### Control of excitons and exciton-polariton condensates in acoustic lattices

P. V. Santos









German-Israeli Foundation for Scientific Research and Development

DAAD Benesher Akademiseder Austrages Dievest

... device inspiring research

Spice Workshop on Quantum Acoustics, Mainz, May 17, 2016

## **Collaborations**

### PDI

- A. Violante
- C. Hubert
- S. Lazic

- Hebrew Univ. of Jerusalem
  - K. Cohen, R. Rapaport
- Univ. Autonoma Madrid
  - S. Lazic

excitons

- Institut Néel, Grenoble
  - C. Bauerle

## האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem







J. Buller 

## Univ. of Sheffield (UK) polaritons

- D. Krizhanovskii, M. Sich, D. Sarkar, S.S. Gavrilov (Chernogolovka), M. Skolnick
- Univ. Autonoma San Luis Potosi, Mexico
  - E. Cerda, R. Balderas





- Samples
  - K. Biermann
  - M. Höricke

- SAW technology
  - W. Seidel, B. Drescher, S. Rauwerding
  - S. Krauss, A. Tahraoui

# Outline

- Surface acoustic waves
  - modulation of the semiconductor band structure
  - tunable acoustic lattices
- Acoustic exciton transport
  - indirect excitons (IXs)
  - IX transport dynamics

- Polariton modulation
  - tunable polaritonic crystals
  - control of polariton condensates









- Dynamic acoustic fields in nanostructures
  - spatial dependence: lateral pattering without interfaces
    - penetration depth ( $\mu$ m) comparable to thickness of planar structures
  - time dependence: dynamic control
  - mobile character: transport with well-defined velocity v<sub>SAW</sub>

## **Modulation mechanisms**



strain field

### type I band gap mod.



dimensions

#### deformation pot. modulation

- band gap modulation
- refractive index modulation

### exciton confinement/transport

IX trapping and transport

•  $\mu_X \delta E_g / \delta x > v_{SAW}$ 

## **Modulation mechanisms**



#### deformation pot. modulation

- band gap modulation
- refractive index modulation
  - photon manipulation

piezoelectric potential  $\Phi_{SAW}$ 

- electrical generation
- IX dissociation and e-h transport •  $\mu E_x = \mu \delta \Phi_{SAW} / \delta x > v_{SAW}$



# Outline

- Surface acoustic waves
  - modulation of the semiconductor band structure
  - tunable acoustic lattices
- Acoustic exciton transport
  - indirect excitons (IXs)
  - IX transport dynamics

- Polariton modulation
  - tunable polaritonic crystals
  - control of polariton condensates







### **Acoustic exciton transport**



Acoustically driven flying excitons: interface to photons!



## Indirect exciton

- electrically controlled coupling to photons
  - coherent manipulation
  - coherent spin control
    - Iong lifetimes<sup>1</sup>
    - control of spin-orbit (so) interaction<sup>2,3</sup>
- strong nonlinearities
  - electric dipolar (p) interactions: devices
  - confinement: single-excitons
    - Schinner et al., PRL 110, 127403 (2013)
- bosonic character
  - exciton condensates<sup>4,5</sup>

1 Kowalik-Seidl et al., Appl. Phys. Lett. 97, 11104 (10) 2 Larionov and Golub, Phys. Rev. B78,033302 (08) 3 Leonard et al., Nano Lett. 9, 4204 (09)









### IX motion-based functionalities neutral particles!

- Electrostatic gates
  - exciton transistor EXOT
    - T: 10 to >100K



A. A. High et al., Science 321, 229-231 (2008)

C3

- Transport by field gradients
  - approx 50 μm



Transport conveyers conveyer on connecting electrodes conveyer electrodes electrostatic A. G. Winbow et al., PRL 106 V<sub>2</sub> 196806 (2011) 30 μm Laser . 500 um acoustic moving strain fields 1000 μm





k



A. Violante, R. Hey, and P. V. Santos, Phys. Rev. B 91, 125302 (15)

15

## **Experimental setup**

semitransparent SAW along x=[100] electrode (STE) G piezo ZnO • non-piezoelectric,  $\lambda_{SAW} = 2.8 \mu m$  piezo ZnO-layer for generation semitransparent top gate: V<sub>g</sub>
control of exciton lifetime SAW [100] ۷g  $QW_2$ 



