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(a) SGs 199 and 214 (b) SG 220

FIG. 1. Energy dispersion near a three-fold degeneracy at the
P point in (a) SGs 199 and 214 and (b) SG 220. In the latter
case, pairs of bands remain degenerate in energy along the
high-symmetry lines |�k

x

| = |�k
y

| = |�k
z

|.

ergy spectrum is pictured in Fig. 1a.
The low energy description of the 3-fold degeneracy in

SG 214 is completely identical to that of SG 199, as the
k ·p Hamiltonian H214 is identical to H199 to linear order
in �k. Thus, we look next at the 3-fold degeneracy in SG
220. The linear-order k · p may be written as

H220 = H199(0, (�ky, �kx,��k
z

)) (2)

Thus, there are line node along the lines |�k
x

| = |�k
y

| =
|�k

z

|, as are visible in Fig. 1b. Furthermore, mirror and
3-fold rotation symmetry dictate that these line nodes
persist to all orders in the k·p expansion, as proved in the
Supplementary Material. Knowing this, we can use the
linearized Hamiltonian to find that the holonomy around
any loop encircling the line nodes is given by w = �1.

Next, we consider the 6-fold band degeneracies. We
start with SGs 205, 206 and 230, in which all the com-
posite T I of time-reversal symmetry T and inversion I
forces all bands to be two-fold degenerate, as shown in
Figs 2b and 2c. In SGs 206 and 230, the k·p Hamiltonian
can be written as

H206 = H199 �H⇤
199 (3)

The operation T I takes eigenfunctions with Berry flux
+n to those with Berry flux �n and the same energy.
There is thus no U(1) topological number associated with
these degeneracies. On the other hand, we find that
eigenvalues of SU(2) Wilson loop operators come in com-
plex conjugate pairs, which wind twice (in opposite di-
rections) as the Wilson loop is moved from the top to the
bottom of a sphere encircling the degeneracy point.
Unlike the previous cases, SG 205 contains inversion

symmetry in the little group of the R point. This forces
the e↵ective Hamiltonian to be quadratic in �k. However,
it is still related to H199 by,

H205(�k) = H199(k
0)�H⇤

199(k
0),

�k0
µ

=
1

2
|✏µ⌫�|�k

µ

�k
�

(4)

Due to its quadratic coordinate dependence, H199(k0) has
only bands of zero net Berry flux and all Wilson loop
eigenvalues are trivial.

(a) SGs 198, 212 and 213 (b) SG 205

(c) SGs 206 and 230

FIG. 2. Energy dispersion near a six-fold degeneracy in (a)
SGs 198, 212 and 213, (b) SG 205, and (c) SGs 206 and 230.
In SGs 198, 212, and 213 bands become degenerate in pairs
along the faces �k

i

= 0 of the Brillouin zone. In SGs 205, 206
and 230, all bands are two-fold degenerate due to inversion
symmetry.

To conclude our analysis of the 3- and 6-fold fermions,
we look at SGs 198, 212, and 213. Unlike the other 6-
band systems, these lack inversion symmetry completely,
and so host six bands with distinct energies. The lin-
earized k · p Hamiltonians may be written as,

H198 =

 
H199(�, �k) bH199(0, �k)

b⇤H199(0, �k) �H⇤
199(�, �k)

!
,

H212 = H213 =

 
H199(⇡/2, �k0) bH199(0, �k0)

b⇤H199(0, �k0) �H⇤
199(⇡/2, �k

0)

!
,

(5)

where �k0 = (�k
z

, �k
x

,��k
y

) and b is an arbitrary pa-
rameter. The six eigenstates of these Hamiltonians have
distinct energies except along the faces of the Brillouin
zone, where the spectrum degenerates into pairs related
by the composition of a non-symmorphic C2 rotation and
time reversal; this degeneracy is shown in Fig 2a. Since
this symmetry is antiunitary and squares to �1, these de-
generacies cannot be removed by including higher order
terms in the k · p expansion.
Next, we examine the 8-fold fermions. We start with

SGs 130 and 135, where T I symmetry mandates doubly
degenerate bands. In the vicinity of the A point, the
linearized k · p Hamiltonian may be put in the form

H130 = H135 = �k
z

(a�2�3�3 + b�2�3�2 + c�2�3�1)

+ �k
x

(�d�1�3�0 + e�1�2�3 + f�1�2�2 + g�1�2�1)

+ �k
y

(d�3�3�0 + e�3�2�3 + f�3�2�2 + g�3�2�1)
(6)

where a, b, . . . , g are real-valued parameters. This Hamil-
tonian has fourfold degenerate line nodes along lines
�k

i

= �k
j

= 0 with i 6= j; i, j 2 {x, y, z} which follow
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HourGlass Fermions

Group extensions by  Wilson loops

Generalizes spatial nonsymmorphism to the Brillouin zone

Bulk fermions with 3,6,8 -fold degeneracies

Degeneracies on planes and surfaces

Exotic Transport Response

How Many Types Of Energy Fermions Are There in Nature?



Do not rely on any symmetry. 
Chiral edge states Symmetry-protected edge states

Mean-field superconductors
without any symmetry
are also distinguished by C.

C can be defined within
a mirror subspace (Teo,Fu,Kane)

Time-reversal symmetry, spin-orbit coupling
(Kane,Mele)

3D generalizations

Time-reversal symmetry, spin-orbit coupling
+ spatial symmetry (Fu)

Time-reversal symmetry, spin-orbit coupling
+ spatial symmetry (AA,Chen,Gilbert,BAB)

e.g., HgTe, Bismuth

e.g., SnTe, BiSb,CeBi 
(Hsieh,  Fu,  Suyang,  Nasser,  Hasan,  AA  …)

(BHK, Drozdov, 
Yazdani,  AA…)

2D+

Or no edge states at all: Hughes Prodan BAB, Turner and Vishwanath 2011; Teo, Ryu, Turner, others

Mollenkamp, Hassan and many others



Poor  man’s  criterion  for  symmetry-protected edge states
Degeneracies at isolated points

1) Two points (k1,k2) with enhanced degeneracy
2) Trivial degeneracy on the line bridging k1-k2

Z topology

Z2 topology

Trivial QSHI

k1 k2 k1 k2

(AA,Chen,Gilbert,BAB)

(Kane,Mele)

(AA, Chen, Gilbert,BAB)

(Fu,

2

mirror chiralities (�);3 insulators with distinct � are dis-
tinguished by surface bands with a unique Z topology.
In this paper we explicitly formulate the halved chiral-
ity in terms of Berry phases, which allows for e�cient
computation of these invariants. In gapped phases with
nonzero �, the Berry phases exhibit spectral flow, i.e.,
they interpolate across their maximally-allowed range as
we tune a BZ parameter. Spectral flow is a unifying trait
shared by many TI’s, including the Chern insulator,13–16

the quantum spin Hall insulator,17,18 and the inversion-
symmetric TI with relative winding.19

FIG. 2. (a) Bottom: 3D Brillouin zone (BZ) of a simple
tetragonal lattice, with the half-mirror plane indicated in
blue. Top: 001-surface BZ of the same lattice, with the half-
mirror line indicated in blue. (b) 3D BZ (bottom) and 001 BZ
(top) of a hexagonal lattice, also with the half-mirror plane
and half-mirror line indicated.

It is known from Ref. 4 that the C
n

+ T insulator is
characterized by two Z2 indices {�n

(k̄
z

)}, for k̄
z

2 {0,⇡};
�
n

(0) 2 {+1,�1} describes the Bloch wavefunctions in
the plane k

z

= 0. In analogy with the spin-orbit-coupled
Z2 insulator, {�

n

(0),�
n

(⇡)} shall be referred to as weak
indices.4,20,21 �

n

(0) = �
n

(⇡) = 1 (�1) corresponds to
the trivial (weak) phase, and �

n

(0) = ��
n

(⇡) describes
a strong phase. The product �

n

(0)�
n

(⇡) is a strong in-
dex that determines the absence or presence of robust
surface modes on the 001 surface; we take ẑ to lie along
the principal C

n

axis. We give these weak indices a phys-
ically transparent interpretation from the perspective of
holonomy. For illustration, we consider a C4 + T model
on a tetragonal lattice that is composed of two inter-
penetrating cubic sublattices. Our tight-binding basis
comprises of (p

x

, p
y

) orbitals, which transform in the two-
dimensional irreducible representation of C4+T ; in short,
we call these the doublet irreps, and all other irreps are
of the singlet kind. The Bloch Hamiltonian is

H(k) =
⇥
-1 + 8 f1(k)

⇤
�03 +

⇥
2 f2(k) + � f6(k)

⇤
�11

+ ↵ f4(k)�01 + � f5(k)�32 + 2 f6(k)�12, (1)

where f1 = 3 � cos(k
x

) � cos(k
y

) � cos(n
z

k
z

), f2 =
2�cos(k

x

)�cos(k
y

), f3 = cos(k
z

), f4 = cos(k
y

)�cos(k
x

),
f5 = sin(k

x

) sin(k
y

) and f6 = sin(n
z

k
z

). In �
ab

=
�
a

⌦ ⌧
b

, �
i

and ⌧
i

are Pauli matrices for i 2 {1, 2, 3},
while �0 and ⌧0 are identities in each 2D subspace.���3 = ±1, ⌧3 = +1

↵
label {p

x

± ip
y

} orbitals on one
sublattice, and

���3 = ±1, ⌧3 = �1
↵
label {p

x

⌥ ip
y

}
orbitals on the other. This Hamiltonian is four-fold
symmetric: �33 H(k

x

, k
y

, k
z

)�33 = H(�k
y

, k
x

, k
z

), and
time-reversal symmetric: �10 H(k)⇤ �10 = H(�k). The

ground state of (1) comprises its two lowest-lying bands.
The phase diagram of this model is plotted in Fig. 3-a
for di↵erent parametrizations of (1).

0

1

-1
M XȞ

(c)

FIG. 3. (a) Phase diagram of C4 + T model (1), as a func-
tion of parameters ↵ and �; we fix n

z

= 1 and � = 0.
Blue (uncolored) regions correspond to gapped (gapless Weyl)
phases.3 The weak indices in each gapped phase are indicated
by (�4(0),�4(⇡)). The blue square in the center is approxi-
mately bound by |↵| < 2 and |�| < 2. The 001-surface spec-
trum is plotted for two representative points on the phase
diagram: (b) is for ↵ = � = 1, and (c) for ↵ = � = 4. �̄,M̄
and X̄ are high-symmetry momenta defined in Fig. 2.

To probe the bulk topology, we perform parallel trans-
port along a bent loop that connects two C4-invariant
points; C

n

-invariant points refer to momenta which are
invariant under an n-fold rotation, up to a reciprocal
lattice vector. We define l4(0) as the loop connecting
M � � � M in the k

z

= 0 plane, and l4(⇡) connects
A � Z � A in the k

z

= ⇡ plane. They are respectively
depicted by red and brown lines in Fig. 1-(a). Let
us denote the eigenstates of the Bloch Hamiltonian by
H(k)

��u
i,k

↵
= "

i,k

��u
i,k

↵
, where i is a band index. The

matrix representation of holonomy is known as the Wil-
son loop, and it is the path-ordered exponential of the
Berry-Wilczek-Zee connection A(k)

ij

=
⌦
u
i,k

��rk

��u
j,k

↵
:

W[l] = exp
⇥
�
R
l

dl ·A(k)
⇤
.8,22 Here, l denotes a loop and

A is a matrix with dimension equal to the number of oc-
cupied bands (n

o

). The gauge-invariant spectrum of W[l]
is also known as the Berry-phase factors ({exp(i#)}).9,19
We show that the spectrum of W[l4(k̄z)] encodes the
weak index �4(k̄z). If we define d4 is the number of �1
eigenvalues in the spectrum of W[l4], then the weak in-
dices {�4(0),�4(⇡)} are related to {d4(0), d4(⇡)} by

�
n

(k̄
z

) = idn

(k̄
z

) 2 {1, -1}; k̄
z

2 {0,⇡} (2)

for n = 4; as we will shortly clarify, d4 is necessarily even.
This weak index is equivalent to an alternative formula-
tion in Ref. 4, where it is expressed as an invariant involv-
ing the Pfa�an of a matrix.23 We provide a geometrical
interpretation of (2): the parity of d4(k̄z)/2 specifies one
of two classes of a special rotation, which is in one-to-
one correspondence with two sectors of ground states in
the k

z

= k̄
z

plane. The following discussion clarifies the
nature of this rotation. Due to two-fold rotational and
TRS, we can choose a basis in which W[l4(k̄z)] 2 SO(n

o

),
i.e., they are proper rotations in Rn

o .23 Since the bands
derive from doublet orbitals, n

o

is even. A rotation R in
n

o

= 2m dimensions is described by m invariant planes,
and an angle of rotation in each plane. If all m an-
gles equal to ✓, such a rotation is called equiangular –

C4+T

3

(b)

0

�

í�
ȞK2Ȟ K

(e)

FIG. 4. Characterization of the C6 + T insulator.(a) ((b)) is
the 001-surface spectrum of a trivial (strong) insulator. �̄,K̄
and K̄2 are C3-invariant momenta defined in Fig. 2. (c),
(d) and (e) respectively illustrate the Berry phases of trivial,
weak and topological phases.

there is an invariant plane through any arbitrary vec-
tor of space and all vectors are rotated by the same an-
gle ✓.24 In an appropriate basis, W[l4(k̄z)] is a product
of two equiangular rotations,23 each of angle ⇡/2 – the
net e↵ect is that a vector may be maximally rotated by
angle ⇡. The set of vectors which are rotated by ⇡ is
defined as the maximally-rotated subspace, and we in-
terpret d4(k̄z) in (2) as the dimension of this subspace.
These vectors always come in pairs, since each eigenvalue
of an even-dimensional rotation has a complex-conjugate
partner.24 There are then two classes of W distinguished
by the parity of d4(k̄z)/2; in the nontrivial (trivial) class
an odd (even) number of pairs are maximally rotated.
The simplest example for n

o

= 2 is the equiangular ro-
tation R± = e±i�2⇡/2. W is either the trivial identity:
R+R� = I, or it rotates any vector by ⇡: R±R± = �I.

Now we demonstrate how to realize both classes of
W in the model of (1). Let us consider a family of
loops {l4(kz)} in planes of constant k

z

, such that l4(0) is
the red line in Fig. 1-(a), and all other loops project
to l4(0) in ẑ. In the trivial phase (parametrized by
↵ = � = 1), we find W[l4(0)] = W[l4(⇡)] = I, or
equivalently �4(0) = �4(⇡) = +1. The eigenvalues of
W[l4(kz)] interpolate between {1, 1} (at k

z

= 0) to {1, 1}
(at k

z

= ⇡), as illustrated in Fig. 1-(b). The absence of
surface modes on the line M̄ � �̄� X̄ is demonstrated in
Fig. 3-b. In comparison, the strong phase (↵ = � = 4)
is characterized by W[l4(0)] = �W[l4(⇡)] = �I, or
�4(0) = ��4(⇡) = �1; its surface modes are illustrated

in Fig. 3-(c). As k
z

is varied from 0 to ⇡ in Fig. 1-(c),
the Berry phases {#(k

z

)} interpolate across the maximal
range (�⇡,⇡] – we call this property spectral flow.
The story of the C6+T insulator proceeds analogously.

We provide a model whose details are reported in the
Supplemental Material; the trivial and strong phases of
this model are distinguished by surface modes, as illus-
trated in Fig. 4-(a) and (b). The bulk topology is un-
veiled by the following bent loops, which are illustrated
in Fig. 1-(d): we define l6(0) as the loop K���K (red),
and l6(kz) as the ẑ-projection of l6(0) in the plane of con-
stant k

z

.25 For k̄
z

2 {0,⇡}, a basis may be found where
W[l6(k̄z)] is a product of two equiangular rotations, each
of angle ⇡/3 – a vector may be maximally rotated by
an angle 2⇡/3.23 (2) similarly applies for n = 6, if we
define d6 as the dimension of the maximally-rotated sub-
space. Equivalently, d6/2 is the number of exp(i2⇡/3)-
eigenvalues in the spectrum of W[l6(k̄z)]. Like �4, �6 is
also equivalent to a Pfa�an invariant, though the pro-
posed formula in Ref. 4 requires a clarification.23 In
the strong phase, the Berry phases interpolate across the
maximal range [�2⇡/3, 2⇡/3]; compare Fig. 1-(e) with
Fig. 1-(f).
Beyond these two models, we would like to general-

ize our results to insulators with any number of occu-
pied doublet bands. For n 2 {4, 6}, the spectrum of
W[l

n

(k̄
z

)] falls into two classes which are labelled by
the weak index �

n

(k̄
z

) 2 {±1}; the structure of the
two classes is laid out in Tab. I. In the strong phase,
�
n

(0) = ��
n

(⇡) is a su�cient condition for spectral flow:
the Berry phases {#(k

z

)} robustly interpolate across the
full range [�4⇡/n, 4⇡/n], in the interval k

z

2 [0,⇡]. The
converse is also true for the trivial and weak phases:
�
n

(0) = �
n

(⇡) implies the lack of spectral flow. Though
a proof can be written, we prefer to make a pictorial argu-
ment through Fig. 4-(c) to (e), where we compare trivial,
weak and strong phases in a C6+T model with four occu-
pied bands. Crucial to this argument is that {#(k

z

)} sat-
isfy certain symmetry constraints: (i) for any k

z

2 [0,⇡],
the spectrum of W only comprises complex-conjugate
pairs {exp(i#), exp(-i#)},23 and (ii) all W-eigenvalues are
doubly-degenerate at k

z

= 0 and ⇡ (cf. Tab. I). Fi-
nally, we point out an alternative characterization of the
C

n

+ T insulator by Berry phases, which was described
in Ref. 12 for a di↵erent choice of loop. Their character-
ization is useful to identify the strong index: the product
�
n

(0)�
n

(⇡), but cannot individually distinguish the weak
indices: �

n

(0) and �
n

(⇡).

