4+}O_{2}^{4-}$
$Al^{3+}O_{2}^{4-}$ $La^{3+}O^{2-}$ $Al^{3+}O_{2}^{4-}$ $La^{3+}O^{2-}$ $Ti^{4+}O_{2}^{4-}$
$ La^{3+}O^{2-} \\ Al^{3+}O^{4-} \\ La^{3+}O^{2-} \\ Ti^{4+}O^{4-} \\ Ti^{4+}O^{4-} \\ $
$ \begin{array}{c} Al^{3+}O_2^{4-} \\ La^{3+}O^{2-} \\ Ti^{4+}O_2^{4-} \end{array} $
$\frac{La^{3+}O^{2-}}{Ti^{4+}O_2^{4-}}$
$Ti^{4+}O_2^{4-}$
<u> </u>
$Sr^{2+}O^{2-}$
$Ti^{4+}O_2^{4-}$
$Sr^{2+}O^{2-}$

Oxide heterostructures

Stable finite momentum pairing

Strongly correlated superconductors

Peculiar s.c phasemagnetization relation