Detection: photoluminescence (PL)

- **T: 2-4 K**
- laser focused on spot G
- spatially resolved PL along SAW path

### Acoustic transport of indirect excitons





- Spectrally resolved PL
  - recombination at edge of STE
  - transport distances ~ 500 μm
    - limited by channel length
  - transport efficiency ~ 50 %

Lazic et al., Phys. Rev. B89, 085313 (14)



Violante et al., New J. Phys. 16, 033055 (14)



Time (ns)



A. Violante, K. Cohen, S. Lazic, R. Hey, R. Rapaport, and P. V. Santos, New J. Phys. 16, 033055 (14)

### **Acoustic exciton transistor**



### electrostatic control of acoustic IX transport

Lazic et al., Phys. Rev. B89, 085313 (14)

### **Control of the flow direction: DQDs**

![](_page_20_Figure_1.jpeg)

![](_page_20_Picture_2.jpeg)

*Blue regions:* areas under compressive strain *Red regions:* areas under tensile strain → reduced bandgap: *IX* confinement

Lazic et al., Phys. Rev. B89, 085313 (14)

![](_page_20_Figure_5.jpeg)

 $\checkmark$  interference of two orthogonal SAW beams

→ moving and tunable potential dots for IX storage and transport

A. Govorov et al., PRL 87, 226803 (2001) S. Lazić et al., Physica E 42, 2640 (2009)

## Interferometric mapping

![](_page_21_Figure_1.jpeg)

Lazic et al., Phys. Rev. B89, 085313 (14)

### IX multiplexer (EXAM) – switching direction

![](_page_22_Figure_1.jpeg)

Lazic et al., Phys. Rev. B89, 085313 (14)

### **EXAM – electrostatic switching (EXAT)**

![](_page_23_Figure_1.jpeg)

 $\rightarrow$  isolation of I/O ports

Lazic et al., Phys. Rev. B89, 085313 (14)

EXAM

- channel width: 50 μm
  - defined by SAW beam width
- Iong transport IX distances
  - ~1 mm: lifetime > 330 ns
  - SAW clock: synchronization!
- scalable!
  - dimensions~√#ports
  - planar fabrication

#### PL image of transport channel

![](_page_23_Figure_14.jpeg)

## Acoustic spin transport

![](_page_24_Figure_1.jpeg)

#### **Few/single IX transport** Few/single IX manipulation SAW small traps for IX confinement Energy small SAW wavelengths Iateral IX-IX interactions **`**ħω<sub>ιx</sub> short IX interaction range light light V<sub>control</sub> RF SAW gd G g<sub>d</sub> g channel IX IX

Cohen, Rapaport, Santos, PRL106, 126402 (11)

collaboration: Neel Institute

# Outline

- Surface acoustic waves
  - modulation of the semiconductor band structure
  - tunable acoustic lattices
- Acoustic exciton transport
  - indirect excitons (IXs)
  - IX transport dynamics

- Polariton modulation
  - tunable polaritonic crystals
  - control of polariton condensates

![](_page_26_Figure_10.jpeg)

![](_page_26_Figure_11.jpeg)

![](_page_26_Figure_12.jpeg)

### **Exciton-polaritons in microcavities**

![](_page_27_Figure_1.jpeg)

Weisbuch, C.; Nishioka, M.; Ishikawa, A. & Arakawa, Y. *Phys. Rev. Lett.*, **1992**, 69, 3314

![](_page_27_Picture_3.jpeg)

- Excitons in a microcavity
  - strong coupling to photons
    - exciton polaritons:
      - matter-wave particles
      - short (sub-ns) lifetimes: photon loss