In our second case study, we aim to express the halved-
mirror chirality, an integer invariant that characterizes
C

nv

insulators, in terms of Berry phases. For illustration,
we employ the C4v-symmetric model of Eq. (1); in ad-
dition to the above-mentioned symmetries, the model is
also symmetric under reflection: �23 H(k

x

, k
y

, k
z

)�23 =

H(k
y

, k
x

, k
z

). While the halved chirality is well-defined
and robust without TRS, we nevertheless keep TRS
for simplicity. The parameters n

z

= 2, � = 0.1 and
↵ = � = 4 correspond to the 001-surface dispersion in
Fig. 5-(a). Let us define the half-mirror line (HML)3 as
connecting �̄ and M̄ in the 001-surface BZ, as drawn in

C6+T

4

Number of occupied bands �
n

(k̄
z

) Spectrum of W[l
n

(k̄
z

)]

4m 1 { �1,�1,�
⇤
1,�

⇤
1, . . . ,�m

,�
m

,�⇤
m

,�⇤
m

}
-1 { ei4⇡/n, e�i4⇡/n, 1, 1, �1,�1,�

⇤
1,�

⇤
1, . . . ,�m�1,�m�1,�

⇤
m�1,�

⇤
m�1 }

4m+ 2 1 { 1, 1, �1,�1,�
⇤
1,�

⇤
1, . . . ,�m

,�
m

,�⇤
m

,�⇤
m

}
-1 { ei4⇡/n, e�i4⇡/n, �1,�1,�

⇤
1,�

⇤
1, . . . ,�m

,�
m

,�⇤
m

,�⇤
m

}

TABLE I. Spectrum of the bent Wilson loop W[l
n

(k̄
z

)], as applicable to the C
n

+ T insulator; k̄
z

2 {0,⇡}. We consider two
cases: (i) the matrix dimension of W is 4m, for any non-negative integer m, and (ii) the matrix dimension is 4m+2. In either
case, the spectrum has two possible structures, as labelled by �

n

2 {+1,�1}. {�1,�1,�
⇤
1,�

⇤
1} denotes a doubly-degenerate

eigenvalue and its complex conjugate. This table is derived in the Supplemental Material.
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FIG. 5. (a) ((c)) is the 001-surface dispersion (Berry-phase
spectrum) of the C4v topological insulator, with � = 2. (b)
and (d) describe a trivial C4v insulator with � = 0. Along the
HML connecting �̄ and M̄ , mirror-even (odd) surface bands
are highlighted in red (blue). Similarly, the Berry phase of
the mirror-even (odd) subspace is colored red (blue).

Fig. 2-(a). Each state in the HML may be labelled by
its eigenvalue under the reflection (x, y) ! (y, x), which
is represented by the operator ��23; in short, we call
bands with eigenvalue +1 (�1) as mirror-even (mirror-
odd). The surface bands are characterized by the halved-
mirror chirality � 2 Z, which we define as the di↵erence
in number of mirror-even chiral modes with mirror-odd
chiral modes within the HML. To extract � from the sur-
face dispersion, draw a constant-energy line that is within
the energy gap and parallel to the HML, e.g., we pick
the zero-energy line in Fig. 5-(a). Let us parametrize
the HML by kk 2 s⇡(x̂ + ŷ), where s = 0 (1) at �̄ (M̄).
At each intersection with a surface band, calculate [sign
of the group velocity dE/ds] ⇥ [mirror eigenvalue]; sum
this quantity over all intersections along the HML to ob-
tain � . In our example, the two intersections result in
� = (1)(1) + (�1)(�1) = 2.

Now we describe how the surface-band index � is en-
coded in the bulk wavefunctions. Taking ẑ to lie along
the rotational axis, the HML in the surface BZ is the ẑ-
projection of a half-mirror-plane (HMP) in the 3D BZ,
as illustrated in Fig. 2-(a). Let us parametrize HMP by
t 2 [0, 1] and k

z

2 (�⇡,⇡]; t = 0 (1) along the first (sec-
ond) C4-invariant line. Then the halved chirality has the

following expression by bulk wavefunctions:

� =
1

2⇡

Z

HMP
dt dk

z

(F
e

� F
o

). (3)

F
e

(F
o

) is defined as the Berry curvature of occupied
doublet bands,8,9 as contributed by the mirror-even (-
odd) subspace. To express (3) in terms of Berry phases,
we consider a di↵erent family of non-contractible loops
{z(kk)} which lie within the HMP; an example of a loop
is illustrated in red in Fig. 2-(a). To compare, the previ-
ous loop l

n

(k
z

) lies in a plane of constant k
z

, while z(kk)
lies on a line of fixed kk 2 HML. Denoting the eigen-
values of W[z(kk)] by {exp(i#(kk))}, we plot the Berry
phases {#} as a function of kk in Fig. 5-(c). Due to
the orthogonality of the mirror subspaces, we may label
each branch of # by its mirror eigenvalue: #

e

(#
o

) in the
even (odd) subspace is colored red (blue). By Stoke’s
theorem, we rewrite (3) as the net change in #

e

in the
interval s 2 [0, 1], minus the net change in #

o

:

� =
1

2⇡

Z 1

0
ds

✓
@#

e

@s
� @#

o

@s

◆
. (4)

Since #
e

= #
o

at s = 0 and s = 1,3 � is quantized to
integers – each nonzero integer characterizes a topologi-
cally distinct type of spectral flow. � may be extracted
from {#} in a manner that is analogous to the surface-
band index: by considering the intersections of {#} with
an arbitrary constant-phase line. At each intersection,
we evaluate [sign of d#/ds] ⇥ [mirror eigenvalue], then
sum this quantity over all intersections along the HML.
By inspection of Fig. 5-(c), we find � = 2, in one-to-
one correspondence with the surface-band formulation of
�. For comparison, we plot the surface bands and Berry
phases of a trivial insulator in Fig. 5-(b) and -(d); these
are obtained from (1) with parameters n

z

= 2, � = 0.1
and ↵ = � = 1. The formula (4) is applicable to the case
of two occupied bands, as in the model (1); to generalize
to 2m occupied bands for m > 1, we interpret #

e

(#
o

) as
the sum of all Berry phases in the even (odd) subspace.
While we have focused on one HMP for the purpose of
illustration, the C4v insulator is characterized by another
halved chirality, which is defined on a di↵erent HMP. A
full discussion of the various HMP’s for all relevant C

nv

groups is provided in Ref. 3.

C4v

Is This All?
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Many others



Better criterion for symmetry-protected edge states
Connectivity of submanifold (S)

Degree of connectivity = D

Which symmetry groups have nontrivial connectivity?

(Michel,Zak)

1) Two submanifolds (S1,S2) with equal and enhanced connectivity (D1 = D2 >1).

2) S3 bridges S1 and S2, and has a connectivity (D3) that nontrivially divides D1,

i.e., D1/D3 = an integer greater than one.

Bands in S divide into sets of D, such that within each set,
there are enough contact points to continuously travel through all D branches.

We’ve  just  learned:  any  group  with  glide  symmetry.

More complete answer: all nonsymmorphic space groups.

Concept of connectivity: Zak



kz

kx

Perfect
termination

Modified
surface

potential

Example of Connectivity in Our New Top Ins

HourGlass 
Fermion.

3 Realistic Materials Found 
and Synthesized

KHgX; X= As,Bi, Sb

2

lustrated in Fig. 2: Hg andX ions form honeycomb layers
with AB stacking along ~z; between each AB bilayer sits
a triangular lattice of K ions. The spatial symmetries
include: (i) an inversion (I) centered around a K ion,
which we choose as our spatial origin, (ii) the screw ro-
tation C̄6z is a six-fold rotation about ~z followed by a
fractional lattice translation (t(c~z/2)). Here and hence-
forth, for any transformation g, we denote ḡ=t(c~z/2) g
as a product of g with this fractional translation. (iii)
Finally, we have the reflections M

y

: (x, y, z)!(x,�y, z),
M̄

z

=t(c~z/2)M
z

and M̄
x

=t(c~z/2)M
x

. Among these only
M̄

x

is a glide reflection, for which the fractional transla-
tion is unremovable by a di↵erent choice of origin. Al-
together, these symmetries generate the nonsymmorphic
space group D4

6h(P63/mmc).[13]

Each topological features of KHgX may be attributed
to a smaller subset of the group – on surfaces where cer-
tain bulk symmetries are lost, their associated topology
is not manifest, e.g., the 100-surface symmetry is a sym-
morphic subgroup ofD4

6h, leading to a strikingly di↵erent
bandstructure than that of the nonsymmorphic 010 sur-
face. Our strategy is to deduce the possible topologies of
the surface bands purely from representations of the sur-
face symmetry. We then more carefully account for the
bulk symmetries and their representations, as well as in-
troduce a non-Abelian polarization to diagnose nontrivial
topology in the bulk wavefunctions.

y

a

c/2 x

a z
z

X Hg

K

FIG. 2: Crystal structure and Brillouin zone of KHgX. (a)
3D view of atomic structure. The Hg (red) and X (blue)
ions form a honeycomb layers with AB stacking. The K ion
(cyan) is located at an inversion center, which we also choose
to be our spatial origin. (b) Top-down view of a truncated
lattice with two surfaces labelled 010 and 100, also known
respectively as (12̄10) and (101̄0) in the Miller notation. (c)
Center: bulk Brillouin zone (BZ) of KHgX, with two mirror
planes of M̄

z

colored red and blue. Top: 100-surface BZ.
Right: 010-surface BZ.

Surface analysis Let us first discuss the 010 surface,
whose group (Pma2) is generated by glideless M̄

z

and
glide M̄

x

. To explain the robust surface bands in Fig.
1, we consider each high-symmetry line in turn: (i)
At any wavevector (k0) along Z̃Ũ (k

z

=⇡/c), all bands
are doubly-degenerate. Indeed, the group[14] of k0 in-

cludes the antiunitary element TM̄
x

(time reversal with
a glide) which results in a Kramers-like degeneracy at
each k0. This follows from (TM̄

x

)2=T 2M̄2
x

=t(c~z), where
the lattice translation is represented by Bloch waves as
t(c~z)=exp(�ik

z

/c)=�I along Z̃Ũ .

(ii) Along both glide-invariant lines (�̃Z̃ (k
x

=0) and
X̃Ũ (k

x

=⇡/
p
3a)), bands split into quadruplets which

each exhibits an internal partner-switching in the interval
k
z

2[0,⇡/c]. To explain, M̄2
x

=t(c~z) Ē, with Ē a 2⇡-spin
rotation, implies two branches for the mirror eigenval-
ues: ±iexp(�ik

z

c/2). The role of time-reversal symme-
try is to enforce degeneracies between complex-conjugate
representations at both Kramers points, i.e., the M̄

x

eigenvalues are paired as {+i,�i} at k
z

=0, and either
{+1,+1} or {�1,�1} at k

z

=⇡/c. These constraints im-
ply two topologically distinct connectivities for the sur-
face bands. In the first (Fig. 3(c)), surface bands zigzag
across the conduction gap and each cusp is a Kramers
doublet – this will be elaborated as a glide-symmetric
analog of the 2D QSHE[15]. The second connectivity
in Fig. 3(d) applies to our material class: an internal
partner-switching occurs within each quadruplet, result-
ing in an hourglass-shaped dispersion. The center of each
hourglass is a robust crossing between orthogonal mirror
branches, i.e., a movable but unremovable Dirac fermion
in the interval k

z

2[0,⇡/c], as exemplified by KHgSb in
Fig. 1(d).

Piecing together (i) and (ii) along the bent line X̃Ũ Z̃�̃,
we show how a robust interpolation across the energy
gap may arise. At Z̃ and Ũ , there are two ways to con-
nect hourglasses to degenerate doublets: an ‘hourglass
flow’ describes the spectral connection of all hourglasses
by zigzag-connecting doublets, as drawn in the X̃Ũ Z̃�̃
section of Fig. 1(a), and further exemplified by KHgSb
(in Fig. 3(a)) with an ideal surface termination. To
demonstrate that the surface-localized bands of KHgSb
also connect with the surface-resonant bulk bands in this
hourglass-flow topology, we modified the surface poten-
tial of KHgSb to push the hourglass (along �̃Z̃) down into
the valence band; due to the proposed hourglass flow, a
di↵erent hourglass is pulled down from the conduction
band along ŨX̃ (see Fig. 3(b)). In contrast, the second
possible connectivity has no robust surface states (see
X̃Z̃Ũ �̃ section of Fig. 1(b)).

(iii) Along �̃X̃ (k
z

=0), bands divide into two subspaces
having either M̄

z

-eigenvalue +i or �i, as follows from
M̄2

z

=Ē. As illustrated in Fig. 3(b), the two chiral (anti-
chiral) surface modes in the +i (resp. �i) subspace may
be summarized by a mirror Chern number[16] (MCN):
C
e

=+2.

Since the 100 surface of KHgX also preserves the glide-
less M̄

z

, the 100 dispersion along �̄Ȳ (see Fig. 2(c))) is
topologically equivalent to that of the 010 along �̃X̃ –
this reflects two distinct surface projections (illustrated
by blue lines in Fig. 2(c)) of the nontrivial MCN in the
k
z

=0 plane (blue plane in Fig. 2(c)). However, the 100
surface does not respect the glide symmetry (M̄

x

) that

Weak TI: B. Yan, L. 
Mu ̈ chler, and C. 
Felser, Phys. Rev. 
Lett. 109,  116406 
(2012). 



KZnP: trivial phase KHgSb: topological phase
Different quantum numbers under spatial transformations.

• Beyond Fu-Kane criterion for centrosymmetric insulators

• Inversion of (screw) rotational eigenvalues: 

Criterion for nontrivial topology in any space group with screw/rotational symmetry.
• generalizes previous criterion for symmorphic rotation (Chen Fang et al)

exp[−𝑖𝐽𝒛𝜋/3]

𝐽𝒛 = 0

𝐽𝒛 = 2

Δ 𝐽𝒛 = Mirror Chern number mod 6



Cohomology and Crystals
Cohomology in crystallographyx

z 𝑀௫
ଶ = 𝐼

How many ways can I make a 1D crystal 
that extends in z, and has also this reflection
symmetry?

Obvious (for cohomologists, trivial/split; for crystallographers: symmorphic) 𝑀௫
ଶ = 𝐼

Less obvious (for crystallographers: nonsymmorphic) ഥ𝑀௫
ଶ = 𝑡(�̂�)

The two algebras differ only by insertion of spatial translations. 



Symmetries: 
Mx, Mz   

kz

kx

Mx2 = - exp (i kz) 

Group of the wavevector

→ 2 branches of eigenvalues = +/- i * exp(i kz/2)

kz=0 kz=pi kz=0 kz=pi

Glide spin Hall effect4-fold-connected
Hourglass

Better criterion for symmetry-protected edge states
Connectivity of submanifold (S)

Degree of connectivity = D

Ex. of two-fold connected manifold: a glide line

𝑀𝒙 ∶ 𝑥 → −𝑥, ഥ𝑀𝒙 = 𝑡
�̂�
2 𝑀𝒙

ഥ𝑀𝒙
ଶ = 𝑡 �̂� ∗ 2𝜋 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = −eିspin

Two branches for     𝑒𝑖𝑔 ഥ𝑀𝒙 = ±𝑖 𝑒ି/ଶ

Monodromy: 𝑘௭ → 𝑘௭ + 2𝜋,
𝑒𝑖𝑔 ഥ𝑀𝒙 → −𝑒𝑖𝑔 ഥ𝑀𝒙 .

The conclusion that is forced upon us:

A degeneracy that is movable but unremovable.

𝒌𝒛
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Bands in S divide into sets of D, such that within each set,
there are enough contact points to continuously travel through all D branches.
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The conclusion that is forced upon us:
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Bands in S divide into sets of D, such that within each set,
there are enough contact points to continuously travel through all D branches.

HourGlass Fermion

3D, doubled quantum spin Hall

Hourglass Flow

e.g., glide reflection   
Non-symmorphic subgroup

Symmorphic
subgroup

e.g., normal reflection   



Symmetries: 
T,Mx,

kz

kx

Group of the wavevector 

( T*Mx )2 = -1 
Kramers-like degeneracy at every wavevector,

i.e.,                    is two-fold connected.

ഥ𝑀𝒙
2 = 𝑡 Ƹ𝑧 ∗ 2𝜋 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = −e−𝑖𝑘𝑧

Connectivity



Connectivity

kz

kx

kz=0 kz=pi kx=0 kx=pi



kz

kx

Hourglass-flow topology

Mz : z → -z

Mirror Chern number:
∫ ℱ 𝑘 𝑑2𝑘 in  the even subspace.

(Teo, Fu, Kane)

Rest of this talk: how do we diagnose this topology in the bulk wavefunction?

A non-abelian generalization of the theory of polarization.

Putting Everything Together



ARPES on KHgSb



Bulk Indices 
And Wilson Group Extensions
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where H(k) = ε(k) + di(k)σi, d1 + id2 = A[sin kx +
i sinky],d3 = −2B[2 − M

2B − cos kx − cos ky],ε(k) = C −
2D[2−coskx−cosky ]. Real HgTe does not have inversion
symmetry but the BHZ toy model does. To describe the
inversion symmetry breaking effect we add a new term
H ′:

H ′ =

⎡

⎢⎣

0 0 0 ∆
0 0 −∆ 0
0 −∆ 0 0
∆ 0 0 0

⎤

⎥⎦ (9)

We apply the new method to calculate the shift of
the Wannier function center based on the above model
Hamiltonian and show the results in Fig.2.
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Figure 2: Wannier centers for the BHZ model. (A) For
the QSH phase (A=-13.68, B=-16.9, C=-0.0263, D=-0.514,
M=-2.058, ∆=1.20) , The Wannier center cross the reference
line (red dashed line) once (odd times); (B) For the Normal
insulating phase (A=-14.48, B=-18.0, C=-0.018, D=-0.594,
M=2.766, ∆=1.20), The Wannier center cross the reference
line (red dashed line) zero (even) times.

