

Electron-Phonon Interaction in Nanoelectronic Circuits toward the control of single phonons

Stefan Ludwig

Paul-Drude-Institut, Berlin, Germany

Heisenberg-Programm

Phonon meets Electron

• electron-phonon interaction in 2D, one electron at a time...

• influence of confinement in nanostructures

• coherent electron-phonon interaction

• control of single phonons ?

introduction – samples

Werner Wegscheider *wafers* (*a*) ETH Zürich

electron-phonon interaction in 2D; one electron at a time...

electron energy in real space

& in k-space

energy transfer:
$$\epsilon = \hbar^2 / 2m \left(\vec{k}_i^2 - \vec{k}_f^2 \right)$$

momentum transfer: $\vec{k}_f - \vec{k}_i = \vec{q}$

phonon dispersion: $\epsilon = \hbar |\vec{q}| v_{\rm ph}$

* D. Taubert et al.: Phys. Rev. B 82, 161416(R) (2010) Phys. Rev. B 83, 235404 (2011) J. Appl. Phys. 109, 102412 (2011) [†] Schinner et al.: Phys. Rev. Lett. **102**, 186801 (2009)

design of an electron-phonon scattering (in 2D) experiment

(9)

 $\sim 2\,\mu{\rm m}$

(11)

electron back scattering → *maximum momentum & energy transfer*

 \rightarrow phonon mediated current only for detector barrier hight $< E_{\rm F} + E_{\rm max}$

Georg Schinner

Schinner et al., Phys. Rev. Lett. 102, 186801 (2009)

(14)

$$E_{\rm max} \simeq \hbar 2 k_{\rm F} v_{\rm s}^{\rm max}$$

... and in nanostructures ?

S

a

 $V_{\rm R}$

m

 $V_{\rm L}$

how is the electron-phonon interaction affected, if the phonon wavelength is comparable to the structure size ?

(1) enhanced electron phone phone (1) enhanced electron and phonon wave functions matters (2) relative phase between electron and phonon wave functions matters

phonon emission in a double quantum dot (DQD)

phonon dispersion: $\epsilon = \hbar |\vec{q}| v_{\rm ph}$

early proposals related to coherent electron-phonon interaction in solids:

A. Miller and **E. Abrahams**, Phys. Rev. 120, 745 (1960) [*phonons induced electron hopping between impurities*]

J. Imry, Tunneling in Solids, Chap. 36. Proc. 1967 NATO Advanced Study Institute. New York, Plenum: 563 (1969)

[very general, tunneling involving defects in solids]

determine electron-phonon coupling from decoherence

•••• experiment

— theory

Forster et al.: Phys. Rev. Lett. 112, 116803 (2014)

coherence time of our two-electron [undriven] charge qubit

$$T_2^{-1} = \frac{\pi \alpha_{\mathbb{Z}}}{\hbar} \left(\frac{2\bar{\epsilon}^2}{E^2} + \frac{\Delta^2}{2E} \coth\left(\frac{E}{2k_{\rm B}T}\right) \right); \quad E = \sqrt{\Delta^2 + \bar{\epsilon}^2}$$

Forster et al.: Phys. Rev. Lett. 112, 116803 (2014)

early proposals related to coherent electron-phonon interaction in solids:

A. Miller and **E. Abrahams**, Phys. Rev. 120, 745 (1960) [*phonons induced electron hopping between impurities*]

J. Imry, Tunneling in Solids, Chap. 36. Proc. 1967 NATO Advanced Study Institute. New York, Plenum: 563 (1969)

[very general, tunneling involving defects in solids]

coherent phonon emission in a DQD

T. Fujisawa, et al., Science 282, 932–935 (1998): *Spontaneous emission spectrum in double quantum dot devices.*

theory: T. Brandes, Physics Reports 408, 315 – 474 (2005): *Coherent and collective quantum optical effects in mesoscopic systems.*