## **Exciton polaritons properties**

- Microcavity (MC) polaritons QW excitons + MC photons
- Properties
  - very small mass
    - $m_p \sim 10^{-4} 10^{-5} m_e$
    - long de Broglie wavelength (μm)
      - spatial coherence:  $\lambda_{B} > \lambda_{SAW}$
  - bosonic character: condensation
    - non-equilibrium
    - densities  $n_{Cond} > \lambda_B^{-2}$ 
      - temporal coherence

### macroscopic quantum phases!

![](_page_28_Figure_13.jpeg)

![](_page_28_Picture_14.jpeg)

## **Tunable modulation**

![](_page_29_Figure_1.jpeg)

**Realizations:** 

Cold atom condensates + lasers

Exciton-polariton condensates + SAWs

![](_page_29_Picture_5.jpeg)

#### **Tunable strain modulation** SAW mirror SAW IDT rf• ₹ 0 photon > exciton AlGaAs, mirror QW X **Photonic modulation: Excitonic modulation:** *Microcavity* type I bandgap due to refractive index (n<sub>c</sub>) SAW strain • strain $(\varepsilon_{zz}) \rightarrow$ thickness $(d_c)$ In phase! Deformation potential mechanic > elasto-optic SAW CB VB d ► X

M. M. de Lima et al. Phys. Rev. Lett. 97, 045501 (2006); M. M. de Lima, Jr. and P. V. Santos, Rep. Prog. Phys. 68, 1639 (2005). 3

## **SAW propagation: simulations**

- SAW wavelength  $\lambda_{SAW}$ =8  $\mu$ m
- SAW frequency f<sub>SAW</sub>=0.37 GHz

![](_page_31_Figure_3.jpeg)

GetDP/gmsh, www.onelab.info

![](_page_32_Figure_0.jpeg)

M. M. Lima Jr., et al., Phys. Rev. Lett. 97, 045501 (06) 33

#### **Polariton dispersion Collected PL** k<sub>∥</sub> Increasing P<sub>RF</sub> Non-piezoe $E_x = 0$ Laser || [0 (low power) Sample V () 1.535 (e) (a) SAW **ZnO** Piezo GaAs || [100 ] x4 x2 **Piezoelectric SAW** -1 -1 0 0 k<sub>II</sub>/k<sub>SAW</sub> **k**<sub>II</sub>/**k**<sub>SAW</sub>

E. Cerda et al., Superlattices and Microstruct.49, 233 (11)

### **Polariton in a square lattices**

![](_page_34_Picture_1.jpeg)

![](_page_34_Figure_2.jpeg)

### **Polariton condensate in a square lattices**

![](_page_35_Figure_1.jpeg)

36

## Imaging dot condensates

- Square lattice: 8 μm
- Time-resolved PL

![](_page_36_Picture_3.jpeg)

- homogeneity
  - gaussian laser profile
- no transport of coherence!
  - condensate coherence time (~150 ps) << SAW period (3 ns)

![](_page_36_Picture_8.jpeg)

![](_page_37_Figure_0.jpeg)

### **Coherence control**

![](_page_38_Figure_1.jpeg)

E. Cerda et al., NJP14 075011 (12)

## **Summary and outlook**

- Acoustic manipulation of excitonic structures
  - storage and long-range transport of excitons as well-defined packets
  - optical control of microcavity polaritons
    - tunable photonic/polaritonic crystal
    - control coherence length

### Future perspectives

- single IX transport
- polariton condensates
  - explore analogy with atomic optical lattices
    - Josephson oscillations, polariton blockade
- IX-polariton interconversion

![](_page_39_Picture_12.jpeg)

Laser

![](_page_39_Picture_13.jpeg)

#### Shahnazaryan, PRB91, 85302 (15) Szymanska, Science 336, 679 (12)

### **SAW-modulated excitons**

![](_page_40_Figure_2.jpeg)

### Polaritons

- strong coupling to photons
- controllable coherence in acoustic lattices

Indirect excitons

A

Electron

Hole

electric field

- Iong lifetimes
- long-range transport by SAWs

Large electric field

### Interconversion: polariton $\leftrightarrow$ IX

![](_page_40_Picture_11.jpeg)

Indirect exciton