3D microwave optomechanical cavities

Mingyun Yuan

Vibhor Singh, Yaroslav Blanter, Martijn Cohen, Shun Yanai, Gary Steele Kavli Institute of Nanoscience, TU Delft

Motivation

Quantum

Is quantum mechanics compatible with large, massive structures?

Nano- or micro-mechanical resonator

Cavity optomechanics

To measure mechanical motion

To create and control mechanical motion

light field

Landmarks

Teufel *et al., Nature 2011* 7.5 GHz; 10.6 MHz

Chan *et al., Nature 2011* 195 THz; 3.68 GHz

New optomechanical system: SiN membrane in 3d cavity

3D cavity and SiN membrane

22 m

AI cavity, Q>100,000

SiN membrane, Q>1,000,000

Sample preparation

Al coated membrane PECVD SiN E-beam evaporated Al sapphire substrate

Membrane window zoom-in

Coupling scheme

Cavity frequency shift: $G = \frac{\partial \omega_0}{\partial C_m} \frac{\partial C_m}{\partial x}$

Measurement setup

High Q 3d microwave cavity

Reflection coefficient of membrane-embedded cavity

Thermal motion of the membrane

Al coating: enabling electrical measurement while preserving ultrahigh Q.

Optomechanical coupling

coupling extracted with OMIT

$$C = \frac{4g_0^2}{\kappa \Gamma_m} n_d$$

driving photon numbers

Near-ground state cooling of the mm-scale membrane

Sideband cooling

Thermal occupancy $n_m = \frac{1}{e^{\hbar \omega_m / k_B T} - 1}$ For *T*=13 mK, initial occupancy $n_0 = 2200$ Occupancy with cooling $n_m = \frac{n_0}{C+1}$

$$C_{max} = 10^5 \gg 10^3$$

Measurement of cooling

Area under the curve is reduced.

De

Occupancy of the membrane

Minimum occupancy:

$$n_m = 5$$

$$T_m = 34\mu K$$

Yuan et al., Nat. Commun. 2015

High mechanical Q of SiN membranes at mK

Q factor and mechanical quantum state

- Preparation and measurement of mechanical quantum superposition state:
 - Prerequisite: deep ground state cooling
 - Cooling ability $\propto Q$
 - Longer state lifetime

Overview: silicon nitride resonators

Nanostrings: 10⁶ Cornell, JAP 2006

Trampolines: 10⁵ UCSB/Leiden, OE 2011 Sankey group, McGill; Groeblacher group, Delft: 10⁷

Lower temperature?

Membranes: 10⁷, 0.3 K Yale, APL 2007

Measurement of mechanical Q

Methods: spectral & ringdown

Optomechanical ringdown

Results

Temperature dependence

127 million: record high

Yuan et al., APL 2015

More modes

	Dev I	Dev II	
size	1.5mm x 1.5mm x 50 nm	1mm x 1mm x 50nm	
tensile stress	0.8 GPa	0.09 GPa	TUDelft Delft Tubelft Delft University o Technology

High Q vs. low Q modes

TUDelft Delft University or Technology

Dev II

Conclusion

- Optomechanical system with 3d cavity and SiN membrane
- Large cooperativity that enables cooling close to ground state
- Temperature dependence of Q below 200 mK; Q exceeding 10⁸ at 14 mK
- Potentials for hybrid devices

Members

Vibhor Singh Yaroslav Blanter

Martijn Cohen

Gary Steele

Shun Yanai

This project is funded by FOM and NWO.