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Atom sizes

Transmon, surface acoustic waves

l ⇡ 10�5 � 10�4 m

⁄ ¥ 10≠6 ≠ 10≠5 m
l/⁄ ¥ 1 ≠ 100

5 μm

1 μm

λtr

r ⇡ 10�10 m

Atom, optical light

⁄ ¥ 10≠7 ≠ 10≠6 m

r/⁄ ¥ 10≠4 ≠ 10≠3

(Cohen-Tannoudji, 1962a, 1962b). Light shifts are propor-
tional to the field energy, i.e., to the photon number. Being
inversely proportional to the atom-cavity field detuning, they
can be maximized by tuning the cavity close enough to
resonance (typically 100 kHz away from the atomic transition
frequency in our experiments) but far enough to avoid any
photon absorption or emission process. In the case of Rydberg
atoms, the effect per photon is then very large, resulting in a
phase shift of the atomic dipole after the atom leaves the cavity
which can reach the value of 180!, the dipole jumping in two
opposite directions when the photon number changes by one
unit. Measuring this phase shift amounts to counting the
photon number without destroying the light quanta. Let us
note that these light shifts play an essential role in other atomic
physics and quantum optics experiments. They are at the heart
of the methods used to trap and cool atoms in laser light,
which were recognized by the Nobel Prize awarded to Claude
Cohen-Tannoudji, William Phillips, and Steven Chu in 1997
(Chu, 1998; Cohen-Tannoudji, 1998; Phillips, 1998).

In order to measure these shifts, we followed a proposal that
we made in 1990 (Brune et al., 1990). We built an atomic
interferometer around our photon storing cavity (Fig. 10). The
atoms, prepared in the circular state e in the box O, cross the
cavityC one by one before being detected by field ionization in
D. Essential to the experiment, two auxiliarymicrowave zones
R1 and R2 are sandwiching the cavity C. In the first one, the
atoms are prepared in the state superposition of e and g, a

Schrödinger kitten state. This procedure amounts to starting a
stopwatch, giving to the atomic dipole, i.e., to the clock hand,
its initial direction. The atomic dipole then rotates as the atom
crosses the cavity, until a second microwave flash, applied in
R2, is used to detect the direction of the atomic dipole at cavity
exit, thus measuring the phase accumulation of the clock.

The combination of the two separated microwave resona-
tors R1 and R2 is known as a Ramsey interferometer. The
device had been invented in 1949 by Norman Ramsey
(Ramsey, 1949) (who was to become later the Ph.D. advisor
of Daniel Kleppner and David Wineland). The method of
separated field pulses is now used in all atomic clocks work-
ing on a hyperfine microwave transition between two atomic
levels. The excitation by the two successive pulses induces a
sinusoidal variation of the transition probability when the
microwave frequency is scanned around resonance. This so-
called ‘‘Ramsey fringe’’ signal is used to lock the microwave
frequency to the atomic transition. In our experiment, the
Ramsey interferometer is counting photons by detecting the
perturbing effect they produce on the fringes of a special
atomic clock, made of microwave sensitive Rydberg atoms
(Haroche, Brune, and Raimond, 2013). If the phase shift per
photon is set to 180!, the Ramsey fringes are offset by half a
period when the number of photons changes by one. The
interferometer is set at a fringe maximum for finding the atom
in e if there is one photon in the cavity. The second pulse then
transforms the state superposition of the atom exiting the

FIG. 10 (color). The cavity QED Ramsey interferometer setup. The insets show sketches of the circular atom in an energy eigenstate (left)
and in a superposition state after interaction with the microwave pulse in R1 (right). From Haroche, Brune, and Raimond, 2013.

FIG. 11 (color). QND detection of a single photon: the sequence of single atom events (upper trace) detects the sudden change of the photon
number (lower trace), revealing the birth, life, and death of a single light quantum. Photon lifetimes are random, with an average equal to the
cavity field damping time of 130 ms. The photon shown here had an exceptionally long lifetime of about 500 ms. From Gleyzes et al., 2007.

1090 Serge Haroche: Nobel Lecture: Controlling photons in a box . . .
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� ⇡ 10�3 � 10�1 m

r ⇡ 10�8 � 10�7 m

Haroche, Nobel Lecture, RMP (2013)

Rydberg atom, microwaves

r/⁄ ¥ 10≠7 ≠ 10≠4
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We have investigated the cross Kerr phase shift of propagating microwave fields strongly coupled to
an artificial atom. The artificial atom is a superconducting transmon qubit in an open transmission
line. We demonstrate average phase shifts of 11 degrees per photon between two coherent microwave
fields both at the single-photon level. At high control power, we observe phase shifts up to 30
degrees. Our results provide an important step towards quantum gates with propagating photons
in the microwave regime.

In recent years, there has been great interest in using
photons as quantum bits for quantum information pro-
cessing [1]. The implementation of quantum logic gates
using photons requires interactions between two fields
[1, 2]. One possible coupling mechanism is the Kerr ef-
fect, where the photons interact via a nonlinear medium.
By means of the Kerr effect, quantum logic operations
such as the controlled phase gate [3], the quantum Fred-
kin gate [4] and the conditional phase switch [5] can be
realized. Moreover, for a sufficiently strong nonlinearity,
quantum nondemolition detection of propagating pho-
tons may be possible by measuring the Kerr phase shift.
Superconducting qubits provide a very strong nonlinear-
ity [6, 7] that might be suitable for this purpose.

In cavity QED experiments, Kerr phase shifts on the
order of 10 degrees have been measured at the single-
photon level [8]. However, in such configuration, the pres-
ence of the cavity limits the bandwidth, which constrains
its usefulness over a wide range of frequencies. Therefore
an open quantum systems without a cavity is advanta-
geous. An example of such a system is atoms coupled to
a 1D electromagnetic environment. A Kerr phase shift
is also present in these systems, but so far the measured
phase shift has been very small. In nonlinear photonic
crystal fibers, for instance, an average Kerr phase shift
of 10−6 degrees per photon has been measured [9].

A new class of open quantum systems have been made
possible by progress in circuit QED, providing a fascinat-
ing platform for engineering light-atom interactions [10–
16] and testing fundamental aspects of quantum physics
[17]. In this letter, we embed a single artificial atom
in an open transmission line [6, 7, 18]. Through strong
coupling, we achieve average phase shifts up to 11 de-
grees per photon between two coherent microwave fields
at the single-photon level. This is six orders of magni-
tude larger than in optical systems [9]. The Kerr effect
demonstrated here also differs greatly from that previ-
ously demonstrated in superconducting devices. The ori-
gin of our Kerr effect is via a three-level artificial atom as
opposed to the kinetic inductance of a superconducting
film [19] or the Josephson inductance of a Superconduct-
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FIG. 1. A micrograph of our artificial atom, a superconduct-
ing transmon qubit, embedded in a 1D open transmission
line. The artificial atom acts as a Kerr medium. (Zoom In)
Scanning-electron micrograph of the SQUID loop of the trans-
mon, which allows us to tune the transition frequency of the
transmon with an external magnetic flux, Φ. (B) Schematic
of the measurement setup using heterodyne detection (HD).
C) The three-level artificial atom driven by a probe (red) and
a control (blue) tone.

ing Quantum Interfere Device (SQUID) [20]. Both of
these Kerr media require a pump tone at least several
orders of magnitude higher than the fields required using
our three-level artificial atom.

Our artificial atom is a superconducting transmon [21],
strongly coupled to a Z0 = 50 Ω 1D open transmission
line through a capacitance, Cc (see Fig. 1A, B). The tran-
sition frequency between the ground state, |0⟩, and the
first excited state, |1⟩, is ω01(Φ)/2π ∼ 7.1 GHz. An ex-
ternal magnetic flux Φ allows us to tune the transition
frequency. The transition frequency between the first ex-
cited state and second excited state is ω12/2π ∼ 6.4 GHz.