To show these results more clearly, we glue θ = −π line
and θ = π line together. Then the Wannier centers live
on a cylinder surface. The corresponding results for the
QSH phase are showed in Fig.2(A). When moving from
ky = 0 to π we see that the two evolution lines of Wannier
centers enclose the cylinder once and equivalently these
evolution lines cross the reference line (the red dashed
line) only once (odd times). By contrast, for the normal
insulator phase, as shown in Fig.2(B), the two evolution
lines of Wannier centers never cross the reference line.
Therefore in the BHZ toy model for TI, the Z2 number
calculated by our new method is consistent with the pre-
vious conclusion. Next we will apply the method to more
realistic models of insulating materials.

B. CdTe and HgTe

The CdTe and HgTe materials have a similar zinc-
blende structure without bulk inversion symmetry. CdTe

has an normal electronic structure, where the conduc-
tion bands (Γ6) have the s-like character and the valance
bands have the p-like character(Γ8) through out the
whole Brillouin Zone. In HgTe, the band structure is
inverted in a small area near the Γ point, where the s-
like Γ6 band sinks below the p-like Γ8 band. The band
inversion at the Γ point changes the topological nature of
the band structure and makes the HgTe to be the topo-
logical insulator if a true energy gap is opened by the
lattice distortion44(As pointed out in ref.? the uniaxial
strain is applied along the [001] direction for HgTe by
choosing the c/a ratio to be 0.98 and the energy gap is
about 0.05eV at the Γ point). We then apply a tight-
binding model45 to calculate the pattern of the Wannier
center evolution θ defined in Eq.6 and show the results in
Fig.3. It is very clear that in the HgTe system, for kz = 0
the evolution line crosses the reference line (red dashed
line) once (as shown in Fig.3(A)), while for kz = π it
never crosses (as shown in Fig.3(B)). The above results
indicate that in the case of HgTe the effective 2D systems
for fixed kz = 0 and π are effectively 2D topological insu-
lator and normal insulator respectively, which determines
HgTe to be a strong 3D topological insulator15. A similar
analysis can be also applied to CdTe and the results are
shown in Fig.3(C) and (D). They clearly indicate that
CdTe is a normal insulator.

C. Bi2Se3 system

Recently, the tetradymite semiconductors Bi2Te3,
Bi2Se3, and Sb2Te3 have been theoretically predicted
and experimentally observed to be topological insula-
tors (TI) with a bulk band gap as large as 0.3eV in
Bi2Se320,21,23,25,26,39. The Bi2Se3 surface state has been
found by both ARPES21,23 and STM36, consistent with
the theoretical results20.

Since the Bi2Se3 family has inversion symmetry, the Z2

topological number can be easily calculated by the prod-
uct of half the parities at each high symmetry points in
the Brillouin Zone16. Below we apply our new method to
calculate the topological property of this system, using
the tight binding model based on the Wannier functions
obtained in reference20. We first perform the calculation
for the Bi2Se3 without spin-orbit coupling: the results
are shown in Fig.4(A,B). It is clear that the evolution
lines never cross the reference line for both kz = 0 and π,
indicating that the system is topologically trivial with-
out spin-orbital coupling. When the realistic spin orbital
coupling is turned on, as shown in Fig.4(C,D), the evo-
lution lines cross the reference line once only in the case
of kz = 0 but not for kz = π indicating the Bi2Se3 bulk
material is a 3D strong topological insulator.

Introduction to Wilson loops

Wilson loops: matrix representation of parallel transport around momentum loops. 

𝑈 → 𝑒Ф 𝑈ାଶగ
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Introduction to Wilson loops

Wilson loops: matrix representation of parallel transport around momentum loops. 
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Single-band transport

Multi-band transport
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Surface-normal Wilson loops and edge states

fixed 𝒌𝒛

- a bulk-boundary correspondence

𝒲(𝒌∥).

Consider a family of loops 
at fixed 𝒌∥ ≡ 𝒌𝒙, 𝒌𝒛 , and varying 𝒌𝒚:

Its unimodular spectrum we denote by

exp[𝑖𝜃,𝒌∥ ].

Think of 𝜃,𝒌∥ as  the  ‘energy’  of  a  Wilson  
‘band’  which  is  indexed  by  𝑛.

There exists an interpolation between  𝜃,𝒌∥ and the energies (𝐸,𝒌∥)
of  surface-localized bands in the 010-surface Brillouin zone.

(Fidkowski, Zhoushen, Arovas)

𝜃,𝒌∥ and 𝐸,𝒌∥ are deformable into each other, and share certain 
topological features.

Dai Xi, Z. Fang, BAB, X. Qi, Rui Yu, A Alexandradinata 
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Suppose we relaxed the reflection symmetries in the group C4v, and now added time-reversal symmetry. The resultant
group (C4 + T ) also has two-dimensional irreps at C4-invariant momenta �̄ and M̄ . For example, the p

x

± ip
y

orbitals are eigenstates of four-fold rotation, while time-reversal maps p
x

+ ip
y

! p
x

� ip
y

. This two-fold degeneracy
in a spin-orbit-free system is analogous to the Kramer’s degeneracy in spin-orbit coupled systems. Similarly, there
exists two distinct gapped phases which are distinguished by robust surface modes;13 we refer to one as the trivial
phase and the other a strong topological phase. Our case study of the C4 + T insulator is motivated by two issues:
(i) It is unclear if these two phases are physically distinguishable if we experimentally probe the bulk instead of
the surface. (ii) In this review, we highlight the existence of a third topological phase which does not manifest
robust surface modes. Does this ‘weak phase’ have any physical consequence? One answer to (i) and (ii) may be
found through holonomy, i.e., parallel transport along certain non-contractible loops in the BZ.34–36 An electron
transported around a loop acquires a Berry-Zak phase,25–27 which has recently been measured by interference in
cold atom experiments.37 For the purpose of unveiling the bulk topology of all three phases, we find that not all
non-contractible loops work. Straight loops are commonly studied in the geometric theory of polarization, due to
their relation with Wannier functions;38,39 however, these loops cannot identify our weak phase. Instead, we propose
that all three phases are distinguished by parallel transport along bent loops, whose shapes are determined by
the symmetry group – they are illustrated in Fig. 4(a) for the C4+T group, while the C6+T case is discussed in Ref. 14.

A
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FIG. 4: Bottom of (a) illustrates certain bent loops in the 3D Brillouin zone of a simple tetragonal lattice.
Top of (a): (001)-surface BZ of the same lattice. (b) and (c): Berry-phase spectrum of trivial and strong
phases respectively, for the model of Eq. (2).

It is known from Ref. 13 that the C4 + T insulator is characterized by two Z2 indices {�4(k̄z)}, for k̄
z

2 {0,⇡};
�4(0) 2 {+1,�1} describes the Bloch wavefunctions in the plane k

z

= 0. In analogy with the spin-orbit-coupled Z2

insulator,13,40,41 {�4(0),�4(⇡)} shall be referred to as weak indices. �4(0) = �4(⇡) = 1 (resp. �1) corresponds to the
trivial (resp. weak) phase, and �4(0) = ��4(⇡) describes a strong phase. The product �4(0)�4(⇡) is a strong index
that determines the absence or presence of robust surface modes on the 001 surface; we take ẑ to lie along the principal
C4 axis. We give these weak indices a physically transparent interpretation from the perspective of holonomy. For
illustration, we consider a model on a tetragonal lattice that is composed of two interpenetrating cubic sublattices.
Our tight-binding basis comprises of (p

x

, p
y

) orbitals, which transform in the two-dimensional irrep of C4 + T . The
Bloch Hamiltonian is

H(k) =
⇥
-1 + 8f1(k)

⇤
�03 + 2f2(k)�11 + ↵f4(k)�01 + �f5(k)�32 + 2f6(k)�12, (2)

where f1 = 3 � cos(k
x

) � cos(k
y

) � cos(k
z

), f2 = 2 � cos(k
x

) � cos(k
y

), f3 = cos(k
z

), f4 = cos(k
y

) � cos(k
x

),
f5 = sin(k

x

) sin(k
y

) and f6 = sin(k
z

). In �
ab

= �
a

⌦ ⌧
b

, �
i

and ⌧
i

are Pauli matrices for i 2 {1, 2, 3}, while
�0 and ⌧0 are identities in each 2D subspace.

���3 = ±1, ⌧3 = +1
↵
label {p

x

± ip
y

} orbitals on one sublattice,
and

���3 = ±1, ⌧3 = �1
↵

label {p
x

⌥ ip
y

} orbitals on the other. This Hamiltonian is four-fold symmetric:
�33 H(k

x

, k
y

, k
z

)�33 = H(�k
y

, k
x

, k
z

), and time-reversal symmetric: �10 H(k)⇤ �10 = H(�k). The ground state
of (2) comprises its two lowest-lying bands. The phase diagram of this model is plotted in Fig. 5(a) for di↵erent
parametrizations of Eq. (2).

Vanderbilt, Resta
k||k||

k|| k||
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Wilson Band Structures Have ALWAYS Provided Faithful 
Representations of Any Topological Insulator We Thought Of



12

however, when viewed along a bent line (�̃Z̃ŨX̃), the
bands exhibit spectral flow. In all other cases for P⌘

�̃
,Q�̃Z̃

and Q
X̃Ũ

, bands along �̃Z̃ŨX̃ separate into spectrally-
isolated quadruplets, as in Fig. 9(f).

FIG. 9: Possible Wilson spectra along Z̃Ũ .

IV. EXTENDED GROUP OF WILSONIAN
SYMMETRIES AND GROUP COHOMOLOGY IN

BAND INSULATORS

Symmetry operations normally describe space-time
transformations; such symmetries and their groups are
referred to as ordinary. Here, we encounter certain
‘symmetries’ of the Wilson loop which additionally
induce parallel transport; we call them W-symmetries
to distinguish them from the ordinary symmetries. In
this Section, we identify the relevant W-symmetries, and
show their corresponding group (G

⇡,k

z

) to be an exten-
sion of the ordinary group (G�) by Wilson loops, where
G� corresponds purely to space-time transformations;
the inequivalent extensions are classified by the second
cohomology group, which we also introduce here. In
crystals, G� would be a point group for a spinless par-
ticle, consisting of spatial transformations that preserve
the origin.48 It is well-known how G� may be extended
by phase factors to describe half-integer-spin particles,
and also by discrete spatial translations to describe
nonsymmorphic crystals.22–26 One lesson learned here is
that G� may be further extended by quasimomentum
translations, thus placing real and quasimomentum
space on equal footing.

W-symmetries are a special type of constraints on the
Wilson loop at high-symmetry momenta (kq). As exem-
plified in Eq. (10) and (11), constraints (ĝ) on a Wilson
loop (W) map W to itself, up to a reversal in orientation:

ĝW ĝ�1 = W±1, (19)

where W�1 is the inverse of W; all ĝ satisfying this
equation are defined as elements in the group (Gkq) of
the Wilson loop. A trivial example of ĝ would be the

Wilson loop itself; ĝ may also represent a space-time
transformation, as exemplified by a 2⇡ real-space
rotation (Ē). Particularizing to our context, we let
k
y

2[�⇡,⇡) parametrize the non-contractible momentum
loop, and choose the convention that W (W�1) e↵ects
parallel transport in the positive orientation:+2⇡~y (resp.
in the reversed orientation:�2⇡~y), as further elaborated
in App. B 1.

FIG. 10: Origin of W-glide and W-time-reversal symmetries.
(a-d) are constant-k

z

slices of the bulk Brillouin zone. (a)
illustrates how the glide (M̄

x

) maps momenta from the glide
plane k

x

=⇡. Under M̄
x

, the Wilson loop is mapped from the
red vertical arrow in (a) to the red vertical arrow in (b). (c-d)
describe the k

z

=0 plane and illustrate a similar story for the
time reversal T .

W-symmetries arise as constraints if a space-time
transformation exists that maps: k

y

!±k
y

+⇡. Our
first example of a W-symmetry has been introduced in
Sec. III A, namely that the glide reflection (M̄

x

) maps:
(k

y

,kq)!(k
y

+⇡,kq) for any kq along k
x

=⇡ (X̃Ũ), as il-
lustrated in Fig. 10(a). Consequently, the Wilson loop is
mapped as

M̄
x

W�⇡

(⇡, k
z

) M̄�1
x

= W0(⇡, kz), (20)

where we have indicated the base point of the parame-
ter loop as a subscript of W, i.e., W

k̄

y

induces parallel
transport from (k̄

y

,⇡, k
z

) to (k̄
y

+2⇡,⇡, k
z

) in the positive
orientation. This mapping from W�⇡

(vertical arrow in
Fig. 10(a)) to W0 (arrow in Fig. 10(b)) is also illustrated.
As it stands, Eq. (20) is not a constraint as defined in Eq.
(19). Progress is made by further parallel-transporting
the occupied space by �⇡~y, such that we return to the
initial momentum: (k

y

,⇡, k
z

). This motivates the defi-
nition of a W-glide symmetry (M̄

x

) which combines the
glide reflection (M̄

x

) with parallel transport across half
a reciprocal period – then by our construction, M̄

x

is an
element in the group (G

⇡,k

z

) of W�⇡

(⇡, k
z

). To be pre-
cise, let us define the Wilson line W�⇡ 0 to represent a
parallel transport from (0,⇡, k

z

) to (�⇡,⇡, k
z

), then

M̄
x

W�⇡

M̄�1

x

= W�⇡

, with M̄
x

= W�⇡ 0 M̄x

. (21)

We Define A Wilson Group
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where H(k) = ε(k) + di(k)σi, d1 + id2 = A[sin kx +
i sinky],d3 = −2B[2 − M

2B − cos kx − cos ky],ε(k) = C −
2D[2−coskx−cosky ]. Real HgTe does not have inversion
symmetry but the BHZ toy model does. To describe the
inversion symmetry breaking effect we add a new term
H ′:

H ′ =

⎡

⎢⎣

0 0 0 ∆
0 0 −∆ 0
0 −∆ 0 0
∆ 0 0 0

⎤

⎥⎦ (9)

We apply the new method to calculate the shift of
the Wannier function center based on the above model
Hamiltonian and show the results in Fig.2.

-0.5
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-0.5 -0.25  0

θ(
2π

) 

ky(2π) 

A

-0.5
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 0.5

-0.5 -0.25  0

θ(
2π

) 

ky(2π) 

B

Figure 2: Wannier centers for the BHZ model. (A) For
the QSH phase (A=-13.68, B=-16.9, C=-0.0263, D=-0.514,
M=-2.058, ∆=1.20) , The Wannier center cross the reference
line (red dashed line) once (odd times); (B) For the Normal
insulating phase (A=-14.48, B=-18.0, C=-0.018, D=-0.594,
M=2.766, ∆=1.20), The Wannier center cross the reference
line (red dashed line) zero (even) times.

To show these results more clearly, we glue θ = −π line
and θ = π line together. Then the Wannier centers live
on a cylinder surface. The corresponding results for the
QSH phase are showed in Fig.2(A). When moving from
ky = 0 to π we see that the two evolution lines of Wannier
centers enclose the cylinder once and equivalently these
evolution lines cross the reference line (the red dashed
line) only once (odd times). By contrast, for the normal
insulator phase, as shown in Fig.2(B), the two evolution
lines of Wannier centers never cross the reference line.
Therefore in the BHZ toy model for TI, the Z2 number
calculated by our new method is consistent with the pre-
vious conclusion. Next we will apply the method to more
realistic models of insulating materials.

B. CdTe and HgTe

The CdTe and HgTe materials have a similar zinc-
blende structure without bulk inversion symmetry. CdTe

has an normal electronic structure, where the conduc-
tion bands (Γ6) have the s-like character and the valance
bands have the p-like character(Γ8) through out the
whole Brillouin Zone. In HgTe, the band structure is
inverted in a small area near the Γ point, where the s-
like Γ6 band sinks below the p-like Γ8 band. The band
inversion at the Γ point changes the topological nature of
the band structure and makes the HgTe to be the topo-
logical insulator if a true energy gap is opened by the
lattice distortion44(As pointed out in ref.? the uniaxial
strain is applied along the [001] direction for HgTe by
choosing the c/a ratio to be 0.98 and the energy gap is
about 0.05eV at the Γ point). We then apply a tight-
binding model45 to calculate the pattern of the Wannier
center evolution θ defined in Eq.6 and show the results in
Fig.3. It is very clear that in the HgTe system, for kz = 0
the evolution line crosses the reference line (red dashed
line) once (as shown in Fig.3(A)), while for kz = π it
never crosses (as shown in Fig.3(B)). The above results
indicate that in the case of HgTe the effective 2D systems
for fixed kz = 0 and π are effectively 2D topological insu-
lator and normal insulator respectively, which determines
HgTe to be a strong 3D topological insulator15. A similar
analysis can be also applied to CdTe and the results are
shown in Fig.3(C) and (D). They clearly indicate that
CdTe is a normal insulator.

C. Bi2Se3 system

Recently, the tetradymite semiconductors Bi2Te3,
Bi2Se3, and Sb2Te3 have been theoretically predicted
and experimentally observed to be topological insula-
tors (TI) with a bulk band gap as large as 0.3eV in
Bi2Se320,21,23,25,26,39. The Bi2Se3 surface state has been
found by both ARPES21,23 and STM36, consistent with
the theoretical results20.

