Engineering Quantum Matter: From Superfluids to Low-Dimensional Electrons

Johannes Pollanen

Many-body quantum engineering

– nanoparticle
 aerogel composites

Outline

Creating novel quantum matter:

– Engineering superfluid states with disorder

Controlling quantum matter:

- 2 dimensional electrons with tunable interactions

What does the future hold?

– Create and control hybrid quantum systems:

Electrons on helium + nano-scale devices & topological states of matter

Outline

Creating novel quantum matter:

- Engineering superfluid states with disorder

Controlling quantum matter:

- 2 dimensional electrons with tunable interactions

What does the future hold?

– Create and control hybrid quantum systems:

Electrons on helium + nano-scale devices & topological states of matter

Superfluid of ³He fermion pairs

B and A phases

B-phase:orbitally isotropic statespin structure: $|\uparrow\uparrow\rangle$ $|\downarrow\downarrow\rangle$

<u>A-phase</u>: $p_x + ip_y$

orbitally **anisotropic** state (chiral) spin structure: $|\uparrow\uparrow\rangle |\downarrow\downarrow\rangle$

Silica aerogel: quenched disorder

Kim *et al.,* Small **7**, 2568 (2011)

- silica particles:
 - $\delta \approx 3-5\,nm$
- correlation length:

 $\xi_a \sim 10 \ nm$

superfluid pair size:

 $\xi \simeq 20 - 80 \, nm$

Superfluid ³He in 98% porous aerogel

Thuneberg *et al.*, PRL **80**, 2861 (1998)

Vicente *et al.*, PRB **72**, 075301 (2005) Aoyama & Ikeda., PRB **76**, 104512 (2007)

Anisotropy: "stretched" aerogel

Pollanen et al., JNCS 354, 4668 (2008)

Experiment: NMR

NMR isotropic aerogel

Anisotropic aerogel: frequency shift

Anisotropic aerogel: susceptibility

Anisotropic aerogel: frequency shifts

Anisotropic superfluidity

Pollanen et al., Nature Physics 8, 317 (2012)

Outline

Creating novel quantum matter:

– Engineering superfluid states with disorder

Controlling quantum matter:

- 2 dimensional electrons with tunable interactions

What does the future hold?

- Create + control hybrid quantum systems:

Electrons on helium + nano-scale devices & topological states of matter

2-D electrons in a B-field at T=0

 $B = 0 \quad \longrightarrow \quad B > 0$

$$E_N = \hbar\omega_c \left(N + \frac{1}{2} \right)$$

Edge = dissipationless

Beyond single particle physics

Transparent variable density device

Collective states near ½ filling of N = 2

Transport signatures

Collective electron states: N = 2

Pollanen et al., arXiv:1506.08482 (2015)

- Long range Coulomb unaffected by nodes

T-dependence: v = 9/2

Density dependent nematic order

Insulating phase at $v \simeq 4 + 1/4$

Fixed density, T-dependence

Thermally activated conduction

Fixed T, n-dependence

Outline

Creating novel quantum matter:

– Engineering superfluid states with disorder

Controlling quantum matter:

- 2 dimensional electrons with tunable interactions

What does the future hold?

- Create and control hybrid quantum systems:

Electrons on helium + nano-scale devices & topological states of matter

Electrons on helium (eoH)

Quantum computing proposals:

Platzman & Dykman Science **284**, 1967 (1999) Lyon PRA **74**, 052338 (2006) Schuster *et al*. PRL **105**, 040503 (2010)

Quantum simulation (spin models): Mostame & Schützhold PRL 101, 220501 (2008)

- Ultra clean 2-D electrons: $\mu > 10^8 \, {
 m cm}^2 / {
 m Vs}$
- Long <u>predicted</u> spin coherence $> 100 \, {
 m sec}$
- Controllable density (interactions) $n=10^8-10^{12}\,{
 m cm}^{-2}$
- Reduced screening = strong interactions

Spin resonance of eoH

SQUID Magnetometer

- Extremely sensitive: ~ femto-Tesla
- Spin dynamics of strongly interacting 2-D electrons!

Majorana detection with eoH

Mourik et al. Science 336, 1003 (2012)

The end

Thanks to my collaborators and colleagues!

<u>Caltech</u>	Northwestern University	Princeton	<u>Cornell</u>
Prof. Jim Eisenstein	<i>Profs</i> . Bill Halperin Jim Sauls	Loren Pfeiffer Ken West	Prof. Jeevak Parpia
Chandni U		Kirk Baldwin	Nik Zhelev
Erik Henriksen (WashU)	John P. Davis (Alberta)		Andrew Fefferman
Trupti Khaire (Argonne)	Hyoungsoon Choi (KAIST)	<u>MSU</u>	Rob Bennett
	Leo Li (Columbia)		Eric Smith
Debaleena Nandi	Charles Collett (Amherst College)	Mark Dykman	
Sarah Brandsen	Bill Gannon (Brookhaven)		
Bill Chickering	Andrew Zimmerman		MICIOSOIL
	Andy Mounce (LANL)		
	Bo Chen (UCF)	2501	GORDON AND BETTY
	Sutirtha Mukhopadhyay		MOORE
	Sam Blinstein		FOUNDATION
INSTITUTE FOR QUANTUM INFORMATION AND MATTER	Andrew Ford		
	Anurew Fang	Y	U.S. DEPARTMENT OF