The electromagnetic field in the transmission line can
be described by an incoming voltage wave, Vin, a trans-
mitted wave, VT , and a reflected wave, VR. In Fig. 1A,
the transmission and reflection coefficients are defined as

Picture by I.-C. Hoi

Transmon, microwaves

� ⇡ 10�3 � 10�1 m

l ¥ 10≠5 ≠ 10≠3 m

l/⁄ ¥ 10≠4 ≠ 1
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FIG. 7. (Color online) An example of an experimental imple-
mentation of our system, using a transmon coupled to SAWs. Adapted
from [13], with thanks to M. V. Gustafsson, T. Aref, and M. K.
Ekström for providing the images. (a) The lower blue part in the
center of the image is the two transmon islands. SAWs propagate
from left to right in the gap between the grounded yellow areas at the
edges of the image. The upper blue part is an electrical gate, enabling
rf excitation of the transmon. (b) Close-up of the transmon islands.
The green part in the center of the image is the SQUID connecting
the islands. (c) Close-up of the individual fingers of the transmon
capacitance. The distance between neighboring fingers (connection
points) is on the order of the SAW wavelength. The double-finger
structure used here reduces mechanical reflections.

A. Transmon coupled to SAW

The first implementation, which motivated this work, was
suggested in [14] and realized in [13]. Here, the giant artificial
atom is a transmon [15]. It is not coupled to propagating
microwave photons, as is the usual case, but it interacts instead
with phonons in the form of SAWs [16,17] propagating on a
piezoelectric substrate. The setup is illustrated in Fig. 7.

The interdigitated capacitance between the two islands
of the transmon forms a transducer which couples to the
SAWs. Due to the low SAW velocity, the distance between
neighboring fingers is on the order of wavelengths (λ ≈
10−6 m), realizing the necessary conditions for the physics
described in this paper. A large number of connection points
can easily be implemented.

From classical SAW theory [16,17] we know that there
are a number of transducer configurations possible, which
could implement particular frequency dependencies for the
relaxation rates of the transmon. Although the transition
frequency of the transmon is a few gigahertz, which is higher
than most industrial applications for SAWs, it should still be
possible to achieve the lithographic precision needed to fine-
tune distances between coupling points. To tune the coupling
strength for a connection point, one could add a thin layer of

FIG. 8. (Color online) A sketch of a possible implementation
using an xmon coupled to a meandering transmission line. The
distance between coupling points can be set with great precision
by choosing the transmission line length, and the capacitive coupling
at each connection point can be tuned by designing the tips of the
fingers of the xmon island.

nonpiezoelectric material between the piezoelectric substrate
and the electrode finger of the transmon. The thickness of
this layer could be varied between fingers to achieve varying
coupling strengths.

Finally, we note that it is not clear for which finger widths
the approximation of pointlike connection points remains
valid.

B. Transmon coupled to meandering transmission line

The second possible implementation of a giant artificial
atom we foresee also uses a transmon. To be specific, it is
a variation of the transmon known as the xmon [18], and
it couples to an ordinary microwave transmission line. The
intended setup is sketched in Fig. 8.

The capacitive coupling between the transmission line and a
finger of the xmon island can be designed with good accuracy,
making possible large variations in relative coupling strengths
between connection points. Furthermore, the distance from
one connection point to the next can be made to be on the
order of wavelengths by meandering the transmission line to
fit it on a chip. This should give great precision in the control
of the phase shifts between connection points. The drawback
compared to the implementation with SAW is the size of the
system. It will likely be hard to fit hundreds of wavelengths
worth of transmission line on a single chip to investigate very
large values of N or connection-point distances.

013837-7
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Interference effects

Lalumière et al., PRA 88, 043806 (2013)

van Loo et al., Science 342, 1494 (2013)

KEVIN LALUMIÈRE et al. PHYSICAL REVIEW A 88, 043806 (2013)
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FIG. 5. (Color online) Power spectral density Sα[ω] as a function
of normalized frequency ω/γr and for a weak coherent tone
corresponding to an amplitude ϵB/γr = 0.005. The qubits are tuned
such that they are separated by d = λ0. In the absence of nonradiative
relaxation or asymmetry in the qubit decay rates, a squared Lorentzian
of width &B = 2γr is observed. In the presence of nonradiative
relaxation the dark state can be populated and a narrow peak appears in
the spectrum. (a) Analytical (solid blue line) and numerical (red dots)
power spectral densities for γnr = 0. (b) Numerical power spectral
density for γnr/γr = 0.1 (green dashed line) and γnr/γr = 0.01 (solid
blue line). (c) Log10 of the numerical power spectral density vs
frequency and as a function of nonradiative relaxation γnr/γr. γr/2π =
17.9 MHz.

both features to be observable. As shown in Ref. [20], this can
be achieved with transmon qubits.

The above results have been obtained in the idealized case
where γ00 = γ11. These decay rates, defined below Eq. (24),
contain both the radiative and the nonradiative contributions.
Some asymmetry in the decay rates is to be expected in
practice. As illustrated in Fig. 3, this leads to a finite transition
matrix element between |ee⟩ and the dark state |D⟩. The effect
of this asymmetry is illustrated in Fig. 6, which presents the
numerically computed power spectral density as a function of
both frequency and asymmetry (γ00 − γ11)/(γ00 + γ11). These
results are obtained for a constant γnr/γ11 = 0.01 correspond-
ing to the strong-coupling limit. This additional population
mechanism for the dark state leads to power broadening of
the sharp feature centered around ω = 0. However, with up to
10% asymmetry, this signature of superradiance is expected
to be clearly observable at low power. This is confirmed
experimentally [20].
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FIG. 6. (Color online) Log10 of the numerical power spectral
density Sα[ω] as a function of normalized frequency ω/γ11 and
relaxation rate asymmetry (γ00 − γ11)/(γ00 + γ11). The drive power
and nonradiative decay are chosen such that ϵB/γ11 = 0.005 and
γnr/γ11 = 0.01, corresponding to a weak coherent drive tone in
the strong-coupling limit. The qubits are tuned such that they are
separated by d = λ0. Asymmetry between the relaxation rates opens
a new drive channel for the dark state |D⟩, causing power broadening.
γ11/2π = 18.1 MHz.

IV. λ/4 SEPARATION: EXCHANGE INTERACTION

A. Discussion

We now consider the situation where the transition fre-
quency of both qubits is chosen such that the qubit separation
d is an odd multiple of λ0/4. This is illustrated in Fig. 7
where Q1 and Q3 are separated by 3λ/4. As can be seen
from Eqs. (14) and (15), in this case the correlated decay
rate γ01 ∝ cos(2πd/λ0) is zero and the exchange interaction
∝sin(2πd/λ0) takes its maximal value |J | = γr/2.

That this interaction is at a maximum for this separation
can be understood intuitively from Fig. 7 and by going back
to the origin of the virtual interaction term in the derivation
of the effective master equation. Indeed, as can be seen in

Q1 Q3Q2

FIG. 7. (Color online) Schematic representation of three trans-
mon qubits in a 1D transmission line. Qubits are considered as
pointlike objects and their location xj along the line is represented by
circles. As illustrated by the solid line, the distance between Q1 and
Q3 corresponds to 3λ0/4. At the location of Q3, modes of frequency
around 3λ0/4 have opposite signs (see dashed and dotted line). On
the other hand, for a separation corresponding to λ0/2 just like Q1

and Q2, all modes have the same sign around Q2.

043806-6

Several small atoms 
spaced wavelengths apart

Morgan, Surface Acoustic Wave Filters (2007)

Classical SAW
filters in mobile phones, TVs, etc.

One small atom in front of a mirror

Eschner et al., Nature 413, 495 (2001)

Dorner and Zoller, PRA 66, 023816 (2002)

Hoi et al., Nature Physics 11, 1045 (2015)

Koshino and Nakamura, NJP 14, 043005 (2012)
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Giant artificial atom

Multiple coupling points     strong interference effects

Additional time scale: travel time across the atom

We work in the limit where this is negligible compared to

æ

(xN ≠ x1)/v

1/≈
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A. F. Kockum et al., Phys. Rev.  A 90, 013837 (2014)



Frequency dependence
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k Coupling point

Field modej

Interference

J(!)Density of states

� = 4⇡J(!10) |A(!10)|2

A(!
j

) =
X

k

g
k

e�i!jxk/v

Small atom

∆ = ≠2P
⁄ Œ

0
dÊ

2Ê10J(Ê) |A(Ê)|2

Ê2 ≠ Ê2
10

A. F. Kockum et al., Phys. Rev.  A 90, 013837 (2014)



Giant artificial atom

Frequency-dependent relaxation rate    and Lamb shift
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Instead of being protected 
by a cavity, the atom 

”creates its own cavity”

Discrete Fourier transform
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Designing relaxation rates

Can be used to create population inversion      lasing!