Fermi's golden rule:

period of interference pattern:

$$\vec{d}\cdot\vec{q}\equiv N2\pi\,\Rightarrow\,$$

$$\Delta \epsilon = 2\pi \, \hbar v_{\rm ph} \frac{|\vec{q}|}{\vec{d} \cdot \vec{q}}$$

using energy conservation: $\epsilon = \hbar |\vec{q}| v_{\rm ph}$

- phonon wavelengths are typically in the order or smaller than the distance of QDs
- photon wavelengths are much longer $\Rightarrow \Delta \varphi_{\text{photon}} = 0$
- here: phonon mediated interaction

coherent phonon emission in a DQD

T. Fujisawa, et al., Science 282, 932–935 (1998): *Spontaneous emission spectrum in double quantum dot devices.*

P. Roulleau, et al., Nat Commun 2 (2011): *Coherent electron–phonon coupling in tailored quantum systems*.

<u>observation</u>: the non-equilibrium current through a double QD oscillates as a function of energy detuning ε , i.e. the energy of the **emitted phonons**.

theory: T. Brandes, Physics Reports 408, 315 – 474 (2005): *Coherent and collective quantum optical effects in mesoscopic systems.*

can we do the same for phonon absorption ?

phonon source

phonon detector

phonon driven current through a DQD (quantum ratchet)

quantum point contact (QPC) as phonon source

quantum point contact (QPC) as phonon source

transmission: $0 < T \ll 1 \Rightarrow$ local charge fluctuations

our model (Aash Clerk):

- standard scattering theory
 ⇒ charge noise spectrum of the QPC.
- link the QPCs charge noise to its phonon emission spectrum (using **Keldysh Green functions** of the acoustic phonons to first order in the electron-phonon coupling to the QPC).

Nature Phys. 8, 522 (2012)

Aashish Clerk theory @ McGill, Canada

coherent phonon absorption in a DQD

Fermi's golden rule:

our model (Aash Clerk):

- Golden rule rates for electron-phonon interaction in the double QD (only piezoelectric coupling) [as in *].
- **standard elasticity theory** [as in ******] but in addition account for **anisotropy of** sound velocities and polarizations, include **screening effects**

* T. Brandes & B. Kramer: Physical Review Letters 83, 3021 (1999).
** K. Jasiukiewicz: Semicond. Sci. Technol. 13, 537 (1998).

Nature Phys. 8, 522 (2012)

sensitive measurement of phonon absorption: QPC as charge detector ...

Daniela Taubert

measured is the transconductance:
$$\frac{\mathrm{d}I_{\mathrm{QPC}}}{\mathrm{d}V_{\mathrm{L}}}$$
 (a.u.)

proportional to changes of the the steady state occupation of the DQD

... to measure the steady state occupation of the DQD

QPC charge detector:

- is a voltage biased 1D-tunnel barrier
- acts as a broad band phonon emitter
- re-absorption of phonons at the DQD cause detector backaction

(38)

<u>literature</u>: Khrapay et al.: PRL **97**, 176803 (2006); Schinner et al.: PRL **102**, 186801 (2009); Harbusch et al.: PRL **104**, 196801 (2010); Prokudina et al.: PRB **82**, 201310(R) (2010)

same effect observed in a triple quantum dot

data from Andy Sachrajda's group, NRC Canada

Nature Phys. 8, 522 (2012)

ground state

intermediate state

metastable state

ground state

intermediate state

metastable state

our model (Aash Clerk):

• master equation approach considering the three relevant double QD states.

- constructive interference:
- destructive interference:

considerable occupation of excited configuration (0,0) ground state configuration (0,1) is always occupied

• the intermediate state (1,0) is short living and does not contribute to the detector signal

(44)

reproducable beating patterns

contributions of different phonon modes including deformation potential and piezoelectric coupling...

most relevant acoustic phonon modes

acoustic phonons in GaAs:

phonon focusing
(radius ∝ emission strength)

calculated after: J.S. Blakemore, Appl. Phys. 53, R123 (1982)

model calculations for different geometries

geometry of back action region

maximum triangle size as a function of V_{SD}

coupled quantum dots as single-phonon detector

• we can tune ε and, hence, measure the phonon spectrum

• we are sensitive to different phonon modes

SUMMARY-OUTLOOK

- electron-phonon interaction is relevant in non-equilibrium mesoscopic circuits
- coherent electron-phonon coupling is accessible
- can we control single phonons ?

Phys. Rev. Lett. **102**, 186801 (2009) Phys. Rev. Lett. **112**, 116803 (2014) Nature Phys. **8**, 522 (2012)