Since the Bi2Se3 family has inversion symmetry, the Z2

topological number can be easily calculated by the prod-
uct of half the parities at each high symmetry points in
the Brillouin Zone16. Below we apply our new method to
calculate the topological property of this system, using
the tight binding model based on the Wannier functions
obtained in reference20. We first perform the calculation
for the Bi2Se3 without spin-orbit coupling: the results
are shown in Fig.4(A,B). It is clear that the evolution
lines never cross the reference line for both kz = 0 and π,
indicating that the system is topologically trivial with-
out spin-orbital coupling. When the realistic spin orbital
coupling is turned on, as shown in Fig.4(C,D), the evo-
lution lines cross the reference line once only in the case
of kz = 0 but not for kz = π indicating the Bi2Se3 bulk
material is a 3D strong topological insulator.

k|| k||

All elements g (spatial or time-reversal symmetries) such that 
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We now focus on k
z

= k̄
z

satisfying k̄
z

= �k̄
z

modulo 2⇡, such that Eq. (B27) particularizes to

T̆
M̄

x

(�⇡, k
x

, k̄
z

)W(k
x

, k̄
z

) T̆
M̄

x

(�⇡, k
x

, k̄
z

)�1 = W(k
x

,�k̄
z

)
�1

= W(k
x

, k̄
z

)
�1

, (B29)

in the gauge

��u
j,(⇡,k

x

,�k̄
z

)

↵
= V (2k̄

z

~z)
��u

j,(⇡,k
x

,k̄

z

)

↵
for j = 1, . . . , n

occ

, (B30)

and 2k̄
z

~z is a reciprocal vector (possibly zero). Eq. (B29) shows that the symmetry maps to the Wilson loop to itself,
with a reversal of orientation. Let us prove that

T̆
M̄

x

(�⇡, k
x

, k̄
z

)2 =

8
<

:
+I, k̄

z

= 0

�I, k̄
z

= ⇡,
(B31)

from which we may deduce a Kramers-like degeneracy in the spectrum of W(k
x

, k
z

= ⇡) but not in W(k
x

, k
z

= 0).
Employing the shorthand

k1 = (�⇡, k
x

, k̄
z

), kt

2 = �D
M

x

kt

1 = (⇡, k
x

,�k̄
z

)t, (B32)

and the gauge conditions assumed in Eq. (B28) and (B30),

⇥
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In the second equality, we applied that the symmetry representations are block-diagonal with respect to the occupied
and empty subspaces; the completeness relation was used in the third, Eq. (A36) in the fourth, and U

TM̄

x

U⇤
TM̄

x

= +I

represents the point-group relation that (TM
x

)2 is just the identity transformation; cf. our discussion in App. A 1.

c. E↵ect of time-reversal symmetry

Let us particularize the discussion in Sec. A 2 by letting g� in Tg� be the trivial transformation. In the

Löwdin representation, T̂ = U
T

K, where U
T

U⇤
T

= �I corresponds to a 2⇡ rotation of a half-integer spin. We
obtain from Eq. (B20) that

T̂ Ŵ (kq) T̂
�1 = V

�
�2⇡~y

� ⇡ �⇡Y

k

y

P
�
�k

�
= V

�
�2⇡~y

��⇡ ⇡Y

k

y

P
�
k
y

,�kq
�
= Ŵ

r

(�kq), (B34)

where in the last equality we identify the reverse-oriented Wilson loop defined in Eq. (B5). Equivalently, in the
occupied-band basis,

T̆ (�⇡,kq)W(kq) T̆ (�⇡,kq)
�1 = W(�kq)

�1
, (B35)

with the inverse Wilson loop defined in Eq. (B6). Time reversal thus maps exp[i✓kq ] ! exp[i✓�kq ]. Following an
exercise similar to the previous section (Sec. B 3 b), one may derive a Kramers degeneracy where kq = �kq (up to a
reciprocal vector).

Since Wilson loops winding gives correct surface symmetries, we 
define a wilson group



Cohomology and Crystals
Cohomology in crystallographyx

z 𝑀௫
ଶ = 𝐼

How many ways can I make a 1D crystal 
that extends in z, and has also this reflection
symmetry?

Obvious (for cohomologists, trivial/split; for crystallographers: symmorphic) 𝑀௫
ଶ = 𝐼

Less obvious (for crystallographers: nonsymmorphic) ഥ𝑀௫
ଶ = 𝑡(�̂�)

The two algebras differ only by insertion of spatial translations. 



Cohomology in crystallography

Different extensions are classified by the second cohomology group:

𝐻ଶ 𝐺, 𝒯 = ℤଶ

𝐺 = {1,𝑀௫} 𝒯 = 𝑡 �̂�  𝑛 ∈ ℤ }

These are the only two possible extensions of the group of reflection 
with the group of spatial translations. 

In essence, this is how one determines there are 
1) 17 space groups in two spatial dimensions,
2) 219 in 3D,
3) 4783 in 4D, and
4) a finite number in any finite spatial dimension.

(Hilbert’s  18’th  problem,  1900)

– each extension corresponds to a different crystal order / space group.

Nonsymmorphicity exists only in real space, why not in momentum space?

Most groups 
nonsymmorphic

Group Extensions



Topological Insulators exist because of a nontrivial extension of the time - reversal 
symmetry group with that of spin.  

With Spin, We can have two situations: 

T^2=1  (spinful, but no spin-orbit coupling} 

T^2=-1 (spinful, with spin-orbit coupling, nontrivial TI possible)

Group Extensions
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however, when viewed along a bent line (�̃Z̃ŨX̃), the
bands exhibit spectral flow. In all other cases for P⌘

�̃
,Q�̃Z̃

and Q
X̃Ũ

, bands along �̃Z̃ŨX̃ separate into spectrally-
isolated quadruplets, as in Fig. 9(f).

FIG. 9: Possible Wilson spectra along Z̃Ũ .

IV. EXTENDED GROUP OF WILSONIAN
SYMMETRIES AND GROUP COHOMOLOGY IN

BAND INSULATORS

Symmetry operations normally describe space-time
transformations; such symmetries and their groups are
referred to as ordinary. Here, we encounter certain
‘symmetries’ of the Wilson loop which additionally
induce parallel transport; we call them W-symmetries
to distinguish them from the ordinary symmetries. In
this Section, we identify the relevant W-symmetries, and
show their corresponding group (G

⇡,k

z

) to be an exten-
sion of the ordinary group (G�) by Wilson loops, where
G� corresponds purely to space-time transformations;
the inequivalent extensions are classified by the second
cohomology group, which we also introduce here. In
crystals, G� would be a point group for a spinless par-
ticle, consisting of spatial transformations that preserve
the origin.48 It is well-known how G� may be extended
by phase factors to describe half-integer-spin particles,
and also by discrete spatial translations to describe
nonsymmorphic crystals.22–26 One lesson learned here is
that G� may be further extended by quasimomentum
translations, thus placing real and quasimomentum
space on equal footing.

W-symmetries are a special type of constraints on the
Wilson loop at high-symmetry momenta (kq). As exem-
plified in Eq. (10) and (11), constraints (ĝ) on a Wilson
loop (W) map W to itself, up to a reversal in orientation:

ĝW ĝ�1 = W±1, (19)

where W�1 is the inverse of W; all ĝ satisfying this
equation are defined as elements in the group (Gkq) of
the Wilson loop. A trivial example of ĝ would be the

Wilson loop itself; ĝ may also represent a space-time
transformation, as exemplified by a 2⇡ real-space
rotation (Ē). Particularizing to our context, we let
k
y

2[�⇡,⇡) parametrize the non-contractible momentum
loop, and choose the convention that W (W�1) e↵ects
parallel transport in the positive orientation:+2⇡~y (resp.
in the reversed orientation:�2⇡~y), as further elaborated
in App. B 1.

FIG. 10: Origin of W-glide and W-time-reversal symmetries.
(a-d) are constant-k

z

slices of the bulk Brillouin zone. (a)
illustrates how the glide (M̄

x

) maps momenta from the glide
plane k

x

=⇡. Under M̄
x

, the Wilson loop is mapped from the
red vertical arrow in (a) to the red vertical arrow in (b). (c-d)
describe the k

z

=0 plane and illustrate a similar story for the
time reversal T .

W-symmetries arise as constraints if a space-time
transformation exists that maps: k
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Fig. 10(a)) to W0 (arrow in Fig. 10(b)) is also illustrated.
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the occupied space by �⇡~y, such that we return to the
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). This motivates the defi-
nition of a W-glide symmetry (M̄
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) which combines the
glide reflection (M̄
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is an
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cise, let us define the Wilson line W�⇡ 0 to represent a
parallel transport from (0,⇡, k

z

) to (�⇡,⇡, k
z

), then

M̄
x

W�⇡

M̄�1

x

= W�⇡

, with M̄
x

= W�⇡ 0 M̄x

. (21)

12

however, when viewed along a bent line (�̃Z̃ŨX̃), the
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IV. EXTENDED GROUP OF WILSONIAN
SYMMETRIES AND GROUP COHOMOLOGY IN

BAND INSULATORS

Symmetry operations normally describe space-time
transformations; such symmetries and their groups are
referred to as ordinary. Here, we encounter certain
‘symmetries’ of the Wilson loop which additionally
induce parallel transport; we call them W-symmetries
to distinguish them from the ordinary symmetries. In
this Section, we identify the relevant W-symmetries, and
show their corresponding group (G

⇡,k

z

) to be an exten-
sion of the ordinary group (G�) by Wilson loops, where
G� corresponds purely to space-time transformations;
the inequivalent extensions are classified by the second
cohomology group, which we also introduce here. In
crystals, G� would be a point group for a spinless par-
ticle, consisting of spatial transformations that preserve
the origin.48 It is well-known how G� may be extended
by phase factors to describe half-integer-spin particles,
and also by discrete spatial translations to describe
nonsymmorphic crystals.22–26 One lesson learned here is
that G� may be further extended by quasimomentum
translations, thus placing real and quasimomentum
space on equal footing.

W-symmetries are a special type of constraints on the
Wilson loop at high-symmetry momenta (kq). As exem-
plified in Eq. (10) and (11), constraints (ĝ) on a Wilson
loop (W) map W to itself, up to a reversal in orientation:

ĝW ĝ�1 = W±1, (19)

where W�1 is the inverse of W; all ĝ satisfying this
equation are defined as elements in the group (Gkq) of
the Wilson loop. A trivial example of ĝ would be the

Wilson loop itself; ĝ may also represent a space-time
transformation, as exemplified by a 2⇡ real-space
rotation (Ē). Particularizing to our context, we let
k
y

2[�⇡,⇡) parametrize the non-contractible momentum
loop, and choose the convention that W (W�1) e↵ects
parallel transport in the positive orientation:+2⇡~y (resp.
in the reversed orientation:�2⇡~y), as further elaborated
in App. B 1.
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), then
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equation are defined as elements in the group (Gkq) of
the Wilson loop. A trivial example of ĝ would be the
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The W-glide (M̄
x

) squares as:

M̄2
x

= Ē t(~z) W�1
�⇡

, (22)

which may be understood loosely as follows: the glide
component of the W-glide squares as a 2⇡ rotation (Ē)
with a lattice translation (t(~z)), while the transport
component squares as a full-period transport (W�1); we
defer the detailed derivations of Eq. (20)-(22) to App.
B 4. For a Wilson band with energy ✓(k

z

), Eq. (22)
implies the corresponding W-glide eigenvalue depends
on the sum of energy and momentum, as in Eq. (13).
Our construction of M̄

x

is a quasimomentum-analog of
the nonsymmorphic extension of point groups.22–26 For
example, the glide reflection (M̄

x

) combines a reflection
with half a real -lattice translation – M̄2

x

thus squares to
a full lattice translation, which necessitates extending
the point group by the group of translations. Here, we
have further combined M̄

x

with half a reciprocal -lattice
translation, thus necessitating a further extension by
Wilson loops.

Our second example of a W-symmetry (T ) combines
time reversal (T ) with parallel transport over a half pe-
riod, and belongs in the groups of W(X̃) and W(Ũ),
which correspond to the two time-reversal-invariant kq
along k

x

=⇡ (recall Fig. 2); since both groups are isomor-
phic, we use a common label: G

X̃

. Under time reversal,

T : (k
y

,⇡, k̄
z

) �! (�k
y

,�⇡,�k̄
z

)

= (�k
y

+ ⇡,⇡, k̄
z

)� b̃2 � 2k̄
z

~z, (23)

for k̄
z

2{0,⇡} and 2k̄
z

~z a reciprocal vector (possibly
zero), as illustrated in Fig. 10(c). Consequently,

T W�⇡

T�1 k̄

z= W
r,2⇡, (24)

where W
r,2⇡ denotes the reverse-oriented Wilson loop

with base point 2⇡ (see arrow in Fig. 10(d)), and
k̄

z=
indicates that this equality holds for kq 2 {X̃, Ũ}. Eq.
(B66) motivates combining T with a half-period trans-
port, such that the combined operation T e↵ects

T W�⇡

T �1 k̄

z= W�1
�⇡

, with T k̄

z= W�⇡ 0 T. (25)

To complete the Wilsonian algebra, we derive in App.
B 4 that

T 2 k̄

z= Ē, M̄
x

T M̄�1
x

T �1 k̄

z= W�1
�⇡

. (26)

This result, together with Eq. (22), may be compared
with the ordinary algebra of space-time transformations:

M̄2
x

= Ē t(~z), T 2 k̄

z= Ē, M̄
x

T M̄�1
x

T�1 k̄

z= I, (27)

as would apply to the surface bands at any time-reversal-
invariant kq. Both algebras are identical modulo factors
of W and its inverse; from hereon, W(kq)�⇡

=W. We

emphasize that the same edge symmetries are repre-
sented di↵erently in the surface Hamiltonion (H

s

) and
in W – this di↵erence originates from the out-of-surface
translational symmetry (t( ã1 )), which is broken for H

s

but not for W; recall here that ã1 is the out-of-surface
Bravais lattice vector drawn in Fig. 2(b). Where t( ã1 )
symmetry is preserved, we can distinguish the bulk
wavevectors k

y

from k
y

+⇡, and therefore define W-
symmetry operators that include the Wilson line W�⇡ 0.

To further describe this di↵erence group-theoretically,
let us define G� ⇠= Z2 ⇥ Z2 as the symmetry group of a
spinless particle with glideless-reflection (M

x

) and time-
reversal (T ) symmetries:

G� = { Ma

x

T b | a, b 2 Z2 }, (28)

with the algebra:

M2
x

= I, T 2 = I, [M
x

, T ] = 0. (29)

The algebra of Eq. (27) describes a well-known, nonsym-
morphic extension of G� for spinful particles;7 we pro-
pose that Eq. (22) and (26) describe a further extension
of Eq. (27) by reciprocal translations. That is, G

X̃

is a
nontrivial extension of G� by N , where N ⇠= Z2 ⇥ Z2 is
an Abelian group generated by Ē, W and t(~z):

N = { Ēa t(~z)b Wc | a 2 Z2, b, c 2 Z }. (30)

For an introduction to group extensions and their
application to our problem, we refer to the interested
reader to App. D 1. There exists another extension
(G�̃, as further elaborated later in this Section) which is
inequivalent to G

X̃

, and applies to a di↵erent momentum
submanifold of our crystal; in Sec. III B, we further
show that inequivalent extensions lead to di↵erent
subtopologies for the Wilson bands.

From the cohomological perspective, two extensions (of
G� by N ) are equivalent if they correspond to the same
element in the second cohomology group H2(G�,N ).
The identity element in this group corresponds to a linear
representation of G�, which we now define. Let the group
element g

i

2 G� be represented by ĝ
i

in the extension of
G� by N , and further define g

ij

⌘ g
i

g
j

2 G� by ĝ
ij

. We
insist that {ĝ

i

} satisfy the the associativity condition:

( ĝ
i

ĝ
j

) ĝ
k

= ĝ
i

( ĝ
j

ĝ
k

). (31)

In a linear representation,

ĝ
i

ĝ
j

= ĝ
ij

for all g
i

, g
i

, g
ij

2 G�, (32)

while in a projective representation,

ĝ
i

ĝ
j

= C
i,j

ĝ
ij

, where C
i,j

2 N , (33)

at least one of {C
i,j

} (defined as the factor system49)
is not trivially identity. Eq. (22) exemplifies Eq.

For kx=Pi, the Mirror is NOT part of the 
Wilson Group - translates the origin of 
the Wilson line.  

Can Build a Nontrivial Mirror:

There exists an extension by the Wilson loop!
Gives the correct prediction of the possible surface modes, Gives the equivalent of spatial nonsymmorphic symmetries to the 

Brillouin zone

The two glide-invariant planes in our case study correspond to different representations of the same symmetries – by deducing the possible Wilson 
‘bandstructures’ in both planes, we demonstrated that one plane allows for a glide-spin-Hall subtopology, and the other does not.



ഥ𝑀𝑥
2 = − 𝒕( Ƹ𝑧)

Ordinary glide plane: k𝒙 = 0

ഥℳ𝑥
2 = − 𝒕 Ƹ𝑧 𝒲−1

Projective glide plane: k𝒙 = 𝜋

Trivial extension by 
quasimomentum translation.

Nontrivial extension by 
quasimomentum translation.

ഥ𝑀𝒙 ∶ 𝑘𝒙 → −𝑘𝒙

Different extensions lead to different 2D topologies.

𝑘𝒙



Wilson loops encode bulk symmetries which are spoilt by the surface.
Ex 2: out-of-surface translational (𝒕ୄ) symmetry

𝒌 𝒙
=
𝟎

𝒌 𝒙
=
𝝅

distinguishes between the two glide planes.