N = 10

Anharmonicity

Ê1,0 ≠ Ê2,1 = 0.1 ◊ 2fiv/(x2 ≠ x1)

FRISK KOCKUM, DELSING, AND JOHANSSON PHYSICAL REVIEW A 90, 013837 (2014)

FIG. 4. (Color online) A scheme for population inversion. The
relaxation rates !1,0 (solid blue line) and !2,1 (dashed red line) for the
first two atom transitions, plotted as a function of the first transition
frequency ω1,0 for N = 10 in the maximally symmetric case. By
choosing the anharmonicity to be −0.1×2πv/(x2 − x1), we can make
the global maximum of !2,1 coincide with a minimum for !1,0. Inset:
Energy-level diagram showing the relevant driving and relaxation
rates for population inversion.

structure in a cavity should then allow us to build a single-atom
laser.

C. Further possible applications

There have been a few studies investigating specifically
shaped environment structures J (ω) [47,48]. Here, we can tai-
lor |A(ω)|2 to achieve the same effect. Viewing the connection
points as part of the atom, we can say that the atom provides
its own cavity, screening it from interacting with some modes.
Building on this, a possible extension of the idea in Sec. IV B
would be to enhance multiphoton transition rates. One can
easily imagine constructing a frequency-dependent relaxation
rate with minima at single-photon transition frequencies and
a maximum at some multiphoton transition frequency. To
be explicit, consider, for example, the situation in Fig. 5,
which can be arranged for an anharmonicity of −0.2×2πv/
(x2 − x1). The relaxation rates for the |1⟩ → |0⟩ and |2⟩ → |1⟩
transitions are both at minima when ω1,0 = 1.1×2πv/
(x2 − x1), while the two-photon relaxation at frequency
ω2,0/2 = (ω1,0 + ω2,1)/2 is at its maximum.

Another interesting subject to study both experimentally
and theoretically would be the structure of the Autler-Townes
doublet [47,65], the splitting of the |0⟩ → |1⟩ transition into
two due to a drive on the |1⟩ → |2⟩ transition, or the Mollow
triplet [66], the splitting of the |0⟩ → |1⟩ transition into three
due to a drive on the |0⟩ → |1⟩ transition, in a setting with
frequency-dependent coupling.

Finally, it should also be possible to engineer a varying
anharmonicity. Remember from Fig. 2 that the Lamb shift
changes sign on resonance in the maximally symmetric case.
Positioning the |0⟩ → |1⟩ and |1⟩ → |2⟩ transition frequencies
on either side of the resonance would thus change the

FIG. 5. (Color online) Enhancing multiphoton relaxation rates.
We plot the relaxation rate as a function of frequency for the
maximally symmetric case with N = 10 and an anharmonicity
−0.2×2πv/(x2 − x1). The |1⟩ → |0⟩ and |2⟩ → |1⟩ transitions can
then be placed at relaxation rate minima, while the two-photon
process at ω2,0/2 = (ω1,0 + ω2,1)/2 is at a maximum. Inset: Energy-
level diagram showing the transition frequencies.

anharmonicity. This is illustrated in Fig. 6. Note that we
have assumed the anharmonicity to be much larger than the
relaxation rate when deriving the master equation in Sec. II.
This means that the variation in the anharmonicity cannot be
large compared to the total anharmonicity.

V. POSSIBLE EXPERIMENTAL IMPLEMENTATIONS

Giant atoms with a number of discrete connection points
are not readily available in nature, but there seem to be at
least two straightforward ways to implement our system using
artificial atoms made out of superconducting circuits.
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(black solid line), the resulting change in anharmonicity, for the
maximally symmetric case with N = 10 and an anharmonicity of
−0.1×2πv/(x2 − x1).
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Designing Lamb shift and anharmonicity

FRISK KOCKUM, DELSING, AND JOHANSSON PHYSICAL REVIEW A 90, 013837 (2014)

FIG. 4. (Color online) A scheme for population inversion. The
relaxation rates !1,0 (solid blue line) and !2,1 (dashed red line) for the
first two atom transitions, plotted as a function of the first transition
frequency ω1,0 for N = 10 in the maximally symmetric case. By
choosing the anharmonicity to be −0.1×2πv/(x2 − x1), we can make
the global maximum of !2,1 coincide with a minimum for !1,0. Inset:
Energy-level diagram showing the relevant driving and relaxation
rates for population inversion.

structure in a cavity should then allow us to build a single-atom
laser.

C. Further possible applications

There have been a few studies investigating specifically
shaped environment structures J (ω) [47,48]. Here, we can tai-
lor |A(ω)|2 to achieve the same effect. Viewing the connection
points as part of the atom, we can say that the atom provides
its own cavity, screening it from interacting with some modes.
Building on this, a possible extension of the idea in Sec. IV B
would be to enhance multiphoton transition rates. One can
easily imagine constructing a frequency-dependent relaxation
rate with minima at single-photon transition frequencies and
a maximum at some multiphoton transition frequency. To
be explicit, consider, for example, the situation in Fig. 5,
which can be arranged for an anharmonicity of −0.2×2πv/
(x2 − x1). The relaxation rates for the |1⟩ → |0⟩ and |2⟩ → |1⟩
transitions are both at minima when ω1,0 = 1.1×2πv/
(x2 − x1), while the two-photon relaxation at frequency
ω2,0/2 = (ω1,0 + ω2,1)/2 is at its maximum.

Another interesting subject to study both experimentally
and theoretically would be the structure of the Autler-Townes
doublet [47,65], the splitting of the |0⟩ → |1⟩ transition into
two due to a drive on the |1⟩ → |2⟩ transition, or the Mollow
triplet [66], the splitting of the |0⟩ → |1⟩ transition into three
due to a drive on the |0⟩ → |1⟩ transition, in a setting with
frequency-dependent coupling.

Finally, it should also be possible to engineer a varying
anharmonicity. Remember from Fig. 2 that the Lamb shift
changes sign on resonance in the maximally symmetric case.
Positioning the |0⟩ → |1⟩ and |1⟩ → |2⟩ transition frequencies
on either side of the resonance would thus change the

FIG. 5. (Color online) Enhancing multiphoton relaxation rates.
We plot the relaxation rate as a function of frequency for the
maximally symmetric case with N = 10 and an anharmonicity
−0.2×2πv/(x2 − x1). The |1⟩ → |0⟩ and |2⟩ → |1⟩ transitions can
then be placed at relaxation rate minima, while the two-photon
process at ω2,0/2 = (ω1,0 + ω2,1)/2 is at a maximum. Inset: Energy-
level diagram showing the transition frequencies.

anharmonicity. This is illustrated in Fig. 6. Note that we
have assumed the anharmonicity to be much larger than the
relaxation rate when deriving the master equation in Sec. II.
This means that the variation in the anharmonicity cannot be
large compared to the total anharmonicity.

V. POSSIBLE EXPERIMENTAL IMPLEMENTATIONS

Giant atoms with a number of discrete connection points
are not readily available in nature, but there seem to be at
least two straightforward ways to implement our system using
artificial atoms made out of superconducting circuits.
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FIG. 4. (Color online) A scheme for population inversion. The
relaxation rates !1,0 (solid blue line) and !2,1 (dashed red line) for the
first two atom transitions, plotted as a function of the first transition
frequency ω1,0 for N = 10 in the maximally symmetric case. By
choosing the anharmonicity to be −0.1×2πv/(x2 − x1), we can make
the global maximum of !2,1 coincide with a minimum for !1,0. Inset:
Energy-level diagram showing the relevant driving and relaxation
rates for population inversion.

structure in a cavity should then allow us to build a single-atom
laser.

