SPICE-Workshop Quantum Acoustics May. 17-20, 2016, Mainz, Germany

Cavity Quantum Acoustics with a Double Quantum Dot

Toshimasa Fujisawa Tokyo Institute of Technology

supported by JSPS KAKENHI and TokyoTech Nanotechnology Platform.

CONTENTS

Phonon environment for quantum dots Prospect for cavity Quantum Acoustics

SAW Phonon cavity Device design Phononic bandgap in a Bragg reflector Localized cavity modes

time-, freq-, and spatial-resolved meas.

Transition between electronic states in a DQD Phonon assisted tunneling Spin-flip phonon assisted tunneling Rabi splitting induced by the cavity mode SAW

Dissipation problem in quantum dots

Electronic states in double quantum dot (GaAs)

Charge qubit

T. Hayashi et al., PRL 91, 226804 (2003). G. Shinkai et al., PRL 103, 056802 (2009).

T₂^{*}: charge noise

Sweet spot Echo technique

T₁: **phonon** scattering

Spin qubit (Pauli spin blockade regime)

J.R. Petta et al., Science 309, 2180 (2005). R. Brunner et al., PRL, 107, 146801 (2011).

T₂^{*}: nuclear spin fluctuation charge noise (via exchange energy)

> Sweet spot, Echo technique Feedback control

T₁: **phonon** scattering + spin-orbit coupling

Phonon environment for quantum dots

No phonon exist. Suppress dissipation

Phononic cavity

Confine phonons.

Reuse the lost energy

Acoustic analog of Cavity Quantum Electrodynamics (c-QED)

ΓΟΚΥΟ ΤΕΕ

Cavity Quantum Acoustics

DQD in a SAW phonon cavity

Metal gratings work as Bragg reflectors

Some cavity QED effects

Ultra-strong coupling

ΓΟΚΥΟ ΤΙΞΕΙ

$$\omega_C \leq g_0$$

Breakdown of rotating frame approx.

Block-Siegert shift

 $0.1 \leq \frac{g_0}{\omega_C}$

T. Niemczyk et al., Nature Phys. 6, 772(2010). P. Forn-Diaz et al., PRL 105, 237001(2010)

Squeezed vacuum with virtual photons

 $\omega_C \leq g_0$

C. Ciuti et al., PRB 72, 115303(2005). J. Casanova et.al, PRL 105, 263603 (2010).

c-QED limited by α (fine structure const.)

Conventional cavity-QED (atom – light interaction)

Normalized coupling constant

$$\frac{g_0}{\omega} = \sqrt{\frac{e^2}{4\pi\varepsilon_0\hbar c}\frac{L_d^2\lambda}{V_c}} = \sqrt{\alpha}\sqrt{\frac{L_d^2\lambda}{V_c}} <<\sqrt{\alpha} \sim \sqrt{\frac{1}{137}}$$

3D cavity, small atom $V_C >> \lambda^3, L_d << \lambda$

 $\boldsymbol{\alpha} :$ the fine structure constant

Circuit-QED (qubit – microwave interaction)

 $\dot{\bullet}$

Coplaner waveguide (1D cavity) $V_C \sim L_d^2 \lambda$ $V_C \sim \int_{a}^{2} \frac{1}{137} \sim 0.1$

> S. M. Girvin et al., cond-mat/0310670(2003) A. Wallraff et al., Nature 431, 162 (2004) M. Devoret et al., Ann. Phys. 16, 767(2007).

LC resonator (0D cavity) V_c (independent of λ)

F. Yoshihara et al., arXiv:1602.00415.

Charge qubit – Surface Acoustic Wave (SAW) phonon

3D phonon cavity:

$$V_C \geq \lambda_{SAW}^3 << \lambda_{EM}^3$$

Small mode volume

Small electromechanical coupling constant

*K*²

Electric field energy Total energy (elastic+kinetic)

Normalized coupling constant

$$\frac{g_0}{\omega} = \sqrt{\frac{K^2 e^2}{4\pi\varepsilon_{GaAs}\hbar v_{SAW}}} \frac{L_d^2 \lambda_{SAW}}{V_C} = \sqrt{\alpha_{SAW}} \sqrt{\frac{L_d^2 \lambda_{SAW}}{V_C}} < \sqrt{\alpha_{SAW}} \sim \sqrt{\frac{1}{13}} \sim 0.28 \quad \text{(GaAs)}$$