ഥ𝑀௫𝒲 ഥ𝑀௫
ିଵ = 𝒲

ഥ𝑀௫
ଶ = 2𝜋 𝑟𝑜𝑡. spatial trans.
= − 𝒕(�̂�)

𝑇𝒲𝑇ିଵ = 𝒲ିଵ

𝑇ଶ = −𝐼

ഥ𝑀௫𝑇 = 𝑇 ഥ𝑀௫

Ordinary representation
ഥℳ௫
ଶ = − 𝒕 �̂� 𝒲ିଵ

𝒯ଶ = −𝐼

ഥℳ௫𝒯 = 𝒯 ഥℳ௫𝒲

Projective representation

ഥℳ௫𝒲 ഥℳ௫
ିଵ = 𝒲

𝒯𝒲𝒯ିଵ = 𝒲ିଵ

Identical to the algebra of the surface
symmetries    

Different from the algebra of the 
surface symmetries.    

ഥℳ௫, 𝒯 are generalized symmetries that
encode parallel transport.    

→ surface prediction is valid.

The Wilsonian algebra determines the possible topologies of the Wilson bands along X ̃ U ̃ .
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choose the convention that W (W�1) e↵ects parallel
transport in the positive orientation:+2⇡~y (resp. in the
reversed orientation:�2⇡~y), as further elaborated in
App. B 1.

W-symmetries arise as constraints if a space-time
transformation exists that maps: k

y

!±k
y

+⇡. Our
first example of a W-symmetry has been introduced in
Sec. III A, namely that the glide reflection (M̄

x

) maps:
(k

y

,kq)!(k
y

+⇡,kq), for any kq along k
x

=⇡ (X̃Ũ). Con-
sequently,

M̄
x

W�⇡

(⇡, k
z

) M̄�1
x

= W0(⇡, kz), (20)

where we have indicated the base point of the parameter
loop as a subscript of W, i.e., W

k̄

y

induces parallel trans-
port from (k̄

y

,⇡, k
z

) to (k̄
y

+2⇡,⇡, k
z

). As it stands, Eq.
(20) is not a constraint as defined in Eq. (19). Progress is
made by further parallel-transporting the occupied space
by �⇡~y, such that we return to the initial momentum:
(k

y

,⇡, k
z

). This motivates the definition of a W-glide
symmetry (M̄

x

) which combines the glide reflection (M̄
x

)
with parallel transport across half a reciprocal period –
then by our construction, M̄

x

is an element in the group
(G

⇡,k

z

) of W�⇡

(⇡, k
z

). To be precise, let us define the
Wilson line W�⇡ 0 to represent a parallel transport from
(0,⇡, k

z

) to (�⇡,⇡, k
z

), then

M̄
x

W�⇡

M̄�1

x

= W�⇡

, with M̄
x

= W�⇡ 0 M̄x

. (21)

The W-glide squares as:

M̄2
x

= Ē t(~z) W�1
�⇡

, (22)

which may be understood loosely as follows: the glide
component of the W-glide squares as a 2⇡ rotation (Ē)
with a lattice translation (t(~z)), while the transport
component squares as a full-period transport (W�1); we
defer the detailed derivations of Eq. (20)-(22) to App.
B 4. For a Wilson band with energy ✓(k

z

), Eq. (22)
implies the corresponding W-glide eigenvalue depends
on the sum of energy and momentum, as in Eq. (13).
Our construction of M̄

x

is a quasimomentum-analog of
the nonsymmorphic extension of point groups.22–26 For
example, the glide reflection (M̄

x

) combines a reflection
with half a real -lattice translation – M̄2

x

thus squares to
a full lattice translation, which necessitates extending
the point group by the group of translations. Here, we
have further combined M̄

x

with half a reciprocal -lattice
translation, thus necessitating a further extension by
Wilson loops.

Our second example of a W-symmetry (T ) combines
time reversal (T ) with parallel transport over a half pe-
riod, and belongs in the groups of W(X̃) and W(Ũ),
which correspond to the two time-reversal-invariant kq
along k

x

=⇡ (recall Fig. 2); since both groups are isomor-
phic, we use a common label: G

X̃

. Under time reversal,

T : (k
y

,⇡, k̄
z

) �! (�k
y

,�⇡,�k̄
z

)

= (�k
y

+ ⇡,⇡, k̄
z

)� b̃2 � 2k̄
z

~z, (23)

for k̄
z

2 {0,⇡} and 2k̄
z

~z a reciprocal vector (possibly
zero), as illustrated in Fig. 3(c). Consequently,

T W�⇡

T�1 k̄

z= W
r,2⇡, (24)

where W
r,2⇡ denotes the reverse-oriented Wilson loop

with base point 2⇡, and
k̄

z= indicates that this equality
holds for kq 2 {X̃, Ũ}. Eq. (B57) motivates combining
T with a half-period transport, such that the combined
operation T e↵ects

T W�⇡

T �1 k̄

z= W�1
�⇡

, with T k̄

z= W�⇡ 0 T. (25)

To complete the Wilsonian algebra, we find

T 2 k̄

z= Ē, M̄
x

T k̄

z= T M̄
x

W�⇡

, (26)

as derived in App. B 4. This result, together with Eq.
(22), may be compared with the ordinary algebra of
space-time transformations:

M̄2
x

= Ē t(~z), T 2 k̄

z= Ē, M̄
x

T
k̄

z= T M̄
x

, (27)

as would apply to the surface bands at any time-reversal-
invariant kq. Both algebras are identical modulo factors
of W and its inverse; from hereon, W(kq)�⇡

=W. We
emphasize that the same edge symmetries are repre-
sented di↵erently in the surface Hamiltonion (H

s

) and
in W – this di↵erence originates from the out-of-surface
translational symmetry (t?), which is broken for H

s

but
not for W. Where t? symmetry is preserved, we can
distinguish the bulk wavevectors k

y

from k
y

+⇡, and
therefore define W-symmetry operators that include the
Wilson line W�⇡ 0.

To further describe this di↵erence group-theoretically,
let us define G� ⇠= Z2 ⇥ Z2 as the symmetry group of a
spinless particle with glideless-reflection (M

x

) and time-
reversal (T ) symmetries:

G� = { Ma

x

T b | a, b 2 Z2 }, (28)

with the algebra:

M2
x

= I, T 2 = I, [M
x

, T ] = 0. (29)

The algebra of Eq. (27) describes a well-known, nonsym-
morphic extension of G� for spinful particles;7 we propose
that Eq. (22) and (26) describe a further extension of Eq.
(27) by reciprocal translations. That is, G

X̃

is an exten-
sion of G� by N , where N ⇠= Z2⇥Z2 is an Abelian group
generated by Ē, W and t(~z):

N = { Ēa t(~z)b Wc | a 2 Z2, b, c 2 Z }. (30)

For an introduction to group extensions and their
application to our problem, we refer to the interested
reader to App. D 1. There exists another extension
(G�̃, as further elaborated later in this Section) which is
inequivalent to G

X̃

, and applies to a di↵erent momentum

33

which di↵ers from N in lacking the generators t(~z) and Ē; nontrivial extensions by t(~z) and Ē respectively describe
nonsymmorphic and half-integer-spin representations, and are already well-known.7 Here, we focus on extensions
purely by momentum translations. G� acts on N as

TWT�1 = W�1 and M
x

WM�1
x

= W. (D21)

The algebra of G� (described in Eq. (29)) may be extended as

M2
x

= Wa; T 2 = Wb and M
x

T = Wc T M
x

, (D22)

with a, b, c integers that we proceed to constrain. From associativity of T 3,

TWb = T (TT ) = (TT )T = WbT = TW�b ) W2b = I. (D23)

Lacking spatial-inversion symmetry, the eigenvalues of W are generically not quantized to any special value, and the
only integral solution to W2b=I is b=0; we comment on the e↵ect of spatial-inversion symmetry at the end of this
example. Similarly, a=c follows from

WaT = M2
x

T = W2cTM2
x

= W2cTWa = W2c�aT. (D24)

Moreover, only the parity of a is invariant, since by a gauge transformation,

M2
x

= Wa ! (M
x

Wn(M
x

))2 = Wa with n(M
x

) 2 Z. (D25)

The two elements of H2(G�, N) are then distinguished by a=0:

M2
x

= I, T 2 = I, [T,M
x

] = 0, (D26)

which is expected from the algebra of G�, and a=� 1:

M2
x

= W�1, T 2 = I, T M
x

= W�1 M
x

T. (D27)

To realize the nontrivial algebra in Eq. (D27), we need that M
x

is a Wilsonian symmetry, i.e., it describes not purely
a spatial-reflection, but also induces parallel transport. Note that we have rederived Eq. (22) and (26), modulo
factors of Ē and t(c~z). The first extension is split (i.e., it is isomorphic to a semi-direct product of G� with N), and
corresponds to the identity element of H2(G�, N) ⇠= Z2. Multiplication of two elements corresponds to multiplying
the factor systems, e.g., the two non-split elements multiply as

M2
x

= W�2, T 2 = I, T M
x

= W�2 M
x

T, (D28)

which is gauge-equivalent to Eq. (D26), e.g., by a transformation such as Eq. (D25).

Let us consider a di↵erent example where G� includes a spatial-inversion (I) symmetry. We have shown in Ref. 19
that a subset of the W-eigenvalues may be quantized to ±1 depending on the I-eigenvalues of the occupied bands.
Indeed, if we focus only on this quantized eigenvalue-subset, we might conclude that W2b=I (whose derivation in
Eq. (D23) carries through in the presence of I symmetry) could be solved for any b2Z. However, our perspective is
that Wilson-loop extensions classify di↵erent momentum submanifolds in the Brillouin zone; this classification should
therefore be independent of specific I-representations of the occupied bands. Thus assuming that a finite subset of
W-eigenvalues are generically not quantized, we conclude that b=0 even with I symmetry.

1 L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
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choose the convention that W (W�1) e↵ects parallel
transport in the positive orientation:+2⇡~y (resp. in the
reversed orientation:�2⇡~y), as further elaborated in
App. B 1.

W-symmetries arise as constraints if a space-time
transformation exists that maps: k

y

!±k
y

+⇡. Our
first example of a W-symmetry has been introduced in
Sec. III A, namely that the glide reflection (M̄

x

) maps:
(k

y

,kq)!(k
y

+⇡,kq), for any kq along k
x

=⇡ (X̃Ũ). Con-
sequently,

M̄
x

W�⇡

(⇡, k
z

) M̄�1
x

= W0(⇡, kz), (20)

where we have indicated the base point of the parameter
loop as a subscript of W, i.e., W

k̄

y

induces parallel trans-
port from (k̄

y

,⇡, k
z

) to (k̄
y

+2⇡,⇡, k
z

). As it stands, Eq.
(20) is not a constraint as defined in Eq. (19). Progress is
made by further parallel-transporting the occupied space
by �⇡~y, such that we return to the initial momentum:
(k

y

,⇡, k
z

). This motivates the definition of a W-glide
symmetry (M̄

x

) which combines the glide reflection (M̄
x

)
with parallel transport across half a reciprocal period –
then by our construction, M̄

x

is an element in the group
(G

⇡,k

z

) of W�⇡

(⇡, k
z

). To be precise, let us define the
Wilson line W�⇡ 0 to represent a parallel transport from
(0,⇡, k

z

) to (�⇡,⇡, k
z

), then

M̄
x

W�⇡

M̄�1

x

= W�⇡

, with M̄
x

= W�⇡ 0 M̄x

. (21)

The W-glide squares as:

M̄2
x

= Ē t(~z) W�1
�⇡

, (22)

which may be understood loosely as follows: the glide
component of the W-glide squares as a 2⇡ rotation (Ē)
with a lattice translation (t(~z)), while the transport
component squares as a full-period transport (W�1); we
defer the detailed derivations of Eq. (20)-(22) to App.
B 4. For a Wilson band with energy ✓(k

z

), Eq. (22)
implies the corresponding W-glide eigenvalue depends
on the sum of energy and momentum, as in Eq. (13).
Our construction of M̄

x

is a quasimomentum-analog of
the nonsymmorphic extension of point groups.22–26 For
example, the glide reflection (M̄

x

) combines a reflection
with half a real -lattice translation – M̄2

x

thus squares to
a full lattice translation, which necessitates extending
the point group by the group of translations. Here, we
have further combined M̄

x

with half a reciprocal -lattice
translation, thus necessitating a further extension by
Wilson loops.

Our second example of a W-symmetry (T ) combines
time reversal (T ) with parallel transport over a half pe-
riod, and belongs in the groups of W(X̃) and W(Ũ),
which correspond to the two time-reversal-invariant kq
along k

x

=⇡ (recall Fig. 2); since both groups are isomor-
phic, we use a common label: G

X̃

. Under time reversal,

T : (k
y

,⇡, k̄
z

) �! (�k
y

,�⇡,�k̄
z

)

= (�k
y

+ ⇡,⇡, k̄
z

)� b̃2 � 2k̄
z

~z, (23)

for k̄
z

2 {0,⇡} and 2k̄
z

~z a reciprocal vector (possibly
zero), as illustrated in Fig. 3(c). Consequently,

T W�⇡

T�1 k̄

z= W
r,2⇡, (24)

where W
r,2⇡ denotes the reverse-oriented Wilson loop

with base point 2⇡, and
k̄

z= indicates that this equality
holds for kq 2 {X̃, Ũ}. Eq. (B57) motivates combining
T with a half-period transport, such that the combined
operation T e↵ects

T W�⇡

T �1 k̄

z= W�1
�⇡

, with T k̄

z= W�⇡ 0 T. (25)

To complete the Wilsonian algebra, we find

T 2 k̄

z= Ē, M̄
x

T k̄

z= T M̄
x

W�⇡

, (26)

as derived in App. B 4. This result, together with Eq.
(22), may be compared with the ordinary algebra of
space-time transformations:

M̄2
x

= Ē t(~z), T 2 k̄

z= Ē, M̄
x

T
k̄

z= T M̄
x

, (27)

as would apply to the surface bands at any time-reversal-
invariant kq. Both algebras are identical modulo factors
of W and its inverse; from hereon, W(kq)�⇡

=W. We
emphasize that the same edge symmetries are repre-
sented di↵erently in the surface Hamiltonion (H

s

) and
in W – this di↵erence originates from the out-of-surface
translational symmetry (t?), which is broken for H

s

but
not for W. Where t? symmetry is preserved, we can
distinguish the bulk wavevectors k

y

from k
y

+⇡, and
therefore define W-symmetry operators that include the
Wilson line W�⇡ 0.

To further describe this di↵erence group-theoretically,
let us define G� ⇠= Z2 ⇥ Z2 as the symmetry group of a
spinless particle with glideless-reflection (M

x

) and time-
reversal (T ) symmetries:

G� = { Ma

x

T b | a, b 2 Z2 }, (28)

with the algebra:

M2
x

= I, T 2 = I, [M
x

, T ] = 0. (29)

The algebra of Eq. (27) describes a well-known, nonsym-
morphic extension of G� for spinful particles;7 we propose
that Eq. (22) and (26) describe a further extension of Eq.
(27) by reciprocal translations. That is, G

X̃

is an exten-
sion of G� by N , where N ⇠= Z2⇥Z2 is an Abelian group
generated by Ē, W and t(~z):

N = { Ēa t(~z)b Wc | a 2 Z2, b, c 2 Z }. (30)

For an introduction to group extensions and their
application to our problem, we refer to the interested
reader to App. D 1. There exists another extension
(G�̃, as further elaborated later in this Section) which is
inequivalent to G

X̃

, and applies to a di↵erent momentum
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Semimetals: Why Are They Interesting?

Weyl, Dirac: Experimentally Discovered materials  first 
theoretically predicted.

Two - types of “Dirac” Semimetal: 
1. Two  2-fold irreps crossing linearly (CdAs):

E

pz

0

0

1

1
-1

-1

Κ

Figure 47: Spectrum of the 3D surface state in a 4 + 1D Chern insulator
subject to a magnetic and electric field - Eq. (626). In the presence of a
magnetic field Fxy = Bz, each level at every momentum pz in the figure is
Nxy = LxLyBz/2⇡ fold degenerate - the degeneracy of a Landau level. The
solid circles are the occupied states of the zeroth Landau level, and they
cross the band gap in the z direction. When the gauge vector potential Az

is shifted adiabatically from 0 to 2⇡/Lz, one state (denoted by a red dot) is
filled.
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FIG. 8: Angular dependence of the axial current in Sample
J4 at 4.5 K inferred from measurements of R14,23 in tilted
B(✓,�). In Panel A, B lies in the x-y plane at an angle � to
x̂ (sketch in inset). The conductance enhancement ��

xx

at
fixed B is plotted against � for fields 3  B  7 T. The insets
show the polar representation of ��

xx

vs. �. In Panel B,
��

xx

is plotted versus ✓ for 3  B  7 T forB lying in the x-z
plane. As sketched in the inset, ✓ is the angle between B and
x̂. In Panels A (B), the axial current is peaked when � ! 0
(✓ ! 0) with an angular width that narrows significantly as
B increases. Panels C and D show the orientations of B and
E relative to the crystal axes in Panels A and B, respectively.
Adapted from Xiong et al. [27].

fields.
The large negative MR in Panels A and B suggests

a long relaxation time for the novel current. We esti-
mate the relaxation time ⌧

v

for internode scattering from
curves of the conductance G = 1/R35,26 as follows. At
low B, G increases rapidly as B2 consistent with Eq. 2.
We form the ratio �

�

/�0 = 3
4 (kF `B)

�4.(⌧
v

/⌧
tr

) (where
�0 is the Drude conductivity, `

B

is the magnetic lengthp
~/eB and ⌧

tr

the usual transport lifetime). Fitting
to the observed parabolic curve, we find that ⌧

v

/⌧
tr

=
40-60. The scattering rate relaxing the axial current is

anomalously low compared with the scattering rate 1/⌧
tr

of the conventional states in zero B.
VII. ANGULAR WIDTH OF PLUME

A surprise to us is the acute sensitivity of the novel
current to misalignment at large B. We have exam-
ined how the conductivity derived from R14,23 decays
as B is tilted away from x̂ in either the x-y or the x-
z plane. Figure 8A displays the curves of ��

xx

(B,�) =
�
xx

(B,�) � �
xx

(B, 90�) vs. � as B is tilted in the x-y
plane at an angle � to x̂, with B fixed at values 3!7 T.
Figure 8B shows the same measurements but now with
B lying in the x-z plane at an angle ✓ to x̂. In both
cases, the low-field curves (B  2 T) are reasonably de-
scribed with cosp � (or cosp ✓) with p = 4 (not shown).
However, for B > 2 T, the angular widths narrow signif-
icantly. Hence, at large B, the axial current is observed
as a strongly collimated beam in the direction selected
by B and E as � or ✓ is varied.