C. Further possible applications

There have been a few studies investigating specifically
shaped environment structures J (ω) [47,48]. Here, we can tai-
lor |A(ω)|2 to achieve the same effect. Viewing the connection
points as part of the atom, we can say that the atom provides
its own cavity, screening it from interacting with some modes.
Building on this, a possible extension of the idea in Sec. IV B
would be to enhance multiphoton transition rates. One can
easily imagine constructing a frequency-dependent relaxation
rate with minima at single-photon transition frequencies and
a maximum at some multiphoton transition frequency. To
be explicit, consider, for example, the situation in Fig. 5,
which can be arranged for an anharmonicity of −0.2×2πv/
(x2 − x1). The relaxation rates for the |1⟩ → |0⟩ and |2⟩ → |1⟩
transitions are both at minima when ω1,0 = 1.1×2πv/
(x2 − x1), while the two-photon relaxation at frequency
ω2,0/2 = (ω1,0 + ω2,1)/2 is at its maximum.

Another interesting subject to study both experimentally
and theoretically would be the structure of the Autler-Townes
doublet [47,65], the splitting of the |0⟩ → |1⟩ transition into
two due to a drive on the |1⟩ → |2⟩ transition, or the Mollow
triplet [66], the splitting of the |0⟩ → |1⟩ transition into three
due to a drive on the |0⟩ → |1⟩ transition, in a setting with
frequency-dependent coupling.

Finally, it should also be possible to engineer a varying
anharmonicity. Remember from Fig. 2 that the Lamb shift
changes sign on resonance in the maximally symmetric case.
Positioning the |0⟩ → |1⟩ and |1⟩ → |2⟩ transition frequencies
on either side of the resonance would thus change the

FIG. 5. (Color online) Enhancing multiphoton relaxation rates.
We plot the relaxation rate as a function of frequency for the
maximally symmetric case with N = 10 and an anharmonicity
−0.2×2πv/(x2 − x1). The |1⟩ → |0⟩ and |2⟩ → |1⟩ transitions can
then be placed at relaxation rate minima, while the two-photon
process at ω2,0/2 = (ω1,0 + ω2,1)/2 is at a maximum. Inset: Energy-
level diagram showing the transition frequencies.
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ordering along each propagation direction. Without loss of
generality we label the spins such that xj > xl for j > l. The
second relevant quantity thereby is their distance as compared
to the wave vector k of the resonant reservoir modes (cf.
Appendix A). The dissipative terms with collective jump
operators cL ≡

∑
j eikxj σj and cR ≡

∑
j e−ikxj σj describe

collective spin decay into left and right moving excitations
that leave the waveguide at the two different output ports
[cf. Fig. 1(a)]. Therefore, in contrast to the coherent part, the
dissipative part does not depend on the ordering of the spins
along the waveguide.

In the rest of this subsection we discuss the two limiting
cases corresponding to a bidirectional (nonchiral) situation
γL = γR , and a purely cascaded one where γL = 0. We then
introduce a more general situation considering multiple chiral
waveguides.

1. Bidirectional master equation

We note that the familiar Dicke model [47] in one dimension
is obtained from the chiral master equation (4) in the limit
of a perfect bidirectional reservoir; i.e., when the symmetry
between left and right moving excitations is not broken,
γL = γR ≡ γ . In this case, HL + HR conspires to form the
well-known infinite-range dipole-dipole Hamiltonian, whereas
the Lindblad terms form the familiar super- and subradiant
collective decay [48]

ρ̇ = − i

!

[
Hsys + !γ

∑

j,l

sin(k|xj − xl|)σ †
j σl ,ρ

]

+ 2γ
∑

j,l

cos(k|xj − xl|)
(

σlρσ
†
j − 1

2
{σ †

j σl ,ρ}
)

. (7)

Both coherent and dissipative parts depend on the distance
between spins only up to a multiple of the wavelength.
Therefore, in contrast to the chiral situation, the order of the
spins does not matter.

Remarkably, when placing the spins at distances commen-
surate with the reservoir wavelength such that k|xj − xl| =
2πn (n integer), the dipole-dipole interactions vanish and the
collective jump operators to left and right moving excitation
modes coincide cL = cR =

∑
j σj ≡ c. When driving all

spins homogeneously %j = % and on-resonance δj = 0, this
reduces to a totally symmetric Dicke model [23,49]

ρ̇ = −i[%(c + c†),ρ] + 2γD[c]ρ . (8)

This model is symmetric under exchange of all the spins, giving
rise to multiple steady states corresponding to decoupled
subspaces in different symmetry sectors. On each of these
subspaces, the system of N spin-1/2s reduces to a single
collective spin-J , where J = 0,1, . . . ,N/2 (for even N ) is
determined by the initial condition. Interestingly, this model
predicts a nonequilibrium phase transition, e.g., in the J =
N/2 manifold, at a critical driving strength %c ≡ Nγ /4
[23,49].

2. Cascaded master equation

The other limiting case of a chiral waveguide is a purely
unidirectional reservoir, where the spin chain couples only to

modes propagating in one direction (e.g., γL = 0). One refers
to such a system as cascaded, since the output of each spin can
only drive other spins located on its right, without back-action.
The corresponding cascaded master equation was extensively
studied in Refs. [26,50–54] and it is simply given by setting
γL = 0 and thus HL = 0 in Eq. (4). To gain more insight into
the dynamical structure of such a unidirectional channel, we
rewrite Eq. (4) for this specific case as

ρ̇ = − i

!
[Hsys,ρ] − i

!
(Heffρ − ρH

†
eff) + γRcρc†, (9)

where the non-Hermitian effective Hamiltonian reads

Heff = − i!γR

2

∑

j

σ
†
j σj − i!γR

∑

j>l

σ
†
j σl . (10)

To connect to the standard literature we have (without
loss of generality) absorbed phases by σj → σj e

ikxj and
%j → %j e

−ikxj . The positions of the spins then enter solely
via their spatial ordering. Note that such a simplification
is only possible in the strict cascaded case, since there is
only one collective jump operator, by construction. Between
the corresponding quantum jumps [46], the system evolves
with the non-Hermitian Hamiltonian in Eq. (10). It induces
unidirectional interactions between spins, where an excitation
of spin l can be transferred only to spins j located on its
right (j > l). The inverse process is not possible. In contrast
to conventional spin interactions [55], these unidirectional
interactions are thus fundamentally non-Hermitian, and cannot
be obtained in a closed system.

3. Multiple-waveguide chiral master equation

In a more general context one can consider spins coupled
not only by one, but by several chiral waveguides as depicted
in Fig. 1(b). These additional waveguides, labeled by m =
1, . . . ,M , are arranged such that the order of the spins along
each of them differs. We are interested in the situations where
each of these waveguides couples to each spin at most once,
excluding, for example, loops. Since the different waveguides
are independent, it is straightforward to generalize the chiral
ME from a single- to a multiple-waveguide network, where
each waveguide gives an additive contribution analogous to
Eq. (4). Denoting by γ

(m)
λ the decay rates of the spins into

modes propagating in directions λ = L,R along waveguide
m, the ME for multiple chiral waveguides reads

ρ̇ = − i

!

[
Hsys +

∑

m,λ

H
(m)
λ ,ρ

]
+

∑

m,λ

γ
(m)
λ D

[
c

(m)
λ

]
ρ . (11)

Analogous to the single-waveguide case, the coherent con-
tributions from each waveguide H

(m)
λ and the corresponding

collective jump operators c
(m)
λ are given by

H
(m)
λ ≡−i!λγ

(m)
λ

2

∑

j,l

θ
(
xm

j − xm
l

)
(eik|xm

j −xm
l |σ

†
j σl − H.c.),

(12)

c
(m)
λ ≡

∑

j

e−ikλxm
j σj . (13)
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FIG. 5. (Color online) Power spectral density Sα[ω] as a function
of normalized frequency ω/γr and for a weak coherent tone
corresponding to an amplitude ϵB/γr = 0.005. The qubits are tuned
such that they are separated by d = λ0. In the absence of nonradiative
relaxation or asymmetry in the qubit decay rates, a squared Lorentzian
of width &B = 2γr is observed. In the presence of nonradiative
relaxation the dark state can be populated and a narrow peak appears in
the spectrum. (a) Analytical (solid blue line) and numerical (red dots)
power spectral densities for γnr = 0. (b) Numerical power spectral
density for γnr/γr = 0.1 (green dashed line) and γnr/γr = 0.01 (solid
blue line). (c) Log10 of the numerical power spectral density vs
frequency and as a function of nonradiative relaxation γnr/γr. γr/2π =
17.9 MHz.

both features to be observable. As shown in Ref. [20], this can
be achieved with transmon qubits.

