Quantum magnonics with a macroscopic ferromagnetic sphere

Yasunobu Nakamura

Superconducting Quantum Electronics Team Center for Emergent Matter Science (CEMS), RIKEN

Research Center for Advanced Science and Technology (RCAST), The University of Tokyo

Quantum Information Physics & Engineering Lab @ UTokyo

The magnonists

Ryosuke Mori

Seiichiro Ishino

Dany Lachance-Quirion (Sherbrooke)

Alto Osada

Koji Usami

Ryusuke Hisatomi

Quantum mechanics in macroscopic scale

Quantum state control of collective excitation modes in solids

- Spatially-extended rigid mode
- Large transition moment

Superconducting qubit – nonlinear resonator

Quantum interface between microwave and light

- Quantum repeater
- Quantum computing network

Hybrid quantum systems

Superconducting quantum electronics

Quantum magnonics

Hybrid with paramagnetic spin ensembles

Spin ensemble of NV-centers in diamond

Kubo et al. PRL 107, 220501 (2011). CEA Saclay R. Amsüss et al. PRL 107 060502 (2011). TUWien Zhu et al. Nature 478, 221 (2011). (NTT) Saito et al. Phys. Rev. Lett. 111, 107008 (2013). (NTT)

Rare-earth doped crystal

Er:Y₂SiO₅

 $Pr:Y_2SiO_5$

Bushev et al. PRB 84, 060501(R) (2011) Karlsruhe

Hedges et al. Nature 465, 1052 (2010) Otago

Hybrid with ferromagnetic magnons

<u>Paramagnet</u>

Low spin density 10¹²-10¹⁸ cm⁻³ Spatial mode defined by EM fields

Optical Light

Microwave

Ferromagnet

High spin density 10²¹-10²² cm⁻³ Robust extended spatial mode

Optical Light

Microwave

Two coupled spins

$$H = -g\mu_{\rm B}B_z S_z - 2J\mathbf{S}_1 \cdot \mathbf{S}_2$$

$$B_z = 0, \ J = 0 \qquad \qquad |\uparrow\uparrow\rangle \quad |\uparrow\downarrow\rangle \quad |\downarrow\uparrow\rangle \quad |\downarrow\downarrow\rangle$$

$$B_{z} \neq 0, \ J = 0 \qquad |\uparrow\uparrow\rangle - - - |\downarrow\uparrow\rangle$$

$$\hbar\omega_{Z} = g\mu_{B}B_{z} \uparrow |\uparrow\downarrow\rangle - - - |\downarrow\uparrow\rangle$$

$$|\downarrow\downarrow\rangle - - - - |\downarrow\uparrow\rangle$$

$$B_{z} \neq 0, \ J \neq 0$$

$$2\text{-magnon} \qquad |\uparrow\uparrow\rangle \longrightarrow \qquad 1^{j} \downarrow^{j} \downarrow^$$

k = 0

cf. Dicke, Phys. Rev. 93, 99 (1954)

Yttrium Iron Garnet (YIG)

- Ferrimagnetic insulator
- Narrow FMR line
- Transparent at infrared
- High Curie temperature: ~550 K
- Large spin density: 2.1×10²² cm⁻³

Hybrid with ferromagnet magnons

Experimental setup

S. Ishino

Experimental setup

Magnetic-field dependence

Low temperature ~ 10 mK; [] 1 thermal magnon & photon Microwave power: ~ 0.9 photons in cavity

0.5-mm sphere

Y. Tabuchi et al. PRL 113, 083603 (2014)

Coupling strength and cooperativity

Sphere-size dependence of coupling strength

$$g_{\rm m} = g_0 \sqrt{N}$$

 $d = 1 \,\mathrm{mm}$ $N = 1.1 \times 10^{19} \,\mathrm{spins}$

$$\implies g_0/2\pi = 39 \,\mathrm{mHz}$$

Coupling strength per spin

Estimation from vacuum fluctuation amplitude

$$g_0/2\pi = g\mu_{\rm B}B_{\rm vac}/2\pi\hbar \sim 38\,{\rm mHz}$$

$$B_{\rm vac} = \sqrt{\frac{\mu_0 \hbar \omega_{\rm r}}{2V_{\rm r}}} \sim 10 \,{\rm nG}$$

Y. Tabuchi et al. PRL 113, 083603 (2014)

Magnon linewidth vs. temperature

M. Sparks, Ferromagnetic-Relaxation Theory (1964); Data: E. G. Spencer et. al. Phys. Rev. Lett. 3, 32 (1959).

Magnon linewidth vs. temperature

cf. superconducting resonator, Martinis 2005 glass physics, Hunklinger ~1980

Theory: J. H. Van Vleck, J. Appl. Phys. 35, 882 (1964).

