

Semiconductor Physics Group Department of Physics Cavendish Laboratory, University of Cambridge

Single-Electron Quantum Dots moving in Surface-Acoustic-Wave Minima:

Electron "Ping-Pong", and Quantum Coherence, and conversion to photons *Chris Ford*

Robert McNeil, Matthew Benesh, Masaya Kataoka (NPL), Michael Astley, Adam Thorn, Crispin Barnes, Seok-Kyun Son, Yousun Chung, Tzu-Kan Hsiao, Hangtian Hou, Ateeq Nasir (NPL) David Anderson, Jon Griffiths, Geb Jones, Ian Farrer, and David Ritchie

Outline

- Dynamic single-electron quantum dots driven by a surface acoustic wave (SAW)
 - current standard
 - single-photon source
 - spin readout by polarised photon emission
 - transfer of single charges
- Transfer of an electron between static dots
 - single-electron "ping pong"
- Quantum oscillations in a single SAW dot
 - initialisation and detection in same place
 - initialisation and detection in separate places
- Emission of photons from p-n junction
- Conclusions

GaAs-AlGaAs heterostructures and gates

Surface acoustic waves (SAWs)

 Rayleigh waves generated on a piezoelectric material by applying a radiofrequency signal to a transducer at its resonant frequency

• In a piezoelectric material the strain wave is accompanied by an electric field

SAW single-electron transport

Why dynamic quantum dots?

• Metrology: current standard

Alle .

Foden et al., Phys. Rev. A 62, 011803 (2000), Gell et al., Appl. Phys. Lett., 91, 013506 (2007)

Barnes et al., Phys. Rev. B 62, 8410 (2000)

The SAW quantum computing project

SA

Barnes et. al. PRB 62 8410 (2000)

• Use many surface gates to control channels in each region

Transfer of quantum information

- A quantum computer will need to be able to move qubits to entangle adjacent ones, or to store and retrieve qubits
 quantum repeater for cryptography?
- Transfer spin qubits from static dots to "flying" qubits
 - e.g. SAW-driven qubits, photon qubits
 - convert back once reach memory
- We have designed devices to transfer single electrons over long distances (4 μ m) back and forth between static dots
 - can play with a given electron for e.g. 10 minutes
 - spin transport and coherence still remain to be demonstrated...

Single electron transfer between two QDs

McNeil et al., Nature 477, 439 (2011)

SAW amplitude dependence

• SAW potential amplitude can be calibrated by measuring conductance peak splitting

 Both transducers (T1, T2) give similar results within error

 \Rightarrow mechanism is lowering of a barrier

- Success rate ~ 1 when SAW amplitude large enough
- If amplitude too large, double depopulation (-2e) occurs

Schneble et al., Appl. Phys. Lett. 89, 122104 (2006)

Setting up a dot

- Barriers pinched off
 - cannot measure conductance oscillations
 - use "detector", look for hysteresis in losing/gaining electron

moving from open to isolated dot, transitions become steeper and show hysteresis

Dot initialisation

Pulse sequence

Charge detector

- Prepare channel
 - SAW pulse to clear channel
- Initialise dots
- Fire a SAW pulse (100 ns)
 - monitor detectors before and after
- Detect electron population/depopulation
 - electron disappears from one dot, reappears in the other

Single-electron transfer

Single-electron transfer

Reliability of transfer

• Can transfer same electron at least 60 times (0.25mm!) along the channel before it is joined by another from outside

- Next step: convert spin polarisation to photon polarisation
 - we have just finished building a cryogenic microscope for our 300mK cryostat

Quantum information transfer

Electron tunnelling out of dynamic dots

Injector gate

Barrier gate

Channel potential landscape

• Potential calculated by solving Laplace's equation

Measurement of electron tunnelling

Signature of dynamic QD confinement

- Ratio I_{in} / I_{out} dependent on number of injected electrons
- Evidence of addition energy

 $\Delta \varepsilon_{1-2} \sim 2.6 \text{ meV}$ $\Delta \varepsilon_{2-3} \sim 14 \text{ meV}$

Astley et al., PRL 99, 156802 (2007)

Behaviour of tunnel current

Modelling

- Solve *t*-dependent Schrödinger Eqn (in 1D or 2D)
- Realistic gate potentials

← Coherent oscillations

 ← All but lowest 2 modes escape rapidly
 A. L. Thorn, "Electron dynamics in surface acoustic wave devices", PhD thesis, Cambridge University (2009)

Tunnel-current oscillations

Gate voltage / Oscillation frequency

Effect of gates

- Simulation using potential calculated by solving Laplace's equation
- Sweeping to a more negative value:
 - TC gate: $\Delta \epsilon$ decreases
 - Barrier gate: $\Delta \epsilon$ increases

Double-barrier device

- Single 1D channel with two tunnelling regions
- Tunnel coupling separately controlled by respective plungers
- Single-electron dots injected from the left and measured at both the upstream and downstream tunnel barriers