The above results have been obtained in the idealized case
where γ00 = γ11. These decay rates, defined below Eq. (24),
contain both the radiative and the nonradiative contributions.
Some asymmetry in the decay rates is to be expected in
practice. As illustrated in Fig. 3, this leads to a finite transition
matrix element between |ee⟩ and the dark state |D⟩. The effect
of this asymmetry is illustrated in Fig. 6, which presents the
numerically computed power spectral density as a function of
both frequency and asymmetry (γ00 − γ11)/(γ00 + γ11). These
results are obtained for a constant γnr/γ11 = 0.01 correspond-
ing to the strong-coupling limit. This additional population
mechanism for the dark state leads to power broadening of
the sharp feature centered around ω = 0. However, with up to
10% asymmetry, this signature of superradiance is expected
to be clearly observable at low power. This is confirmed
experimentally [20].
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FIG. 6. (Color online) Log10 of the numerical power spectral
density Sα[ω] as a function of normalized frequency ω/γ11 and
relaxation rate asymmetry (γ00 − γ11)/(γ00 + γ11). The drive power
and nonradiative decay are chosen such that ϵB/γ11 = 0.005 and
γnr/γ11 = 0.01, corresponding to a weak coherent drive tone in
the strong-coupling limit. The qubits are tuned such that they are
separated by d = λ0. Asymmetry between the relaxation rates opens
a new drive channel for the dark state |D⟩, causing power broadening.
γ11/2π = 18.1 MHz.

IV. λ/4 SEPARATION: EXCHANGE INTERACTION

A. Discussion

We now consider the situation where the transition fre-
quency of both qubits is chosen such that the qubit separation
d is an odd multiple of λ0/4. This is illustrated in Fig. 7
where Q1 and Q3 are separated by 3λ/4. As can be seen
from Eqs. (14) and (15), in this case the correlated decay
rate γ01 ∝ cos(2πd/λ0) is zero and the exchange interaction
∝sin(2πd/λ0) takes its maximal value |J | = γr/2.

That this interaction is at a maximum for this separation
can be understood intuitively from Fig. 7 and by going back
to the origin of the virtual interaction term in the derivation
of the effective master equation. Indeed, as can be seen in

Q1 Q3Q2

FIG. 7. (Color online) Schematic representation of three trans-
mon qubits in a 1D transmission line. Qubits are considered as
pointlike objects and their location xj along the line is represented by
circles. As illustrated by the solid line, the distance between Q1 and
Q3 corresponds to 3λ0/4. At the location of Q3, modes of frequency
around 3λ0/4 have opposite signs (see dashed and dotted line). On
the other hand, for a separation corresponding to λ0/2 just like Q1

and Q2, all modes have the same sign around Q2.
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Figure 1. An overview (not exhaustive) of waveguide QED setups. a) The most basic structure is a 1D waveguide with a
continuum of right- and left-propagating modes aR and aL, respectively, coupled to a single atom. The atom can relax, with
rates ≈R and ≈L, to the modes in the transmission lines. Usually, ≈L = ≈R. The atom can also relax via other channels,
sometimes called nonradiative decay, with a rate ≈nr. In many cases with superconducting artificial atoms, this decay is
negligible, i.e., ≈nr π ≈1D = ≈L + ≈R. b) The atom(s) coupled to the waveguide can have various level structures, e.g.,
two levels, three levels in the …, », and V configurations, and four levels in an N configuration. c) The waveguide can be
semi-infinite, terminated by a mirror at some distance lm from the atom(s). d) The waveguide can be chiral, i.e., ≈L ”= ≈R,
possibly with one these rates being zero. e) The atom(s) can be coupled to a resonator, which then in turn is coupled to the
waveguide. f) There can be two atoms, separated by a distance l2, coupled to the waveguide. g) There can be many atoms
coupled to the waveguide.

Figure 2. Experiments with a superconducting artificial atom in an open 1D transmission line. a) The transmon circuit placed
close to the transmission line. Zoom: The SQUID connecting the two superconducting islands of the transmon. b) Measured
power transmission T as a function of the input power Pp (on resonance with the artificial atom) for two samples. The solid lines
are theory. Sample 2 has a smaller pure dephasing rate than sample 1 and therefore achieves a larger transmission extinction.
c) Second-order correlation function g(2)(·) for the reflected microwave signal, showing a clear anti-bunching dip. The solid
lines are theory calculations including temperature, finite detector bandwidth, and trigger jitter. d) The same as (c), but for
the transmitted signal at a number of di↵erent input powers. Figures from Ref. [14] with permission. Permission needed!

length for interaction between the atoms via the trans-
mission line is set by the transition frequencies of the
atoms, which can be tuned to change l

2

in units of
wavelengths. The experiment demonstrated distance-
dependent exchange interaction between the atoms as
well as collective decay (super- and subradiance). The
latter was also studied recently with two transmons in a
bad cavity [24], which is a setup somewhere in between
waveguide QED and normal cavity QED.

A few experiments with superconducting circuits have

also explored the setup with a semi-infinite waveguide,
i.e., a waveguide terminated by a mirror, shown in
Fig. 1c. An example without any artificial atom is the
experimental demonstration of the dynamical Casimir ef-
fect, where a SQUID at the end of a transmission was
used to implement a rapidly tunable boundary condi-
tion (an e↵ective moving mirror) [25]. Another exam-
ple is the cross-Kerr photon-photon interaction discussed
above, which was enhanced when the atom was placed at
the end of a waveguide, only allowing the atom to emit in

Exchange interaction sin(phase)
Collective decay cos(phase)
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close to the transmission line. Zoom: The SQUID connecting the two superconducting islands of the transmon. b) Measured
power transmission T as a function of the input power Pp (on resonance with the artificial atom) for two samples. The solid lines
are theory. Sample 2 has a smaller pure dephasing rate than sample 1 and therefore achieves a larger transmission extinction.
c) Second-order correlation function g(2)(·) for the reflected microwave signal, showing a clear anti-bunching dip. The solid
lines are theory calculations including temperature, finite detector bandwidth, and trigger jitter. d) The same as (c), but for
the transmitted signal at a number of di↵erent input powers. Figures from Ref. [14] with permission. Permission needed!
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above, which was enhanced when the atom was placed at
the end of a waveguide, only allowing the atom to emit in
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detailed calculation presented in Appendix B, the exchange
interaction J is a modification of the Lamb shift in the presence
of multiple qubits coupled to the line. Basically, virtual photons
emitted and reabsorbed by a given qubit contribute to the
qubit’s Lamb shift. In the presence of two (or more) qubits,
virtual photons can be emitted by one qubit and absorbed
by the other, leading to an effective qubit-qubit interaction.
This type of exchange interaction is well known in circuit
QED where the qubits interact strongly with a single mode
of a resonator leading to J = g1g2/δ, with δ the detuning of
both qubits to the resonator [39,40]. In the present open-line
context where the qubits interact with a continuum of modes,
J is of the same form but is now an integral over all continuous
modes except the continuous modes lying at qubit transition
frequency [42].

As illustrated in Fig. 7 for Q1 and Q3, the continuous
modes at longer wavelength than 3λ0/4 (dashed line) have
a phase of opposite sign at the location of the second qubit
with respect to continuous modes of shorter wavelength than
3λ0/4 (dotted line). Moreover, since these continuous modes
are, respectively, below and above the qubit frequency, their
respective detuning δ is also of opposite sign. This double
change of sign results in a finite exchange interaction because
the contribution to J of the modes around 3λ0/4 all have
the same overall (negative) sign. In contrast, for Q1 and
Q2 which are separated by λ0/2, the phases of all the
continuous modes at Q2 have the same sign while the detuning
δ changes sign. In this case, the exchange interaction van-
ishes when integrating over all continuous modes above and
below λ0/2.