Coupling with a superconducting qubit

Inside the cavity

Qubit-magnon coupling

Qubit-magnon coupling mediated by virtual photon excitation in cavity

 $\hat{\mathcal{H}}_{q-m}/\hbar \sim g_{q-m} \left(\hat{a}_{m}^{\dagger} \hat{\sigma_{-}} + \hat{a}_{m} \hat{\sigma_{+}} \right)$

$$g_{\text{q-m}}/\hbar = \frac{g_{\text{q}}g_{\text{m}}}{\omega_{\text{c}} - \omega_{\text{q}}}$$

~ 10-50 MHz

Vacuum Rabi splitting

Y. Tabuchi et al. Science 349, 405 (2015)

Vacuum Rabi oscillations

Y. Tabuchi et al. unpublished

Magnon-number-resolving spectroscopy

D. Lachance-Quirion et al. unpublished

(Quantum) optomagnonics

Optical detection of magnon excitations

Optical detection of magnon excitations

Optical detection of magnon excitations

Coherent microwave generation via magnon Brillouin scattering

R. Hisatomi et al. arXiv:1601.03908; to appear in PRA

Cavity optomagnonics

See also J. A. Haigh et al. PRA 92, 063845 (Cambridge) X. Zhang et al. arXiv:1510.03545 (Yale) Coupling to whispering gallery mode

Loop Coil

YIG (750µm)

Nanofibe

Photonic chiral modes

Chirality in WGM

Junge et al. PRL 110, 213604 (2013) TUWien

Chiral nanophotonic waveguide

Beyond paraxial approximation

div
$$E = \partial_{\perp} E_{\perp} + \partial_z E_z = 0$$

 $\partial_{\perp} E_{\perp} = -ikE_z$ =0 for plane wave

Spin–orbit interactions of light

Review: K. Y. Bliokh et al. Nat. Photo. 9, 796 (2015)

Non-reciprocal sideband generation

A. Osada et al. arXiv:1510.01837; to appear in PRL

Non-reciprocal sideband generation

A. Osada et al. arXiv:1510.01837; to appear in PRL

Role of geometric birefringence

Microwave-light conversion via electro-optical WGM resonator

Conversion efficiency $\sim 10^{-3}$

A. Rueda et al. arXiv:1601.07261 (Erlangen)

Model

$$n_{\rm TM}^{\rm (out)} = g^2 \frac{\kappa_{\rm TE}}{\Delta_{\rm TE}^2 + (\Gamma_{\rm TE}/2)^2} \frac{\kappa_{\rm TM}}{\Delta_{\rm TM}^2 + (\Gamma_{\rm TM}/2)^2} \frac{\kappa_{\rm m}}{\Delta_{\rm m}^2 + (\Gamma_{\rm m}/2)^2} n_{\rm TE}^{\rm (in)} n_{\rm MW}^{\rm (in)}$$

Possible optimization

$$n_{\rm TM}^{\rm (out)} = g^2 \frac{\kappa_{\rm TE}}{\Delta_{\rm TE}^2 + (\Gamma_{\rm TE}/2)^2} \frac{\kappa_{\rm TM}}{\Delta_{\rm TM}^2 + (\Gamma_{\rm TM}/2)^2} \frac{\kappa_{\rm m}}{\Delta_{\rm m}^2 + (\Gamma_{\rm m}/2)^2} n_{\rm TE}^{\rm (in)} n_{\rm MW}^{\rm (in)}$$

- Set all detuning to zero, Ω_{TM} - Ω_{TE} - Ω_{m} =0 x7000
- Make a better cavity
- Reduce sample volume
- ➔ Conversion efficiency ~ 1 × 10⁻³

+Larger g \propto Verdet const.

x3500

x100

Conclusions

Quantum magnonics with ferromagnet

- Strong coupling with superconducting qubit
- Vacuum Rabi oscillations
- Magnon-number-resolving spectroscopy

Optomagnonics

- Microwave-light conversion
- Cavity optomagnonics with WGM

In progress

- Manipulation and measurement of non-classical states of magnon mode
- Optimization of optical coupling
- ErIG instead of YIG

Optical transitions in Yttrium and Erbium iron garnet

Optical absorption of REIG

Wood and Remeika, JAP 38, 1038 (1967) Bell Lab

Faraday rotation in ErIG

