3D microwave optomechanical cavities

Mingyun Yuan

Vibhor Singh, Yaroslav Blanter, Martijn Cohen, Shun Yanai, Gary Steele Kavli Institute of Nanoscience, TU Delft

Motivation

‣ *Quantum*

Is quantum mechanics compatible with large, massive structures?

Nano- or micro-mechanical resonator

Cavity optomechanics

∆*x*

To measure mechanical motion

To create and control mechanical motion

light field

Landmarks

Teufel *et al., Nature 2011* 7.5 GHz; 10.6 MHz

$\overline{}$ Thermal of the control of t al.. Nature 20 195 THz; 3.68 GHz Chan *et al., Nature 2011*

New optomechanical system: SiN membrane in 3d cavity

3D cavity and SiN membrane

 22 m

Al cavity, Q>100,000

SiN membrane, Q>1,000,000

Sample preparation

sapphire substrate E-beam evaporated Al PECVD SiN Al coated membrane

1 mm Membrane window zoom-in

Coupling scheme

Cavity frequency shift: $G =$ $\partial \omega_0$ ∂C_m ∂C_m ∂*x*

Measurement setup

High Q 3d microwave cavity

Reflection coefficient of membrane-embedded cavity

Thermal motion of the membrane

Al coating: enabling electrical measurement while preserving ultrahigh Q.

Optomechanical coupling

. coupling extracted with OMIT

$$
C=\frac{4g_0^2}{\kappa \Gamma_m}n_d
$$

driving photon numbers Delft
University of $\mathbf{\Omega}$

Near-ground state cooling of the mm-scale membrane

Sideband cooling

For $T=13$ mK, initial occupancy $n_0 = 2200$ Occupancy with cooling $n_m =$ $\frac{1}{\sqrt{2}}$ $2 \cdot 2 \cdot 1$ 6 $\frac{1}{2}$ **DAI** fit, $\mathcal{L}_{\mathcal{A}}$ n_0 $C + 1$ Thermal occupancy $n_m =$ 1 $e^{\hbar \omega_m/k_B T} - 1$

$$
C_{max} = 10^5 \gg 10^3
$$

Measurement of cooling

Area under the curve is reduced.

UDe

Occupancy of the membrane

Minimum occupancy:

$$
n_m=5
$$

$$
T_m=34\mu K
$$

Yuan et al., Nat. Commun. 2015

High mechanical Q of SiN membranes at mK

Q factor and mechanical quantum state

$$
\fbox{ higher Q} \xrightarrow{\leftarrow} \fbox{less energy loss}
$$

- ‣ Preparation and measurement of mechanical quantum superposition state:
	- Prerequisite: deep ground state cooling
		- Cooling ability ∝ *Q*
	- Longer state lifetime

Overview: silicon nitride resonators

Nanostrings: 10⁶ Cornell, JAP 2006

Beams: 10⁵ Munich, Nature

2009 Red Manuel Trampolines: 10⁵ UCSB/Leiden, OE 2011 Sankey group, McGill; Groeblacher group, Delft: 107

Lower temperature?

Membranes: 10^7 , $(0.3 K)$ **Yale, APL 2007**

Measurement of mechanical Q

Methods: spectral & ringdown

21

Optomechanical ringdown \sim \sim \sim \sim \sim \sim \sim

Results

Temperature dependence

127 million: record high

Yuan et al., APL 2015 24

More modes

High Q vs. low Q modes

Dev II

Conclusion

- ‣ Optomechanical system with 3d cavity and SiN membrane
- ‣ Large cooperativity that enables cooling close to ground state
- ‣ Temperature dependence of Q below 200 mK; Q exceeding 10° at 14 mK 8
- ‣ Potentials for hybrid devices

Members

Vibhor Singh Yaroslav Blanter

Martijn Cohen

Gary Steele

Shun Yanai

一、神社

This project is funded by FOM and NWO.

 $\sqrt{4}$