Assuming that the qubits are in resonance, and taking γ =
γjj for simplicity, this discussion can be made more formal by
working in the dressed basis, which diagonalizes the effective
Hamiltonian, Eq. (24). In this situation, the dressed lowering
operators, Eq. (27), take the simple form

σ
B/D
− =

σ 1
− ± σ 0

−√
2

. (37)

The master equation then reads

ρ̇ = − i

h̄
[H,ρ] + γ

∑

i=B,D

D[σ i
−]ρ, (38)

where

H =
∑

i=B,D

h̄ωiσ
i
+σ i

− +
∑

i=B,D

h̄(ϵiσ
i
+ + H.c.), (39)

and ωB/D = ( ± J , ϵB/D = (ϵ1 ± ϵ0)/
√

2. As expected, in the
dressed basis, the system is described by two driven eigenstates
whose frequencies differ by 2J .

B. Elastic scattering

We now turn to elastic scattering. Using Eqs. (17) and (16),
the output fields can be expressed as

aR
out(t) =

√
γr

2
e−iω0t0 [σ 0

− − isgn(J )σ 1
−], (40)

aL
out(t) = aL

in +
√

γr
2 eiω0t0 [σ 0

− + isgn(J )σ 1
−]. (41)
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FIG. 8. (Color online) Transmission and reflection coefficients as
a function of normalized detuning (/γ between the qubits transition
frequencies and drive. The qubits are tuned such that d = 3λ0/4. Full
lines are analytical results while dotted lines are numerical results.
(a) |ϵ0|/γ = 0.005. At low power, |t |2 + |r|2 ∼ 1. (b) |ϵ0|/γ = 0.35.
At high power, inelastic scattering is more important so that |t |2 +
|r|2 < 1 around ( = 0. Radiative decay γr = 0.95γ and γr/2π =
10.3 MHz in the numerical simulations.

To first order in the drive amplitude ⟨aL
in⟩, we then find the

expectation values of these two quantities:

〈
aL

out

〉
=

〈
aL

in

〉J 2 − [( − iγ /2][( + i(γr − γ /2)]
J 2 − (( − iγ /2)2

, (42)

〈
aR

out

〉
=

〈
aL

in

〉 −|J |γr

J 2 − (( − iγ /2)2
. (43)

As |J | = γr/2, we expect transmission extinction if γnr/γ ≪ 1
as in the λ/2 case. However, here the width of the extinction
is given by γ , whereas this width was superradiant (*B = 2γ )
in the λ/2 case.

Using these expressions, we plot in Fig. 8(a) the reflec-
tion |r|2 and transmission |t |2 coefficients along with the
corresponding results obtained from numerical simulations of
the reduced master equation (7). The agreement is excellent,
with transmission extinction at ( = 0. It is also interesting to
observe that these coefficients do not have a Lorentzian profile
when nonradiative decay is weak. Indeed, in this situation both
|r|2 and |t |2 are rather flat around ( = 0. This is a consequence
of the coupling J . Since the maximal magnitude of J is γr/2
and the width is γ ! γr, a double peak structure is never
resolved and instead leads to the non-Lorentzian profile seen
in panel (a).

In Fig. 8(b), we show results obtained from numerical
simulations of the reduced master equation (7) at a larger
power. Because of the increased power broadening, the
transmission dip is more Lorentzian-like than in panel (a).
Interestingly, at this higher power we find that |t |2 + |r|2 < 1
for |(| " γ . This is because at these powers the effective
two-level system becomes strongly dressed by the incoming
light, leading to significant inelastic scattering. As expected,
in this situation the power spectrum shows a Mollow triplet
structure [10,14,20]. A signature of this dressing can be found
in the reflection coefficient which shows two small peaks
whose separation is tuned by the input power. For even larger
power, the effective two-level system becomes saturated and
|t |2 → 1 for all values of ( (not shown). This is also observed
experimentally [20].
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detailed calculation presented in Appendix B, the exchange
interaction J is a modification of the Lamb shift in the presence
of multiple qubits coupled to the line. Basically, virtual photons
emitted and reabsorbed by a given qubit contribute to the
qubit’s Lamb shift. In the presence of two (or more) qubits,
virtual photons can be emitted by one qubit and absorbed
by the other, leading to an effective qubit-qubit interaction.
This type of exchange interaction is well known in circuit
QED where the qubits interact strongly with a single mode
of a resonator leading to J = g1g2/δ, with δ the detuning of
both qubits to the resonator [39,40]. In the present open-line
context where the qubits interact with a continuum of modes,
J is of the same form but is now an integral over all continuous
modes except the continuous modes lying at qubit transition
frequency [42].

As illustrated in Fig. 7 for Q1 and Q3, the continuous
modes at longer wavelength than 3λ0/4 (dashed line) have
a phase of opposite sign at the location of the second qubit
with respect to continuous modes of shorter wavelength than
3λ0/4 (dotted line). Moreover, since these continuous modes
are, respectively, below and above the qubit frequency, their
respective detuning δ is also of opposite sign. This double
change of sign results in a finite exchange interaction because
the contribution to J of the modes around 3λ0/4 all have
the same overall (negative) sign. In contrast, for Q1 and
Q2 which are separated by λ0/2, the phases of all the
continuous modes at Q2 have the same sign while the detuning
δ changes sign. In this case, the exchange interaction van-
ishes when integrating over all continuous modes above and
below λ0/2.

Assuming that the qubits are in resonance, and taking γ =
γjj for simplicity, this discussion can be made more formal by
working in the dressed basis, which diagonalizes the effective
Hamiltonian, Eq. (24). In this situation, the dressed lowering
operators, Eq. (27), take the simple form

σ
B/D
− =

σ 1
− ± σ 0

−√
2

. (37)

The master equation then reads

ρ̇ = − i

h̄
[H,ρ] + γ

∑

i=B,D

D[σ i
−]ρ, (38)

where

H =
∑

i=B,D
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i
+σ i

− +
∑

i=B,D

h̄(ϵiσ
i
+ + H.c.), (39)

and ωB/D = ( ± J , ϵB/D = (ϵ1 ± ϵ0)/
√

2. As expected, in the
dressed basis, the system is described by two driven eigenstates
whose frequencies differ by 2J .

B. Elastic scattering

We now turn to elastic scattering. Using Eqs. (17) and (16),
the output fields can be expressed as

aR
out(t) =

√
γr

2
e−iω0t0 [σ 0

− − isgn(J )σ 1
−], (40)
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FIG. 8. (Color online) Transmission and reflection coefficients as
a function of normalized detuning (/γ between the qubits transition
frequencies and drive. The qubits are tuned such that d = 3λ0/4. Full
lines are analytical results while dotted lines are numerical results.
(a) |ϵ0|/γ = 0.005. At low power, |t |2 + |r|2 ∼ 1. (b) |ϵ0|/γ = 0.35.
At high power, inelastic scattering is more important so that |t |2 +
|r|2 < 1 around ( = 0. Radiative decay γr = 0.95γ and γr/2π =
10.3 MHz in the numerical simulations.

To first order in the drive amplitude ⟨aL
in⟩, we then find the

expectation values of these two quantities:
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As |J | = γr/2, we expect transmission extinction if γnr/γ ≪ 1
as in the λ/2 case. However, here the width of the extinction
is given by γ , whereas this width was superradiant (*B = 2γ )
in the λ/2 case.

Using these expressions, we plot in Fig. 8(a) the reflec-
tion |r|2 and transmission |t |2 coefficients along with the
corresponding results obtained from numerical simulations of
the reduced master equation (7). The agreement is excellent,
with transmission extinction at ( = 0. It is also interesting to
observe that these coefficients do not have a Lorentzian profile
when nonradiative decay is weak. Indeed, in this situation both
|r|2 and |t |2 are rather flat around ( = 0. This is a consequence
of the coupling J . Since the maximal magnitude of J is γr/2
and the width is γ ! γr, a double peak structure is never
resolved and instead leads to the non-Lorentzian profile seen
in panel (a).