- α_{SAW} : effective fine structure const for SAW cavity
- v_{SAW} : SAW velocity (3×10³ m/s << $c = 3 \times 10^8$ m/s)
- K^2 : electromechanical coupling const. (7×10⁻⁴ for GaAs SAW)

$$\varepsilon_{GaAs}$$
: dielectric const. (12.5 ε_0 for GaAs)

a few % for ZnO SAW

J.C.H. Chen et al., Sci. Rep. 5, 15176 (2015).

DQD in a SAW phonon cavity

TOKYO TIECI

Pursuing Excellenc

(charge or spin qubit)

CONTENTS

Phonon environment for quantum dots Prospect for cavity Quantum Acoustics

SAW Phonon cavity
 Device design
 Phononic bandgap in a Bragg reflector
 Localized cavity modes

Transition between electronic states in a DQD Phonon assisted tunneling Spin-flip phonon assisted tunneling Rabi splitting induced by the cavity mode SAW

Surface acoustic wave (SAW)

Travelling wave

Standing wave

ΤΟΚΥΟ ΤΕΕ

Pursuing Excellence

S. H. Simon, Phys Rev B 54, 13878 (1996).

max. electric field

Phonon bandgap in a Bragg reflector (BR)

Reflection coefficient r ~ few % (Au/GaAs)

 $r = P_z \frac{K^2}{4} + F_z \frac{h}{2\lambda} \simeq F_z \frac{h}{2\lambda}$

SAW dispersion in a Bragg reflector (BR)

 $\frac{v_m - v_f}{v_f} = P_v \frac{K^2}{2} + F_v \frac{h}{\lambda} \simeq F_v \frac{h}{\lambda}$

Material parameters K^2, P_v, P_z, F_v, F_z

Supriyo Datta, Surface Acoustic Wave Devices, Prentice-Hall, 1986

SAW cavity: Ti/Au on GaAs

ΤΟΚΥΟ ΤΕCH

Pursuing Excellence

Time-resolved piezo-potential meas.

QPC detector (tunneling regime)

Detection current (DC)

$$\Delta I(\tau) \propto \frac{1}{T} \int \Delta \mu(t-\tau) \phi_{SAW}(t) dt$$

H. Kamata et al., Japan. J. Appl. Phys. 48, 04C149 (2009). T. Fujisawa et al., AIP Conf. Proc. 1399, 269 (2011).

TEC

N (= 50) cycles on M (= 100) pair IDT

SAW packet bouncing between BRs

ΤΟΚΥΟ ΤΕCH

Pursuing Excellence

SAW packet bouncing between BRs

ΓΟΚΥΟ ΤΙΕΕΙ

Piezoelectric potential wave

ΓΟΚΥΟ ΤΕΕ

Bragg reflection spectrum : Band gap in the IDT

Multiple cavity modes

ΤΟΚΥΟ ΤΕΕΙ

Single-mode SAW cavity

TOKYO TIEC

Pursuing Excelle

Narrow gap for a single cavity mode
Only one excitation electrode

Ti/Au: 40 nm $\lambda = 0.8$ um

Single-mode SAW cavity

Spatial distribution

The signal is normalized by the crosstalk.

Standing wave

ΤΟΚΥΟ ΤΙΕΕΙ

Pursuing Excellen

SAW Cavity spectra

ΤΟΚΥΟ ΤΕCH

Pursuing Excellence

Cavity finesse: F

Phonon bandgap: $\Delta f_{BR} / f_0 \sim 3.5\%$

Cavity resonant width: $\Delta f_{cav} / f_0 \sim 0.042\%$

Q value: Q = 2400

Finesse: $F = \Delta f_{BR} / \Delta f_{cav} \sim 80$

Resonant frequency: $f_0 = 3222.5 \text{ MHz}$

Phonon energy: $hf_0 = 13 \ \mu eV$

Phonon number: $n = 0.0005 (20 \text{mK}) \sim 0.05 (50 \text{mK})$ (thermal) in a dilution refrigerator