To see what happens at larger B, we extended mea-
surements of R14,23 to B = 35 T. We observe a new fea-
ture at H

k

⇠ 23 T when B||ŷ. As B is tilted away from
ŷ (� ! 55�), the feature at H

k

becomes better resolved
as a kink. The steep increase in ⇢

xx

above H
k

suggests
an electronic instability at large B. However, as we de-
crease � below 45�, H

k

(�) moves rapidly to above 35 T.
The negative MR curve at � = 0 remains una↵ected by
the instability up to 35 T (the small rising background is
from a weak B

z

due to a slight misalignment).

To us, the unusual locking of the negative MR pattern
in Figs. 6A and 7B to E and B in weak B constitutes
strong evidence for the axial current. The experiment
confirms the B2 behavior in Eq. 2 and provides a mea-
surement of the long internode scattering lifetime. How-
ever, the width of the collimated beam in the direction
of B is much narrower than expected from the theory.

In addition to the results here, several groups have also
reported observing the chiral anomaly in other materials
(primarily TaAs and ZrTe5). The evidence is by and
large restricted to the appearance of negative longitudi-
nal MR often bracketed by large positive MR at lower
and higher B. A concern is that a negative, longitudinal
MR restricted to a narrow field interval is (by itself) a
rather slender reed to hang a weighty claim from. Fur-
ther tests, such as the demonstration of the field-steering
e↵ect, would appear to be necessary. Nonetheless, the
dramatic increase in experimental activity on a growing
list of candidate Weyl semimetals is an encouraging sign
for the field. We anticipate exciting experimental devel-
opments in the next few years.
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states in the electronic structure of pyrochlore iridates,”
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FIG. 5: STM data and theory on the surface of TaAs Weyl semimetal (under review, unpublished, at
the time of writing of this grant). TaAs and surface topography presented as an overlapping inset. a)
Theoretical determination of the surface Fermi arcs in TaAs, through a slab calculation. b) Joint density of
states (JDOS) obtained using a), projected to the last TaAs layer. c) Quasiparticle interference takes into
account the symmetries of the wavefunction, projected to the last TaAs layer. d) STM data showing almost
perfect matching with theory. The perfect match continues at di↵erent energies.

hundreds of nanometers and the fermi arc wavefunction has weight on more than just the As layer,
at least also in the Ta layer below the As layer. We first checked that the projection to the last
layer works for a wide range of energies. It did so perfectly. By analyzing the orbital content of
the Weyl nodes in the bulk we showed that they contain 90 percent weight in the Ta atoms. Hence
the moment the electron scatters from the As layer on the top surface to the next Ta layer, it
immediately disappears through the Weyl nodes (since their weight is mostly on Ta) into the bulk!
This is an example of no local transport, and I find it amazing that it can be seen in STM. In the
future I plan to devise time resolved STM experiments where this nonlocal transport can be better
understood. I also plan to work with Ali Yazdani’s group on performing STM measurements on
type 2 semimetals as well as on the higher degeneracy compounds predicted below.

Double and Triple Weyl Nodes Of Higher Monopole Numbers

Another immediate extension of the Weyl and Dirac semimetal physics is changing the dispersion
of the fermions from linear into quadratic or cubic (in some directions). Higher dispersion than
cubic are not possible in materials due to group theory requirements. The group theoretical
requirements needed for quadratic and cubic Weyl fermions to appear have been analyzed by
several authors, the first being the PI20. The fundamental property of the quadratic or cubic Dirac
fermions is that they cannot split into two or three linear Weyls unless some point-group symmetry
is broken. This is very di↵erent from two dimensions, in which, for example, the quadratic node
in bilayer graphene can split into 4 nodal linear fermions upon introducing next nearest neighbor

 Volovik, Murakami, Burkov, Balents, Moore, Vishwanath, Savrasov, Kane, Fu, Grushin, Zhang, Qi, Hosur, Bardarson, Weng, Dai, 
Soluyanov, Bergholtz, Fang, Yao, Nagaosa, Vanderbilt, Sachdev and others
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FIG. 4. Tight binding surface states for SG 214, showing
the surface density of states for a surface in the 1̄11 direction.
The x and y axes correspond to multiples of the reciprocal lat-
tice vectors g2 = 2⇡(1, 0, 1) and g3 = 2⇡(1, 1, 0) respectively.
There are Fermi arcs emanating from the points ±(0.25, 0.25)
which correspond to the surface projection of the P and �P
points. Inset shows the atoms in 9 unit cells of our tight-
binding model, with lines to indicate the nonzero hopping
amplitudes. Only p orbitals with intersite spin-orbit coupling
are included.

in the family of Ni3(BiS)2[38]. Fig. 5a shows the band
crossing is only .1eV above the Fermi level; its position
could be further tuned by doping. The analogous crossing
in SG 214 can be found in the family of La3PbI3[39];
Fig. 5b shows that the Fermi level is almost exactly at
the band crossing.

Space groups 220 and 230 can host 3-band and 8-band
crossings at the P and H points, respectively. In space
group 220, we find both of these fermions near the Fermi
energy in the systems A4Pn3 and R4Pn3 for A = Ca,
Sr, Ba, Eu; R = rare-earth element (i.g. La, Ce); Pn
(pnictogen) = As, Sb, Bi. Fig. 6 shows these crossings
in Ba4Bi3[40] and La4Bi3[41]. In space group 230, we
can see both of these fermions above the Fermi level in
SiO2[42], also shown in Fig. 6c.

The 6-band fermions in SG 198 can be found in the
families of PdAsS[43] and K3BiTe3[44], as shown in
Figs 7a and 7b. These band crossings are further from
the Fermi level, but can be moved closer by doping. Sim-
ilar fermions can be found closer to the Fermi level in the
compounds Li2Pd3B[45] (SG 212) and Re2W3C[46] (SG
213), shown in Figs 7c and 7d.

The quadratic 6-band fermions in SGs 205 can be
found in PdSb2[47], as shown in Fig. 7e, as well as in
the similar compounds FeS2 and PtP2. In SG 206, we
see a 6-band crossing in the family of KBiF6, as shown
in Fig. 7f, although it is .5 eV above the Fermi level.

The 8-band fermions required to exist in SG 130 are

exhibited in PdBi2O4[48] and WO3[49], above and below
the Fermi level, respectively, as shown in Figs 8a and 8b
respectively. The fourfold Dirac line nodes can clearly be
seen on the line joining the A and M points.

The 8-band fermions predicted to occur in SG 218 exist
in CsSn[50] and CsSi[51]; the band structure of CsSn
shows its unique splitting into four two-fold degenerate
bands in the k

x

= k
z

direction away from the R point
(Figs 8c and 8d). There is a similar 8-band fermion at
the H point in SG 220, which is shown in Fig. 6 for
Ba4Bi3[40] and La4Bi3[41].

The 8-band fermions predicted to occur in SG 223 are
exhibited in the candidates X3Y, where X is either Nb or
Ta and Y is any group A-IV or A-V element in the beta-
tungsten structure A15, as well as in the family MPd3S4,
where M is any rare-earth metal. The band structures
for Ta3Sb[52] and LaPd3S4[53] show the 8-band crossing
near the Fermi level, as shown in Figs 8e and 8f.

Outlook In this letter we have analyzed all possible
exotic fermion types that can occur in spin-orbit coupled
crystals with time reversal symmetry, going beyond the
Majorana-Weyl-Dirac classification. By virtue of their
band topology, these fermions can play host to novel
surface states, magnetotransport properties, and ARPES
signatures. Growth of many of the material candidates
mentioned above, including AsPdS, La3PbI3, La4Bi3,
LaPd3S4 and Ta3Sb is currently underway, and should
yield fruitful results.

On the theoretical side, there are several directions
which deserve future attention. First, gapping these de-
generacies by breaking the symmetries that protect them
can lead to novel symmetry-protected topological phases,
with new classes of 2d gapless surface modes. Further-
more, our symmetry analysis can be extended to crys-
tals with magnetic order. This requires an investigation
of representations of the 1191 remaining magnetic space
groups, which we are currently undertaking[54].
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(a) SGs 199 and 214 (b) SG 220

FIG. 1. Energy dispersion near a three-fold degeneracy at the P point in (a) SGs 199 and 214 and (b) SG 220. In the latter
case, pairs of bands remain degenerate in energy along the high-symmetry lines |�k

x

| = |�k
y

| = |�k
z

|.

holonomy around any loop encircling the line nodes is
given by w = �1.

Next, we consider the 6-fold band degeneracies. We
start with SGs 205, 206 and 230, in which TR symme-
try, T , times inversion, I, forces all bands to be two-fold
degenerate, as shown in Figs 2a and 2b. In SGs 206 and
230, the k · p Hamiltonian can be written as

H206 = H199 �H⇤
199 (3)

Due to T I, there is no U(1) topological number (Berry
flux) associated with these degeneracies. On the other
hand, the eigenvalues of SU(2) Wilson loop operators
come in complex conjugate pairs, which wind twice (in
opposite directions) as the Wilson loop is moved from the
top to the bottom of a sphere encircling the degeneracy
point.

Unlike the previous cases, SG 205 contains inversion
symmetry in the little group of the R point. This forces
the e↵ective Hamiltonian to be quadratic in �k. However,
it is still related to H199 by,

H205(�k) = H199(�k
0)�H⇤

199(�k
0) + F (�k)� F (�k),

(4)

where F (�k) is a diagonal matrix whose entries are
E1�k

2
x

+ E2�k
2
y

+ E3�k
2
z

, and all cyclic permutations.
Due to its quadratic coordinate dependence, H205(�k)
has only bands of zero net Berry flux, and Wilson loop
eigenvalues do not wind.

We conclude our analysis of the 3- and 6-fold fermions,
with SGs 198, 212, and 213. Unlike the other 6-band
systems, these lack inversion symmetry, and so host six
bands with distinct energies. The linearized k ·p Hamil-
tonians may be written as,

H198(�k) =

 
H199(�, �k) bH199(0, �k)

b⇤H199(0, �k) �H⇤
199(�, �k)

!
, (5)

H212,213(�k) =

 
H199(⇡/2, �k0) bH199(0, �k0)

b⇤H199(0, �k0) �H⇤
199(⇡/2, �k

0)

!
,

where �k0 = (�k
z

, �k
x

,��k
y

) and b is an arbitrary param-
eter. The six eigenstates of these Hamiltonians have dis-
tinct energies except along the faces of the BZ, where the

spectrum degenerates into pairs related by the composi-
tion of a non-symmorphic C2 rotation and time reversal;
this degeneracy is shown in Fig. 2c. Since this symmetry
is antiunitary and squares to �1, these degeneracies are
stable to higher order terms in k · p.

Next, we examine the 8-fold fermions. In SGs 130 and
135, T I symmetry mandates doubly degenerate bands.
Close to the A point, the linearized k · p Hamiltonian
reads

H130 = H135 = �k
z

(a�2�3�3 + b�2�3�2 + c�2�3�1) (6)

+ �k
x

(�d�1�3�0 + e�1�2�3 + f�1�2�2 + g�1�2�1)

+ �k
y

(d�3�3�0 + e�3�2�3 + f�3�2�2 + g�3�2�1)

where a, b, . . . , g are real-valued parameters. This Hamil-
tonian has fourfold degenerate line nodes along lines
�k

i

= �k
j

= 0 with i 6= j; i, j 2 {x, y, z} which follow
the BZ edges, as shown in Fig. 3a. This is seen by noting
that the matrices multiplying any given �k

i

are part of a
Cli↵ord algebra. These lines are generally protected by
composites of time reversal and non-symmorphic mirror
symmetry. Due to T I symmetry, the U(1) holonomy of
these line nodes vanishes. However, they can be charac-
terized by the two (�1) eigenvalues of the SU(2) Wilson
loop encircling them.

A similar story holds for SGs 222, 223 and 230, with

H222 = H223 = �k
z

(a�3�1�3 + b�1�1�1 + c�1�1�2)

� �k
x

(
a

2
�1�1�3 +

a
p
3

2
�1�2�0 + b�3�1�1 + c�3�1�2)

+ �k
y

(
a

2
�2�1�0 �

a
p
3

2
�2�2�3 + b�0�1�2 � c�0�1�1),

(7)

and a similar expression for H230 after a permutation of
the �k’s. Besides the T I double degeneracy of all bands,
there are no additional degeneracies, as shown in Fig. 3b.

Finally, we examine the 8-fold degeneracy in SGs 218
and 220. Because both of these cases lack T I, they
have eight non-degenerate bands away from the high-
symmetry point. However, there is a degeneracy along
high-symmetry lines emanating from it. Along lines

C=2

C=-2

C=0
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(a) SGs 199 and 214 (b) SG 220

FIG. 1. Energy dispersion near a three-fold degeneracy at the P point in (a) SGs 199 and 214 and (b) SG 220. In the latter
case, pairs of bands remain degenerate in energy along the high-symmetry lines |�k

x

| = |�k
y

| = |�k
z

|.

holonomy around any loop encircling the line nodes is
given by w = �1.

Next, we consider the 6-fold band degeneracies. We
start with SGs 205, 206 and 230, in which TR symme-
try, T , times inversion, I, forces all bands to be two-fold
degenerate, as shown in Figs 2a and 2b. In SGs 206 and
230, the k · p Hamiltonian can be written as

H206 = H199 �H⇤
199 (3)

Due to T I, there is no U(1) topological number (Berry
flux) associated with these degeneracies. On the other
hand, the eigenvalues of SU(2) Wilson loop operators
come in complex conjugate pairs, which wind twice (in
opposite directions) as the Wilson loop is moved from the
top to the bottom of a sphere encircling the degeneracy
point.

Unlike the previous cases, SG 205 contains inversion
symmetry in the little group of the R point. This forces
the e↵ective Hamiltonian to be quadratic in �k. However,
it is still related to H199 by,

H205(�k) = H199(�k
0)�H⇤

199(�k
0) + F (�k)� F (�k),

(4)

where F (�k) is a diagonal matrix whose entries are
E1�k

2
x

+ E2�k
2
y

+ E3�k
2
z

, and all cyclic permutations.
Due to its quadratic coordinate dependence, H205(�k)
has only bands of zero net Berry flux, and Wilson loop
eigenvalues do not wind.

We conclude our analysis of the 3- and 6-fold fermions,
with SGs 198, 212, and 213. Unlike the other 6-band
systems, these lack inversion symmetry, and so host six
bands with distinct energies. The linearized k ·p Hamil-
tonians may be written as,

H198(�k) =

 
H199(�, �k) bH199(0, �k)

b⇤H199(0, �k) �H⇤
199(�, �k)

!
, (5)

H212,213(�k) =

 
H199(⇡/2, �k0) bH199(0, �k0)

b⇤H199(0, �k0) �H⇤
199(⇡/2, �k

0)

!
,

where �k0 = (�k
z

, �k
x

,��k
y

) and b is an arbitrary param-
eter. The six eigenstates of these Hamiltonians have dis-
tinct energies except along the faces of the BZ, where the

spectrum degenerates into pairs related by the composi-
tion of a non-symmorphic C2 rotation and time reversal;
this degeneracy is shown in Fig. 2c. Since this symmetry
is antiunitary and squares to �1, these degeneracies are
stable to higher order terms in k · p.

Next, we examine the 8-fold fermions. In SGs 130 and
135, T I symmetry mandates doubly degenerate bands.
Close to the A point, the linearized k · p Hamiltonian
reads

H130 = H135 = �k
z

(a�2�3�3 + b�2�3�2 + c�2�3�1) (6)

+ �k
x

(�d�1�3�0 + e�1�2�3 + f�1�2�2 + g�1�2�1)

+ �k
y

(d�3�3�0 + e�3�2�3 + f�3�2�2 + g�3�2�1)

where a, b, . . . , g are real-valued parameters. This Hamil-
tonian has fourfold degenerate line nodes along lines
�k

i

= �k
j

= 0 with i 6= j; i, j 2 {x, y, z} which follow
the BZ edges, as shown in Fig. 3a. This is seen by noting
that the matrices multiplying any given �k

i

are part of a
Cli↵ord algebra. These lines are generally protected by
composites of time reversal and non-symmorphic mirror
symmetry. Due to T I symmetry, the U(1) holonomy of
these line nodes vanishes. However, they can be charac-
terized by the two (�1) eigenvalues of the SU(2) Wilson
loop encircling them.

A similar story holds for SGs 222, 223 and 230, with

H222 = H223 = �k
z

(a�3�1�3 + b�1�1�1 + c�1�1�2)

� �k
x

(
a

2
�1�1�3 +

a
p
3

2
�1�2�0 + b�3�1�1 + c�3�1�2)

+ �k
y

(
a

2
�2�1�0 �

a
p
3

2
�2�2�3 + b�0�1�2 � c�0�1�1),

(7)

and a similar expression for H230 after a permutation of
the �k’s. Besides the T I double degeneracy of all bands,
there are no additional degeneracies, as shown in Fig. 3b.