In Fig. 8(b), we show results obtained from numerical
simulations of the reduced master equation (7) at a larger
power. Because of the increased power broadening, the
transmission dip is more Lorentzian-like than in panel (a).
Interestingly, at this higher power we find that |t |2 + |r|2 < 1
for |(| " γ . This is because at these powers the effective
two-level system becomes strongly dressed by the incoming
light, leading to significant inelastic scattering. As expected,
in this situation the power spectrum shows a Mollow triplet
structure [10,14,20]. A signature of this dressing can be found
in the reflection coefficient which shows two small peaks
whose separation is tuned by the input power. For even larger
power, the effective two-level system becomes saturated and
|t |2 → 1 for all values of ( (not shown). This is also observed
experimentally [20].
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detailed calculation presented in Appendix B, the exchange
interaction J is a modification of the Lamb shift in the presence
of multiple qubits coupled to the line. Basically, virtual photons
emitted and reabsorbed by a given qubit contribute to the
qubit’s Lamb shift. In the presence of two (or more) qubits,
virtual photons can be emitted by one qubit and absorbed
by the other, leading to an effective qubit-qubit interaction.
This type of exchange interaction is well known in circuit
QED where the qubits interact strongly with a single mode
of a resonator leading to J = g1g2/δ, with δ the detuning of
both qubits to the resonator [39,40]. In the present open-line
context where the qubits interact with a continuum of modes,
J is of the same form but is now an integral over all continuous
modes except the continuous modes lying at qubit transition
frequency [42].

As illustrated in Fig. 7 for Q1 and Q3, the continuous
modes at longer wavelength than 3λ0/4 (dashed line) have
a phase of opposite sign at the location of the second qubit
with respect to continuous modes of shorter wavelength than
3λ0/4 (dotted line). Moreover, since these continuous modes
are, respectively, below and above the qubit frequency, their
respective detuning δ is also of opposite sign. This double
change of sign results in a finite exchange interaction because
the contribution to J of the modes around 3λ0/4 all have
the same overall (negative) sign. In contrast, for Q1 and
Q2 which are separated by λ0/2, the phases of all the
continuous modes at Q2 have the same sign while the detuning
δ changes sign. In this case, the exchange interaction van-
ishes when integrating over all continuous modes above and
below λ0/2.

Assuming that the qubits are in resonance, and taking γ =
γjj for simplicity, this discussion can be made more formal by
working in the dressed basis, which diagonalizes the effective
Hamiltonian, Eq. (24). In this situation, the dressed lowering
operators, Eq. (27), take the simple form

σ
B/D
− =

σ 1
− ± σ 0
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. (37)

The master equation then reads
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and ωB/D = ( ± J , ϵB/D = (ϵ1 ± ϵ0)/
√

2. As expected, in the
dressed basis, the system is described by two driven eigenstates
whose frequencies differ by 2J .

B. Elastic scattering

We now turn to elastic scattering. Using Eqs. (17) and (16),
the output fields can be expressed as

aR
out(t) =

√
γr

2
e−iω0t0 [σ 0

− − isgn(J )σ 1
−], (40)
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FIG. 8. (Color online) Transmission and reflection coefficients as
a function of normalized detuning (/γ between the qubits transition
frequencies and drive. The qubits are tuned such that d = 3λ0/4. Full
lines are analytical results while dotted lines are numerical results.
(a) |ϵ0|/γ = 0.005. At low power, |t |2 + |r|2 ∼ 1. (b) |ϵ0|/γ = 0.35.
At high power, inelastic scattering is more important so that |t |2 +
|r|2 < 1 around ( = 0. Radiative decay γr = 0.95γ and γr/2π =
10.3 MHz in the numerical simulations.

To first order in the drive amplitude ⟨aL
in⟩, we then find the

expectation values of these two quantities:

〈
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〉
=

〈
aL

in

〉J 2 − [( − iγ /2][( + i(γr − γ /2)]
J 2 − (( − iγ /2)2
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〉 −|J |γr

J 2 − (( − iγ /2)2
. (43)

As |J | = γr/2, we expect transmission extinction if γnr/γ ≪ 1
as in the λ/2 case. However, here the width of the extinction
is given by γ , whereas this width was superradiant (*B = 2γ )
in the λ/2 case.

Using these expressions, we plot in Fig. 8(a) the reflec-
tion |r|2 and transmission |t |2 coefficients along with the
corresponding results obtained from numerical simulations of
the reduced master equation (7). The agreement is excellent,
with transmission extinction at ( = 0. It is also interesting to
observe that these coefficients do not have a Lorentzian profile
when nonradiative decay is weak. Indeed, in this situation both
|r|2 and |t |2 are rather flat around ( = 0. This is a consequence
of the coupling J . Since the maximal magnitude of J is γr/2
and the width is γ ! γr, a double peak structure is never
resolved and instead leads to the non-Lorentzian profile seen
in panel (a).

In Fig. 8(b), we show results obtained from numerical
simulations of the reduced master equation (7) at a larger
power. Because of the increased power broadening, the
transmission dip is more Lorentzian-like than in panel (a).
Interestingly, at this higher power we find that |t |2 + |r|2 < 1
for |(| " γ . This is because at these powers the effective
two-level system becomes strongly dressed by the incoming
light, leading to significant inelastic scattering. As expected,
in this situation the power spectrum shows a Mollow triplet
structure [10,14,20]. A signature of this dressing can be found
in the reflection coefficient which shows two small peaks
whose separation is tuned by the input power. For even larger
power, the effective two-level system becomes saturated and
|t |2 → 1 for all values of ( (not shown). This is also observed
experimentally [20].
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detailed calculation presented in Appendix B, the exchange
interaction J is a modification of the Lamb shift in the presence
of multiple qubits coupled to the line. Basically, virtual photons
emitted and reabsorbed by a given qubit contribute to the
qubit’s Lamb shift. In the presence of two (or more) qubits,
virtual photons can be emitted by one qubit and absorbed
by the other, leading to an effective qubit-qubit interaction.
This type of exchange interaction is well known in circuit
QED where the qubits interact strongly with a single mode
of a resonator leading to J = g1g2/δ, with δ the detuning of
both qubits to the resonator [39,40]. In the present open-line
context where the qubits interact with a continuum of modes,
J is of the same form but is now an integral over all continuous
modes except the continuous modes lying at qubit transition
frequency [42].

As illustrated in Fig. 7 for Q1 and Q3, the continuous
modes at longer wavelength than 3λ0/4 (dashed line) have
a phase of opposite sign at the location of the second qubit
with respect to continuous modes of shorter wavelength than
3λ0/4 (dotted line). Moreover, since these continuous modes
are, respectively, below and above the qubit frequency, their
respective detuning δ is also of opposite sign. This double
change of sign results in a finite exchange interaction because
the contribution to J of the modes around 3λ0/4 all have
the same overall (negative) sign. In contrast, for Q1 and
Q2 which are separated by λ0/2, the phases of all the
continuous modes at Q2 have the same sign while the detuning
δ changes sign. In this case, the exchange interaction van-
ishes when integrating over all continuous modes above and
below λ0/2.

Assuming that the qubits are in resonance, and taking γ =
γjj for simplicity, this discussion can be made more formal by
working in the dressed basis, which diagonalizes the effective
Hamiltonian, Eq. (24). In this situation, the dressed lowering
operators, Eq. (27), take the simple form
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ρ̇ = − i
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and ωB/D = ( ± J , ϵB/D = (ϵ1 ± ϵ0)/
√

2. As expected, in the
dressed basis, the system is described by two driven eigenstates
whose frequencies differ by 2J .

B. Elastic scattering

We now turn to elastic scattering. Using Eqs. (17) and (16),
the output fields can be expressed as
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FIG. 8. (Color online) Transmission and reflection coefficients as
a function of normalized detuning (/γ between the qubits transition
frequencies and drive. The qubits are tuned such that d = 3λ0/4. Full
lines are analytical results while dotted lines are numerical results.
(a) |ϵ0|/γ = 0.005. At low power, |t |2 + |r|2 ∼ 1. (b) |ϵ0|/γ = 0.35.
At high power, inelastic scattering is more important so that |t |2 +
|r|2 < 1 around ( = 0. Radiative decay γr = 0.95γ and γr/2π =
10.3 MHz in the numerical simulations.

To first order in the drive amplitude ⟨aL
in⟩, we then find the

expectation values of these two quantities:
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As |J | = γr/2, we expect transmission extinction if γnr/γ ≪ 1
as in the λ/2 case. However, here the width of the extinction
is given by γ , whereas this width was superradiant (*B = 2γ )
in the λ/2 case.