Double-barrier device: tunnel current

- Injector gate can be tuned to low-*ef* plateaux
 - For a range of
 barrier voltages,
 the exit current *I*_{out}
 shows reduced
 plateaux
 - The exit current is reduced by the barrier-dependent tunnel current

Double barrier: tunnel-current oscillations

- Typical current variation as plunger gate is swept for a fixed barrier
- Tunnel current varies from 0% to 100% of injected current
- Removal of slowly-varying contributions reveals periodic oscillations

Coherent Oscillations – First Barrier

- Single-electron QDs injected from left
- Vary nearby gate voltages
- Oscillations appear consistently across large voltage ranges

Coherent Oscillations – Second Barrier

- Single-electron QDs injected from left
- LTB is pinched off to prevent tunnelling
- Tunnelling occurs through RTB

Comparison of barriers

Left Plunger Voltage (V)

- Measure tunnelling current for each barrier as a function of its own plunger gate
 - when measuring RTB,
 LTB is pinched off to
 prevent tunnelling
 - filter out background
- Quite similar oscillations for each

Comparison of tunnelling currents

- Gate voltages are arranged to allow tunnelling through both upstream and downstream tunnel barriers
- Both plungers are swept simultaneously so that filtering along the sweep direction will reveal oscillations caused by either plunger

Comparison of tunnelling currents

- $I_{\rm LTB}$ exhibits normal transition to 100% of $I_{\rm in}$
- $I_{\rm RTB}$ responds as expected
 - reduced by $I_{\rm LTB}$, as that current has already left the channel

Comparison of tunnelling currents

- Oscillations in $I_{\rm LTB}$ appear as previously measured, with no dependence on the right plunger
 - not cross-capacitance
- $I_{\rm RTB}$ shows significant dependence on both plungers, leading to a checkerboard oscillation pattern

Coherence length

- Oscillations in RTB tunnelling current occur as a function of the *left* plunger
- Oscillations were initialised in the left region, so they must have continued for at least part of the left region and the central region $(1.5-3 \mu m)$
 - suggests a coherence time of ~500ps or more (SAW travels 1 μ m in 300ps)

Generating photons from SAW-pumped electrons - Allower and the and

- The SAW can pump electrons uphill - can it pump them into a sea of holes?
- Cannot dope a wafer differently in different places, so use undoped wafer and induce electrons and holes
 - we have developed quite reliable ohmic contacts for e and h
 - gates on surface bring electrons and/or holes within 1µm
 - quantised current n to n (two regions of electrons)

Pumping from electrons to holes (n to p) n reference p

- Induce electrons and holes close together
 - forward-bias the p-n junction to reduce barrier slope
 - SAW can pump electrons into conduction band above the holes
 - so far, light comes out from the wrong place!
 - need to etch around junction to confine electrons in same place as holes until they recombine

³He microscope

- We have constructed a scanning optical microscope
 - works in ³He top-loading cryostat at $T \ge 300 \text{ mK}$
 - optical fibre, piezo stage, 1µm resolution
 - should preserve polarisation (with calibration)
 - sample holder (and coax cables) is fixed
 - lens assembly is scanned
 - available for other applications...

Conversion between photon and electron qubits

- Convert electron's spin to circular polarisation of a photon
 - absence of the hole is information that decoheres rapidly (or no-cloning theorem)
 - so cannot convert a spin qubit (superposition) to photon polarisation qubit coherently
- Kosaka showed that can arrange to have all holes in state $|\rightarrow\rangle = (|\uparrow\rangle + |\downarrow\rangle)/\sqrt{2}$
 - any electron in $\alpha |\uparrow\rangle + \beta |\downarrow\rangle$ can recombine with such a hole, photon will maintain the superposition as $\alpha |\sigma^+\rangle + \beta |\sigma^-\rangle$
 - g = 0 for electrons (15 nm Al_{0.14}Ga_{0.86}As QW)
 - use the light (not heavy) holes (large enough g)
 - H. Kosaka, J. Appl. Phys. 109, 102414 (2011), Nature 457, 702 (2009); PRL 100, 096602 (2008); Vrijen, Yablonovitch, Physica E 10, 569 (2001)

Conclusions

the part

- Dynamic dots are interesting objects with applications in quantum computing
 - generate with a SAW in a long channel
- SAWs can transfer an electron back and forth between two dots
 - couple qubits, transfer to/from quantum memory?
 - electron "ping pong"
 - next step: polarise spin and read it optically
- Single electron in a moving quantum dot can oscillate coherently
 - non-adiabatic transition in channel excites electron into combination of ground and first excited states, producing coherent oscillations that persist for more than 500ps
 - tunnelling probability sensitive to dynamics of single-electron wave function in dot
 - inclusion of multiple tunnelling regions allows initialisation of the oscillation phase, which is then detectable at tunnelling regions downstream
 - can repeatedly make a weak measurement that does not collapse the wave function (Schrödinger's cat still wouldn't know if it was alive or dead!)
- Electron and hole regions, (single-)photon emission, qubit conversion?