Finally, we examine the 8-fold degeneracy in SGs 218
and 220. Because both of these cases lack T I, they
have eight non-degenerate bands away from the high-
symmetry point. However, there is a degeneracy along
high-symmetry lines emanating from it. Along lines
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(a) SG 205 (b) SGs 206 and 230 (c) SGs 198, 212 and 213

FIG. 2. Energy dispersion near a six-fold degeneracy in (a) SG 205, (b) SG 206 and 230, and (c) SGs 198, 212, and 213. In
SGs 198, 212, and 213 bands become degenerate in pairs along the faces �k

i

= 0 of the BZ. In SGs 205, 206 and 230, all bands
are two-fold degenerate due to inversion symmetry.

(a) SGs 130 and 135 (b) SGs 222, 223 and 230 (c) SGs 218 and 220

FIG. 3. Energy dispersion near an eight-fold degeneracy in (a) SGs 130 and 135, (b) SGs 222 and 223, and (c) SGs 218 and
220. (a) and (b) show pairwise degeneracy due to inversion symmetry. In addition, in (a), two degenerate bands form four-fold
degenerate line nodes along the edges of the BZ. In (c) the eight-fold degeneracy splits into four non-degenerate and two doubly
degenerate pairs of bands along the high symmetry |�k

x

| = |�k
y

| = |�k
z

| lines.

|�k
x

| = |�k
y

| = |�k
z

|, the 8-fold degeneracy splits into
four singly degenerate bands and two pairs of doubly de-
generate bands. In addition, along lines where two of the
�k

i

are zero, and along lines where �k
i

= �k
j

, �k
k

= 0,
there are four pairs of doubly degenerate bands. Unlike
SGs 198, 212 and 213 above, however, there are no ad-
ditional degeneracies along high-symmetry planes. The
spectrum is shown in Fig. 3c. The k · p Hamiltonian is
unenlightening, but is given in the Supp. Mat.

Experimental signatures The new fermions exhibit
novel experimental signatures. First, we focus on the
3�fold degeneracy in SGs 199 and 214. Because the de-
generacy at the P point carries net Berry flux |⌫| = 2,
we expect that on a surface, two Fermi arcs emerge from
the surface projection of the P point. Furthermore, in
the presence of TR, a corresponding 3�fold degeneracy
exists at the �P point, whose surface projection will be
the origin for two more Fermi arcs. These four Fermi arcs
must terminate on the surface projection of four Weyl
points (or two double Weyl points), which we predict
must exist elsewhere in the BZ. To verify this, we con-
structed a toy tight-binding model for SG 214, with 4
atoms per unit cell, and three p orbitals from each atom
(inset Fig. 4). Fig. 4 shows the surface density of states
for a surface in the 1̄11 direction in the first surface BZ.
Two pairs of Fermi arcs are clearly visible, emanating
from the surface projections of the P and �P points.
Breaking time-reversal symmetry can split the degener-

acy between the Fermi arcs at the P and �P point in
SG 199, but not in SG 214, where a C2 rotation relates
these points.

In addition to Fermi arc surface states, the threefold
fermions will also exhibit anomalous negative magne-
toresistance and a new chiral anomaly due to the Berry
curvature of the bands. While a full analysis is forth-
coming, semiclassical considerations[35] suggest that the
magnetoresistance in SGs 199 and 214 match that of a
double Weyl point, although the density of states corre-
sponds to a linear dispersion. Due to the nonvanishing
Berry curvature, the 3-fold fermions cannot be gapped
by small crystal-symmetry breaking perturbations, but
can be split into a pair of single Weyl points.

Since the rest of our new fermions do not host net
Berry curvature, there is no guarantee of topologically
protected surface states. The line node in SGs 130, 135,
and 220 may host Fermi drum surface state[34], although
this will not be robust to breaking of the crystal symme-
try. The new fermions are detectable via ARPES and
through quantum oscillation experiments.

Material realizations We propose candidate
materials[36, 37] which realize each of the new types of
fermions. We have computed the band structure of each
candidate – shown in Figs 5–8 – to confirm that the
desired band crossings exist and are relatively close to
the Fermi level.

The exotic 3-band fermions in SG 199 can be found
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FIG. 2. Energy dispersion near a six-fold degeneracy in (a) SG 205, (b) SG 206 and 230, and (c) SGs 198, 212, and 213. In
SGs 198, 212, and 213 bands become degenerate in pairs along the faces �k

i

= 0 of the BZ. In SGs 205, 206 and 230, all bands
are two-fold degenerate due to inversion symmetry.
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FIG. 3. Energy dispersion near an eight-fold degeneracy in (a) SGs 130 and 135, (b) SGs 222 and 223, and (c) SGs 218 and
220. (a) and (b) show pairwise degeneracy due to inversion symmetry. In addition, in (a), two degenerate bands form four-fold
degenerate line nodes along the edges of the BZ. In (c) the eight-fold degeneracy splits into four non-degenerate and two doubly
degenerate pairs of bands along the high symmetry |�k
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there are four pairs of doubly degenerate bands. Unlike
SGs 198, 212 and 213 above, however, there are no ad-
ditional degeneracies along high-symmetry planes. The
spectrum is shown in Fig. 3c. The k · p Hamiltonian is
unenlightening, but is given in the Supp. Mat.
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3�fold degeneracy in SGs 199 and 214. Because the de-
generacy at the P point carries net Berry flux |⌫| = 2,
we expect that on a surface, two Fermi arcs emerge from
the surface projection of the P point. Furthermore, in
the presence of TR, a corresponding 3�fold degeneracy
exists at the �P point, whose surface projection will be
the origin for two more Fermi arcs. These four Fermi arcs
must terminate on the surface projection of four Weyl
points (or two double Weyl points), which we predict
must exist elsewhere in the BZ. To verify this, we con-
structed a toy tight-binding model for SG 214, with 4
atoms per unit cell, and three p orbitals from each atom
(inset Fig. 4). Fig. 4 shows the surface density of states
for a surface in the 1̄11 direction in the first surface BZ.
Two pairs of Fermi arcs are clearly visible, emanating
from the surface projections of the P and �P points.
Breaking time-reversal symmetry can split the degener-

acy between the Fermi arcs at the P and �P point in
SG 199, but not in SG 214, where a C2 rotation relates
these points.

In addition to Fermi arc surface states, the threefold
fermions will also exhibit anomalous negative magne-
toresistance and a new chiral anomaly due to the Berry
curvature of the bands. While a full analysis is forth-
coming, semiclassical considerations[35] suggest that the
magnetoresistance in SGs 199 and 214 match that of a
double Weyl point, although the density of states corre-
sponds to a linear dispersion. Due to the nonvanishing
Berry curvature, the 3-fold fermions cannot be gapped
by small crystal-symmetry breaking perturbations, but
can be split into a pair of single Weyl points.

Since the rest of our new fermions do not host net
Berry curvature, there is no guarantee of topologically
protected surface states. The line node in SGs 130, 135,
and 220 may host Fermi drum surface state[34], although
this will not be robust to breaking of the crystal symme-
try. The new fermions are detectable via ARPES and
through quantum oscillation experiments.

Material realizations We propose candidate
materials[36, 37] which realize each of the new types of
fermions. We have computed the band structure of each
candidate – shown in Figs 5–8 – to confirm that the
desired band crossings exist and are relatively close to
the Fermi level.

The exotic 3-band fermions in SG 199 can be found
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FIG. 1. Energy dispersion near a three-fold degeneracy at the P point in (a) SGs 199 and 214 and (b) SG 220. In the latter
case, pairs of bands remain degenerate in energy along the high-symmetry lines |�k
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holonomy around any loop encircling the line nodes is
given by w = �1.

Next, we consider the 6-fold band degeneracies. We
start with SGs 205, 206 and 230, in which TR symme-
try, T , times inversion, I, forces all bands to be two-fold
degenerate, as shown in Figs 2a and 2b. In SGs 206 and
230, the k · p Hamiltonian can be written as

H206 = H199 �H⇤
199 (3)

Due to T I, there is no U(1) topological number (Berry
flux) associated with these degeneracies. On the other
hand, the eigenvalues of SU(2) Wilson loop operators
come in complex conjugate pairs, which wind twice (in
opposite directions) as the Wilson loop is moved from the
top to the bottom of a sphere encircling the degeneracy
point.
Unlike the previous cases, SG 205 contains inversion

symmetry in the little group of the R point. This forces
the e↵ective Hamiltonian to be quadratic in �k. However,
it is still related to H199 by,

H205(�k) = H199(�k
0)�H⇤

199(�k
0) + F (�k)� F (�k),

(4)

where F (�k) is a diagonal matrix whose entries are
E1�k

2
x

+ E2�k
2
y

+ E3�k
2
z

, and all cyclic permutations.
Due to its quadratic coordinate dependence, H205(�k)
has only bands of zero net Berry flux, and Wilson loop
eigenvalues do not wind.
We conclude our analysis of the 3- and 6-fold fermions,

with SGs 198, 212, and 213. Unlike the other 6-band
systems, these lack inversion symmetry, and so host six
bands with distinct energies. The linearized k ·p Hamil-
tonians may be written as,

H198(�k) =

 
H199(�, �k) bH199(0, �k)

b⇤H199(0, �k) �H⇤
199(�, �k)

!
, (5)

H212,213(�k) =

 
H199(⇡/2, �k0) bH199(0, �k0)

b⇤H199(0, �k0) �H⇤
199(⇡/2, �k

0)

!
,

where �k0 = (�k
z

, �k
x

,��k
y

) and b is an arbitrary param-
eter. The six eigenstates of these Hamiltonians have dis-
tinct energies except along the faces of the BZ, where the

spectrum degenerates into pairs related by the composi-
tion of a non-symmorphic C2 rotation and time reversal;
this degeneracy is shown in Fig. 2c. Since this symmetry
is antiunitary and squares to �1, these degeneracies are
stable to higher order terms in k · p.
Next, we examine the 8-fold fermions. In SGs 130 and

135, T I symmetry mandates doubly degenerate bands.
Close to the A point, the linearized k · p Hamiltonian
reads

H130 = H135 = �k
z

(a�2�3�3 + b�2�3�2 + c�2�3�1) (6)

+ �k
x

(�d�1�3�0 + e�1�2�3 + f�1�2�2 + g�1�2�1)

+ �k
y

(d�3�3�0 + e�3�2�3 + f�3�2�2 + g�3�2�1)

where a, b, . . . , g are real-valued parameters. This Hamil-
tonian has fourfold degenerate line nodes along lines
�k

i

= �k
j

= 0 with i 6= j; i, j 2 {x, y, z} which follow
the BZ edges, as shown in Fig. 3a. This is seen by noting
that the matrices multiplying any given �k

i

are part of a
Cli↵ord algebra. These lines are generally protected by
composites of time reversal and non-symmorphic mirror
symmetry. Due to T I symmetry, the U(1) holonomy of
these line nodes vanishes. However, they can be charac-
terized by the two (�1) eigenvalues of the SU(2) Wilson
loop encircling them.
A similar story holds for SGs 222, 223 and 230, with

H222 = H223 = �k
z

(a�3�1�3 + b�1�1�1 + c�1�1�2)

� �k
x

(
a

2
�1�1�3 +

a
p
3

2
�1�2�0 + b�3�1�1 + c�3�1�2)

+ �k
y

(
a

2
�2�1�0 �

a
p
3

2
�2�2�3 + b�0�1�2 � c�0�1�1),

(7)

and a similar expression for H230 after a permutation of
the �k’s. Besides the T I double degeneracy of all bands,
there are no additional degeneracies, as shown in Fig. 3b.
Finally, we examine the 8-fold degeneracy in SGs 218

and 220. Because both of these cases lack T I, they
have eight non-degenerate bands away from the high-
symmetry point. However, there is a degeneracy along
high-symmetry lines emanating from it. Along lines

3-fold degeneracy,  
Line-nodes on 
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FIG. 2. Energy dispersion near a six-fold degeneracy in (a) SG 205, (b) SG 206 and 230, and (c) SGs 198, 212, and 213. In
SGs 198, 212, and 213 bands become degenerate in pairs along the faces �k

i

= 0 of the BZ. In SGs 205, 206 and 230, all bands
are two-fold degenerate due to inversion symmetry.
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FIG. 3. Energy dispersion near an eight-fold degeneracy in (a) SGs 130 and 135, (b) SGs 222 and 223, and (c) SGs 218 and
220. (a) and (b) show pairwise degeneracy due to inversion symmetry. In addition, in (a), two degenerate bands form four-fold
degenerate line nodes along the edges of the BZ. In (c) the eight-fold degeneracy splits into four non-degenerate and two doubly
degenerate pairs of bands along the high symmetry |�k
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| lines.
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| = |�k
y

| = |�k
z

|, the 8-fold degeneracy splits into
four singly degenerate bands and two pairs of doubly de-
generate bands. In addition, along lines where two of the
�k

i

are zero, and along lines where �k
i

= �k
j

, �k
k

= 0,
there are four pairs of doubly degenerate bands. Unlike
SGs 198, 212 and 213 above, however, there are no ad-
ditional degeneracies along high-symmetry planes. The
spectrum is shown in Fig. 3c. The k · p Hamiltonian is
unenlightening, but is given in the Supp. Mat.

Experimental signatures The new fermions exhibit
novel experimental signatures. First, we focus on the
3�fold degeneracy in SGs 199 and 214. Because the de-
generacy at the P point carries net Berry flux |⌫| = 2,
we expect that on a surface, two Fermi arcs emerge from
the surface projection of the P point. Furthermore, in
the presence of TR, a corresponding 3�fold degeneracy
exists at the �P point, whose surface projection will be
the origin for two more Fermi arcs. These four Fermi arcs
must terminate on the surface projection of four Weyl
points (or two double Weyl points), which we predict
must exist elsewhere in the BZ. To verify this, we con-
structed a toy tight-binding model for SG 214, with 4
atoms per unit cell, and three p orbitals from each atom
(inset Fig. 4). Fig. 4 shows the surface density of states
for a surface in the 1̄11 direction in the first surface BZ.
Two pairs of Fermi arcs are clearly visible, emanating
from the surface projections of the P and �P points.
Breaking time-reversal symmetry can split the degener-

acy between the Fermi arcs at the P and �P point in
SG 199, but not in SG 214, where a C2 rotation relates
these points.

In addition to Fermi arc surface states, the threefold
fermions will also exhibit anomalous negative magne-
toresistance and a new chiral anomaly due to the Berry
curvature of the bands. While a full analysis is forth-
coming, semiclassical considerations[35] suggest that the
magnetoresistance in SGs 199 and 214 match that of a
double Weyl point, although the density of states corre-
sponds to a linear dispersion. Due to the nonvanishing
Berry curvature, the 3-fold fermions cannot be gapped
by small crystal-symmetry breaking perturbations, but
can be split into a pair of single Weyl points.

Since the rest of our new fermions do not host net
Berry curvature, there is no guarantee of topologically
protected surface states. The line node in SGs 130, 135,
and 220 may host Fermi drum surface state[34], although
this will not be robust to breaking of the crystal symme-
try. The new fermions are detectable via ARPES and
through quantum oscillation experiments.

Material realizations We propose candidate
materials[36, 37] which realize each of the new types of
fermions. We have computed the band structure of each
candidate – shown in Figs 5–8 – to confirm that the
desired band crossings exist and are relatively close to
the Fermi level.

The exotic 3-band fermions in SG 199 can be found
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FIG. 2. Energy dispersion near a six-fold degeneracy in (a) SG 205, (b) SG 206 and 230, and (c) SGs 198, 212, and 213. In
SGs 198, 212, and 213 bands become degenerate in pairs along the faces �k

i

= 0 of the BZ. In SGs 205, 206 and 230, all bands
are two-fold degenerate due to inversion symmetry.
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FIG. 3. Energy dispersion near an eight-fold degeneracy in (a) SGs 130 and 135, (b) SGs 222 and 223, and (c) SGs 218 and
220. (a) and (b) show pairwise degeneracy due to inversion symmetry. In addition, in (a), two degenerate bands form four-fold
degenerate line nodes along the edges of the BZ. In (c) the eight-fold degeneracy splits into four non-degenerate and two doubly
degenerate pairs of bands along the high symmetry |�k
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four singly degenerate bands and two pairs of doubly de-
generate bands. In addition, along lines where two of the
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are zero, and along lines where �k
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, �k
k

= 0,
there are four pairs of doubly degenerate bands. Unlike
SGs 198, 212 and 213 above, however, there are no ad-
ditional degeneracies along high-symmetry planes. The
spectrum is shown in Fig. 3c. The k · p Hamiltonian is
unenlightening, but is given in the Supp. Mat.

Experimental signatures The new fermions exhibit
novel experimental signatures. First, we focus on the
3�fold degeneracy in SGs 199 and 214. Because the de-
generacy at the P point carries net Berry flux |⌫| = 2,
we expect that on a surface, two Fermi arcs emerge from
the surface projection of the P point. Furthermore, in
the presence of TR, a corresponding 3�fold degeneracy
exists at the �P point, whose surface projection will be
the origin for two more Fermi arcs. These four Fermi arcs
must terminate on the surface projection of four Weyl
points (or two double Weyl points), which we predict
must exist elsewhere in the BZ. To verify this, we con-
structed a toy tight-binding model for SG 214, with 4
atoms per unit cell, and three p orbitals from each atom
(inset Fig. 4). Fig. 4 shows the surface density of states
for a surface in the 1̄11 direction in the first surface BZ.
Two pairs of Fermi arcs are clearly visible, emanating
from the surface projections of the P and �P points.
Breaking time-reversal symmetry can split the degener-

acy between the Fermi arcs at the P and �P point in
SG 199, but not in SG 214, where a C2 rotation relates
these points.