CONTENTS

Phonon environment for quantum dots Prospect for cavity Quantum Acoustics

SAW Phonon cavity Device design Phononic bandgap in a Bragg reflector Localized cavity modes

Transition between electronic states in a DQD Phonon assisted tunneling Spin-flip phonon assisted tunneling Rabi splitting induced by the cavity mode SAW

Inelastic tunneling spectroscopy in a DQD

KYD

TECH

Phonon resonance

ΓΟΚΥΟ

TEC

IDT + SAW device

ΤΟΚΥΟ ΤΙΕΕΗ

Phonon assisted tunneling

ΓΟΚΥΟ ΤΙΕΕΙ

DQD in a SAW phonon cavity

TOKYO TIECI

Pursuing Excellenc

(charge or spin qubit)

Phonon assisted tunneling

8.5

7.5

6.7

5.8

4.9

4.3

3.3

2.5

1.65

Photon vs phonon assisted tunneling

J.C.H. Chen et al., 5, 15176 (2015).

OKYO TIEC

Spin-flip phonon assisted tunneling

in the Pauli spin blockade regime

rokyo tieci

Spin-flip Phonon assisted tunneling

> Inhomogeneous nuclear spin polarization and Spin-orbit coupling

Zero-field Pauli spin blockade

Pauli spin blockade

B = 0.2 T

Spin blockade with hyperfine coupling

ΓΟΚΥΟ ΤΙΕΓΗ

Spin-flip phonon assisted tunneling

offset vertically for clarity

Y. Sato et at., in preparation.

ΓΟΚΥΟ ΤΙΕΕΙ

Floquet quasi-eigenstates

ΓΟΚΥΟ ΤΙΕΕ

PAT peak shift

ΤΟΚΥΟ ΤΙΕΕΗ

Pursuing Excellence

the Rabi splitting.

Numerical calculations

Floquet – Lindblad master equation $\frac{d}{dt}\rho = \mathcal{L}[\rho] = M(t)\rho$ $H(t) = H_0 + H_1 \cos \omega t$ Coupling to the leads Cotunneling spin exchange with the leads Dissipation phonon emission Dephasing

ΤΟΚΥΟ ΤΙΕΓ

The quasi-steady state can be obtained by solving

$$\rho_0(t) = \rho_0(t+T)$$
$$= \exp\left[\int_0^T M(t) dt\right] \rho_0(t)$$

Numerical calculations

TOKYO TIECH

Phonons or photons

Phonons (only at the resonant frequency) + Photons (electrostatic cross talk)

 $V_{\rm C} = -0.460 \, {\rm V}$ f = 3222.5 MHzon resonance $B_{\text{ext}} = 0$ V_{IDT} (mV) 2.0Current 50 fA -hf 0 + hf1 mV VPR

- on resonance photon + phonons

ΤΟΚΥΟ ΤΕΕ

- off resonance photon

The Rabi splitting

ΤΟΚ

Maximum Rabi splitting under an intense SAW field

$$\Delta_1 = 2t_c J_1(\alpha)$$

$$\Delta_{1,\max} \approx 1.2t_c \text{ (at } \alpha \approx 1.9)$$

~5 µeV (1.2 GHz)

Vacuum Rabi splitting (crude estimate)

Vacuum fluctuation
in the detunig
$$\tilde{\varepsilon} = \frac{1}{\pi} \sqrt{\frac{\lambda^2 K^2 \hbar \omega}{\varepsilon_r \varepsilon_0 V}} \sin\left(\frac{\pi d}{\lambda}\right) \exp\left(\frac{-z}{\delta}\right)$$

Mode volume

$$V = D \times L \times W \sim 1\lambda \times 30\lambda \times 50\lambda = 1500\lambda^3$$

Vacuum Rabi splitting

$$\Delta_{1,\text{vac}} \sim 0.03 \ \mu\text{eV} (7 \text{ MHz})$$

SUMMARY

Phonon environment for quantum dots Prospect for cavity Quantum Acoustics

SAW Phonon cavity Device design Phononic bandgap in a Bragg reflector Localized cavity modes

Transition between electronic states in a DQD Phonon assisted tunneling Spin-flip phonon assisted tunneling Rabi splitting induced by the cavity mode SAW