Using these expressions, we plot in Fig. 8(a) the reflec-
tion |r|2 and transmission |t |2 coefficients along with the
corresponding results obtained from numerical simulations of
the reduced master equation (7). The agreement is excellent,
with transmission extinction at ( = 0. It is also interesting to
observe that these coefficients do not have a Lorentzian profile
when nonradiative decay is weak. Indeed, in this situation both
|r|2 and |t |2 are rather flat around ( = 0. This is a consequence
of the coupling J . Since the maximal magnitude of J is γr/2
and the width is γ ! γr, a double peak structure is never
resolved and instead leads to the non-Lorentzian profile seen
in panel (a).

In Fig. 8(b), we show results obtained from numerical
simulations of the reduced master equation (7) at a larger
power. Because of the increased power broadening, the
transmission dip is more Lorentzian-like than in panel (a).
Interestingly, at this higher power we find that |t |2 + |r|2 < 1
for |(| " γ . This is because at these powers the effective
two-level system becomes strongly dressed by the incoming
light, leading to significant inelastic scattering. As expected,
in this situation the power spectrum shows a Mollow triplet
structure [10,14,20]. A signature of this dressing can be found
in the reflection coefficient which shows two small peaks
whose separation is tuned by the input power. For even larger
power, the effective two-level system becomes saturated and
|t |2 → 1 for all values of ( (not shown). This is also observed
experimentally [20].
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This means that the master equation is
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which cannot be simplified by expanding the Lindblad terms. However, as before, we check the special case of equal
coupling strengths and phases. Setting

“1 = “2 = “3 = “4 © “, (114)
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Again, this seems to agree well with previous results as in Sec. III.

4. Conclusions

check case of equal couplings and phases first. is it interesting to decouple the atoms from the transmission line
but keep them exchanging excitations between themselves? How does the possibility to achieve this depend on the
ordering? Can we get new, interesting dark and bright states?

B. More connection points

more orderings possible (combinatorics...), any new possibilities not existing in the previous subsection?
next generalization: multiple atoms below

VI. GENERAL RESULTS AND PROOFS FOR SEVERAL ATOMS

In this section, we try to draw some general conclusions about the form of the equations for several (giant) atoms
in a transmission line. We try to find connections between the strengths of the di↵erent kinds of terms: exchange
interaction, correlated relaxation, and individual relaxation. For example, if the individual relaxation rate for an atom
is zero, can it still have non-zero correlated relaxation rate and/or exchange interaction with other atoms. As far as
possible, we present proofs of our results.
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Summary

In traditional quantum optics, atoms can be approxi-
mated as point-like when compared to the wavelength
of light. However, a recent experiment using sur-
face acoustic waves shows that an artificial atom can
be coupled to a bosonic field at several points wave-
lengths apart. Exploring the theory for such a system,
we find that the multiple connection points give rise
to a frequency dependence in the coupling strength
between the atom and its environment, and also in
the Lamb shifts of the atom. We outline results for
when the travel time between connection points is sig-
nificant, and for setups with multiple giant atoms.

Hamiltonian

We consider a multi-level atom connected at N points to
right- and left-moving modes of a massless 1D bosonic
field. The Hamiltonian of the system is H = HA + HF +
HI, where we have defined the atom Hamiltonian

HA =
X

m

Êm |mÍÈm| , (1)

the field Hamiltonian
HF =
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j
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and the interaction Hamiltonian
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!

, (3)

respectively (~ = 1). The atom levels are labelled by
m = 0, 1, 2, . . . and have energies Êm. The index R (L)
denote right-(left-)moving bosons, and the boson modes
are labelled by j. The coordinate of connection point k is
denoted xk and v is the boson velocity. We assume that
the time it takes for a boson to travel between xa and
xb is negligible compared the relaxation rate of the atom,
leaving the phase shift eiÊj(xa≠xb)/v as the only e�ect.

Master equation

Tracing out the bosonic modes we get the master equation

fl̇(t) = ≠i
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where D [c] fl = cflc† ≠ 1
2c

†cfl ≠ 1
2flc†c. The relaxation rate

�m+1,m for the transition |m + 1Í æ |mÍ is given by
�m+1,m = 4fig2

mJ(Êm+1,m) |A(Êm+1,m)|2 , (5)
where J(Ê) is the density of states for the bosonic modes
and n̄ is the mean number of bosonic excitations at fre-
quency Ê and temperature T . The frequency dependence
is contained in the factor

A(Êj) = gj

NX
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gke
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which is a discrete Fourier transform involving the cou-
pling strengths and the coupling coordinates. At negligi-
ble temperature, the Lamb shift �m of level m is
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where P denotes principal value. [1]

Maximally symmetric case

We first consider the maximally symmetric case, where
the coupling strength is the same at each connection point
and the distance between neighbouring connection points
is constant. Assuming negligible temperature, defining “
as the relaxation rate for a single connection point and
„ = Ê1,0(x2 ≠ x1)/v, the result is a relaxation rate

�1,0(Ê1,0) = “
sin2

⇣
N
2 „
⌘

sin2
⇣

1
2„
⌘ = “

1 ≠ cos(N„)
1 ≠ cos(„) (8)

and a main contribution to the Lamb shift

�1 = “
NX

k=1
(N ≠ k) sin(k„) = “

N sin(„) ≠ sin(N„)
2 (1 ≠ cos(„)) . (9)

Note that the result for a small atom with a single con-
nection point would be �1,0 = “ and �1 = 0.
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Designing the frequency dependence

We can design di�erent relaxation rate frequency depen-
dencies by tuning just one or two parameters. In the plot
below, the black line shows two maxima of equal magni-
tude, the blue line has a wide, flat maximum, and the red
line has two wide, shallow minima.
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If �1,0 π �2,1, we can create population inversion. The
plot shows �1,0(Ê1,0) and �2,1(Ê1,0) for N = 10 in the max-
imally symmetric case. By choosing the anharmonicity to
be ≠0.1·2fiv/(x2≠x1), we can make the global maximum
of �2,1 coincide with a minimum for �1,0.
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Long travel time

When the travel time · between connection points be-
comes comparable to 1/“, time-delay e�ects come into
play (similar to the situation with an atom at a distance
from a mirror [2]). This leads to a sub-exponential decay
for the giant atom and also gives rise to complicated fea-
tures in the second-order correlation function g(2)(t) [3].

Multiple giant atoms

We can generalize to a situation with multiple giant atoms
connected to the 1D field [4]. The coherent coupling be-
tween the atoms is proportional to sin „ (phase di�erences
between connection points of di�erent atoms) while the
dissipation is proportional to cos „ (phase di�erences be-
tween connection points of the same atom). Unlike for
small atoms, this makes it possible to have coherent cou-
pling between the atoms without any decay to the bath.
This is di�erent from a dark state. Many arrangements of
connection points are possible; one can also imagine more
unconventional setups like “a cavity inside an atom”.

Possible experiments

Giant atoms with a number of discrete connection points
are not readily available in nature, but there seem to be
at least two straightforward ways to implement our sys-
tem using artificial atoms made out of superconducting
circuits. The first implementation, which motivated this
work, was suggested in [5] and realized in [6], shown in the
figure below. Here, the giant artificial atom is a transmon
[7]. It is not coupled to propagating microwave photons,
as is the usual case, but it interacts instead with phonons
in the form of surface acoustic waves (SAWs) [8] propa-
gating on a piezoelectric substrate.

5 μm

1 μm

λtr

The second possible implementation of a giant artificial
atom we foresee also uses a transmon. To be specific, it is
a variation of the transmon known as the xmon [9], and
it couples to an ordinary microwave transmission line.
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Master equation with equal phase shifts 
between subsequent coupling points

Ï = fi

2

No collective decay
No individual decay

Nonzero exchange interaction
Different from the single dark state for small atoms!

A. F. Kockum et al., in preparation (2016)



Summary
A transmon qubit coupled to SAW is a ”giant artificial atom”

Multiple coupling points     interference     frequency-dependent 
relaxation rate and Lamb shift

Can design the frequency-dependence for various applications

Two giant artificial atoms can completely decouple from the 
transmission line (no decay) but still have an exchange 
interaction mediated by the transmission line
A. F. Kockum et al., Phys. Rev.  A 90, 013837 (2014)
A. F. Kockum et al., in preparation (2016)
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