In addition to Fermi arc surface states, the threefold
fermions will also exhibit anomalous negative magne-
toresistance and a new chiral anomaly due to the Berry
curvature of the bands. While a full analysis is forth-
coming, semiclassical considerations[35] suggest that the
magnetoresistance in SGs 199 and 214 match that of a
double Weyl point, although the density of states corre-
sponds to a linear dispersion. Due to the nonvanishing
Berry curvature, the 3-fold fermions cannot be gapped
by small crystal-symmetry breaking perturbations, but
can be split into a pair of single Weyl points.

Since the rest of our new fermions do not host net
Berry curvature, there is no guarantee of topologically
protected surface states. The line node in SGs 130, 135,
and 220 may host Fermi drum surface state[34], although
this will not be robust to breaking of the crystal symme-
try. The new fermions are detectable via ARPES and
through quantum oscillation experiments.

Material realizations We propose candidate
materials[36, 37] which realize each of the new types of
fermions. We have computed the band structure of each
candidate – shown in Figs 5–8 – to confirm that the
desired band crossings exist and are relatively close to
the Fermi level.

The exotic 3-band fermions in SG 199 can be found
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FIG. 2. Energy dispersion near a six-fold degeneracy in (a) SG 205, (b) SG 206 and 230, and (c) SGs 198, 212, and 213. In
SGs 198, 212, and 213 bands become degenerate in pairs along the faces �k
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= 0 of the BZ. In SGs 205, 206 and 230, all bands
are two-fold degenerate due to inversion symmetry.
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FIG. 3. Energy dispersion near an eight-fold degeneracy in (a) SGs 130 and 135, (b) SGs 222 and 223, and (c) SGs 218 and
220. (a) and (b) show pairwise degeneracy due to inversion symmetry. In addition, in (a), two degenerate bands form four-fold
degenerate line nodes along the edges of the BZ. In (c) the eight-fold degeneracy splits into four non-degenerate and two doubly
degenerate pairs of bands along the high symmetry |�k
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there are four pairs of doubly degenerate bands. Unlike
SGs 198, 212 and 213 above, however, there are no ad-
ditional degeneracies along high-symmetry planes. The
spectrum is shown in Fig. 3c. The k · p Hamiltonian is
unenlightening, but is given in the Supp. Mat.

Experimental signatures The new fermions exhibit
novel experimental signatures. First, we focus on the
3�fold degeneracy in SGs 199 and 214. Because the de-
generacy at the P point carries net Berry flux |⌫| = 2,
we expect that on a surface, two Fermi arcs emerge from
the surface projection of the P point. Furthermore, in
the presence of TR, a corresponding 3�fold degeneracy
exists at the �P point, whose surface projection will be
the origin for two more Fermi arcs. These four Fermi arcs
must terminate on the surface projection of four Weyl
points (or two double Weyl points), which we predict
must exist elsewhere in the BZ. To verify this, we con-
structed a toy tight-binding model for SG 214, with 4
atoms per unit cell, and three p orbitals from each atom
(inset Fig. 4). Fig. 4 shows the surface density of states
for a surface in the 1̄11 direction in the first surface BZ.
Two pairs of Fermi arcs are clearly visible, emanating
from the surface projections of the P and �P points.
Breaking time-reversal symmetry can split the degener-

acy between the Fermi arcs at the P and �P point in
SG 199, but not in SG 214, where a C2 rotation relates
these points.

In addition to Fermi arc surface states, the threefold
fermions will also exhibit anomalous negative magne-
toresistance and a new chiral anomaly due to the Berry
curvature of the bands. While a full analysis is forth-
coming, semiclassical considerations[35] suggest that the
magnetoresistance in SGs 199 and 214 match that of a
double Weyl point, although the density of states corre-
sponds to a linear dispersion. Due to the nonvanishing
Berry curvature, the 3-fold fermions cannot be gapped
by small crystal-symmetry breaking perturbations, but
can be split into a pair of single Weyl points.

Since the rest of our new fermions do not host net
Berry curvature, there is no guarantee of topologically
protected surface states. The line node in SGs 130, 135,
and 220 may host Fermi drum surface state[34], although
this will not be robust to breaking of the crystal symme-
try. The new fermions are detectable via ARPES and
through quantum oscillation experiments.

Material realizations We propose candidate
materials[36, 37] which realize each of the new types of
fermions. We have computed the band structure of each
candidate – shown in Figs 5–8 – to confirm that the
desired band crossings exist and are relatively close to
the Fermi level.

The exotic 3-band fermions in SG 199 can be found
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The development of new experimental platforms realising novel topological phases is the ultimate end-point of our
research. Therefore, a central goal of our proposal will be to identify experimental settings in which these topological
phases can appear, and to determine the physical observables and protocols best used to expose their properties.
These settings include strongly correlated materials systems. However, we believe that important progress will
be made in developing hybrid systems (e.g. nanostructured materials involving composites of topological insula-
tors/superconductors) and in the study of artificial materials realised in cold atomic gases. Finding experimental
instances of novel phases in these controlled settings will be key to understanding the stability of possible topological
phases and on how to detect and characterise their novel properties.
1) One very interesting and accessible approach to realizing novel topological phases involves the structuring of

Majorana fermion systems formed in proximitized nanowires (or topological insulators) or via magnetic adatoms
into nanostructured islands which experience strong Coulomb-blockade. The introduction of charging e↵ects has been
shown to lead to strong correlation physics even for a single Majorana island coupled to gapless leads [Cooper]. Arrays
of Majorana islands lead to phases with Z2 topological order [Fu]. We shall explore collective phases formed from
networks of Majorana islands coupled through metallic wires or through metallic surface states [Bernevig, Glazman].
We anticipate possible gapless topological phases, analogous topological Fermi liquids, but now in controllable settings
allowing clear experimental investigation and characterization.
2) Cold atom gases provide a setting where novel topological phases could be uncovered in the near future. There

has been significant recent progress in the development of methods to generate topological energy bands in these gases,
notably with the achievement of the Haldane model and of the Harper-Hofstadter model. So far experiments have been
limited to demonstrating single-particle e↵ects. However, there is no obstacle to the introduction of strong interactions,
so the field is ripe for producing novel strongly interacting phases. That said, there exist numerous constraints on
the possible models that can be achieved in cold atoms (and on temperature/entropy limits). To ensure successful
implementations, our research approach will follow two strategies: i) Starting from idealized exactly-solvable models
that are known to have novel topological groundstates, we shall develop realistic cold atom settings that can come as
close to these idealized models as possible. (Examples include multi particle interactions, and parton constructions.)
ii) Starting from the available experimental settings, we shall identify what novel models can be built up from the
tools that are already (or soon to be) in place. Focusing on the regimes that can support strong correlations, we shall
look for possible topological phases. (Examples include models of particle-assisted hopping which could be used to
engineer mutual anyon statistics between particles, long-range interactions in systems with ”synthetic dimensions”,
the introduction of lattice symmetries.) We shall focus on those cases (of symmetries, degrees of freedom) where
theoretical insights suggest possible topological phases and provide expectation of the signatures in the numerical
studies that we shall conduct.
Both approaches will require the experience of the full team – knowledge of the classification of topological phases,

of exactly solvable models, use of numerical methods, and connection to cold atom experiments – making this an area
that could not be achieved wihout the Simons collaboration.
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research. Therefore, a central goal of our proposal will be to identify experimental settings in which these topological
phases can appear, and to determine the physical observables and protocols best used to expose their properties.
These settings include strongly correlated materials systems. However, we believe that important progress will
be made in developing hybrid systems (e.g. nanostructured materials involving composites of topological insula-
tors/superconductors) and in the study of artificial materials realised in cold atomic gases. Finding experimental
instances of novel phases in these controlled settings will be key to understanding the stability of possible topological
phases and on how to detect and characterise their novel properties.

1) One very interesting and accessible approach to realizing novel topological phases involves the structuring of
Majorana fermion systems formed in proximitized nanowires (or topological insulators) or via magnetic adatoms
into nanostructured islands which experience strong Coulomb-blockade. The introduction of charging e↵ects has been
shown to lead to strong correlation physics even for a single Majorana island coupled to gapless leads [Cooper]. Arrays
of Majorana islands lead to phases with Z2 topological order [Fu]. We shall explore collective phases formed from
networks of Majorana islands coupled through metallic wires or through metallic surface states [Bernevig, Glazman].
We anticipate possible gapless topological phases, analogous topological Fermi liquids, but now in controllable settings
allowing clear experimental investigation and characterization.

2) Cold atom gases provide a setting where novel topological phases could be uncovered in the near future. There
has been significant recent progress in the development of methods to generate topological energy bands in these gases,
notably with the achievement of the Haldane model and of the Harper-Hofstadter model. So far experiments have been
limited to demonstrating single-particle e↵ects. However, there is no obstacle to the introduction of strong interactions,
so the field is ripe for producing novel strongly interacting phases. That said, there exist numerous constraints on
the possible models that can be achieved in cold atoms (and on temperature/entropy limits). To ensure successful
implementations, our research approach will follow two strategies: i) Starting from idealized exactly-solvable models
that are known to have novel topological groundstates, we shall develop realistic cold atom settings that can come as
close to these idealized models as possible. (Examples include multi particle interactions, and parton constructions.)
ii) Starting from the available experimental settings, we shall identify what novel models can be built up from the
tools that are already (or soon to be) in place. Focusing on the regimes that can support strong correlations, we shall
look for possible topological phases. (Examples include models of particle-assisted hopping which could be used to
engineer mutual anyon statistics between particles, long-range interactions in systems with ”synthetic dimensions”,
the introduction of lattice symmetries.) We shall focus on those cases (of symmetries, degrees of freedom) where
theoretical insights suggest possible topological phases and provide expectation of the signatures in the numerical
studies that we shall conduct.

Both approaches will require the experience of the full team – knowledge of the classification of topological phases,
of exactly solvable models, use of numerical methods, and connection to cold atom experiments – making this an area
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shown to lead to strong correlation physics even for a single Majorana island coupled to gapless leads [Cooper]. Arrays
of Majorana islands lead to phases with Z2 topological order [Fu]. We shall explore collective phases formed from
networks of Majorana islands coupled through metallic wires or through metallic surface states [Bernevig, Glazman].
We anticipate possible gapless topological phases, analogous topological Fermi liquids, but now in controllable settings
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Symmetry criteria for Dirac semimetals and quadruplet band stickings

To obtain movable but unremovable Dirac nodes, one needs to find momentum lines with at least two distinct 2D
irreducible representations (irreps). This is work in progress.

To obtain unmovable and unremovable Dirac nodes, one needs to find momentum points with at least one 4D irrep.
One approach is by three antiunitaries with skew-symmetric representations, as described in Sec. IA. Our approach
there also gives quadruplet band stickings along lines.

I. SYMMETRY CRITERION FOR 4D IRREDUCIBLE REPRESENTATIONS

A. By three antiunitary elements with skew-symmetric representations

Let the group of a wavevector k̄ be generated by at least three antiunitary symmetries

T1, T2, T3, (1)

such that their Bloch-wave representations (T̂
j

(k)) are skew-symmetric where k = k̄, i.e.,

8 j 2 {1, 2, 3}, T̂
j

(k)2 = ei�j

(k) with ei�j

(k̄) = �1. (2)

T̂
j

(k̄)2 = �I implies there are no 1D irrep at k̄. In the next equation, we particularize to some k̄ and omit writing
out the momentum dependence. The three generators have the algebra

T̂
i

T̂
j

= ei✓ij T̂
j

T̂
i

, for j 6= i, where ei✓ij = e�i✓

ji . (3)

Our result

ei(✓12+✓23+✓31) 6= 1 ) irrep is at least 4D. (4)

This is proven in Sec. IA 2 and IA 3. In Sec. IA 1, we discuss the physical realizations of three antiunitaries.

1. Physical realization of three antiunitaries

Let us discuss how {T
j

} may arise in crystals. Various realizations distinguish between k̄ as an isolated point or
a high-symmetry line. The easiest approach would be to look in nonmagnetic crystals where time reversal (T ) is a
symmetry; there are obvious generalizations to magnetic crystals where, e.g., the product (T1/2) of time reversal with
fractional translations is a symmetry. We would further look for space groups that contain at least two Z2 elements;
a Z2 element is defined by something that squares to identity, modulo translations and 2⇡ rotations. There are only
four types: identity (trivially), spatial inversion, two-fold rotations (screw or not), and reflections (glide or not). The
product of time reversal with any of this four Z2 types are respectively classified as:

T e, T i, T c, Tm, with obvious generalization T↵ �! T↵

1/2. (5)

Consider the space of momenta (S(T↵)) which is invariant under the antiunitary T↵, and in which the Bloch-wave
representation (T̂↵(k); k 2 S(T↵)) of T↵ is skew-symmetric. More precisely, the unitary component of the antiunitary
representation is skew-symmetric, or equivalently see Eq. (2). These are momenta where states are at least Kramers-
degenerate – in short, we call S the Kramers space of a certain antiunitary. In what follows, we only consider T↵ for
which its Kramers space are nonvanishing. Clearly,

S(T e) is comprised of isolated points (eight in 3D crystals) ,

S(T i) is the full Brillouin zone ,

S(T c) is comprised by one or two ‘reflection’-invariant planes ,

S(Tm) is comprised by ‘rotation’-invariant line(s) . (6)
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instances of novel phases in these controlled settings will be key to understanding the stability of possible topological
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Majorana fermion systems formed in proximitized nanowires (or topological insulators) or via magnetic adatoms
into nanostructured islands which experience strong Coulomb-blockade. The introduction of charging e↵ects has been
shown to lead to strong correlation physics even for a single Majorana island coupled to gapless leads [Cooper]. Arrays
of Majorana islands lead to phases with Z2 topological order [Fu]. We shall explore collective phases formed from
networks of Majorana islands coupled through metallic wires or through metallic surface states [Bernevig, Glazman].
We anticipate possible gapless topological phases, analogous topological Fermi liquids, but now in controllable settings
allowing clear experimental investigation and characterization.

2) Cold atom gases provide a setting where novel topological phases could be uncovered in the near future. There
has been significant recent progress in the development of methods to generate topological energy bands in these gases,
notably with the achievement of the Haldane model and of the Harper-Hofstadter model. So far experiments have been
limited to demonstrating single-particle e↵ects. However, there is no obstacle to the introduction of strong interactions,
so the field is ripe for producing novel strongly interacting phases. That said, there exist numerous constraints on
the possible models that can be achieved in cold atoms (and on temperature/entropy limits). To ensure successful
implementations, our research approach will follow two strategies: i) Starting from idealized exactly-solvable models
that are known to have novel topological groundstates, we shall develop realistic cold atom settings that can come as
close to these idealized models as possible. (Examples include multi particle interactions, and parton constructions.)
ii) Starting from the available experimental settings, we shall identify what novel models can be built up from the
tools that are already (or soon to be) in place. Focusing on the regimes that can support strong correlations, we shall
look for possible topological phases. (Examples include models of particle-assisted hopping which could be used to
engineer mutual anyon statistics between particles, long-range interactions in systems with ”synthetic dimensions”,
the introduction of lattice symmetries.) We shall focus on those cases (of symmetries, degrees of freedom) where
theoretical insights suggest possible topological phases and provide expectation of the signatures in the numerical
studies that we shall conduct.

Both approaches will require the experience of the full team – knowledge of the classification of topological phases,
of exactly solvable models, use of numerical methods, and connection to cold atom experiments – making this an area
that could not be achieved wihout the Simons collaboration.
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close to these idealized models as possible. (Examples include multi particle interactions, and parton constructions.)
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that are known to have novel topological groundstates, we shall develop realistic cold atom settings that can come as
close to these idealized models as possible. (Examples include multi particle interactions, and parton constructions.)
ii) Starting from the available experimental settings, we shall identify what novel models can be built up from the
tools that are already (or soon to be) in place. Focusing on the regimes that can support strong correlations, we shall
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the introduction of lattice symmetries.) We shall focus on those cases (of symmetries, degrees of freedom) where
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of exactly solvable models, use of numerical methods, and connection to cold atom experiments – making this an area
that could not be achieved wihout the Simons collaboration.
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Simons Thoughts

Nigel Cooper
xyz

(Dated: February 18, 2016)

The development of new experimental platforms realising novel topological phases is the ultimate end-point of our
research. Therefore, a central goal of our proposal will be to identify experimental settings in which these topological
phases can appear, and to determine the physical observables and protocols best used to expose their properties.
These settings include strongly correlated materials systems. However, we believe that important progress will
be made in developing hybrid systems (e.g. nanostructured materials involving composites of topological insula-
tors/superconductors) and in the study of artificial materials realised in cold atomic gases. Finding experimental
instances of novel phases in these controlled settings will be key to understanding the stability of possible topological
phases and on how to detect and characterise their novel properties.
1) One very interesting and accessible approach to realizing novel topological phases involves the structuring of

Majorana fermion systems formed in proximitized nanowires (or topological insulators) or via magnetic adatoms
into nanostructured islands which experience strong Coulomb-blockade. The introduction of charging e↵ects has been
shown to lead to strong correlation physics even for a single Majorana island coupled to gapless leads [Cooper]. Arrays
of Majorana islands lead to phases with Z2 topological order [Fu]. We shall explore collective phases formed from
networks of Majorana islands coupled through metallic wires or through metallic surface states [Bernevig, Glazman].
We anticipate possible gapless topological phases, analogous topological Fermi liquids, but now in controllable settings
allowing clear experimental investigation and characterization.
2) Cold atom gases provide a setting where novel topological phases could be uncovered in the near future. There

has been significant recent progress in the development of methods to generate topological energy bands in these gases,
notably with the achievement of the Haldane model and of the Harper-Hofstadter model. So far experiments have been
limited to demonstrating single-particle e↵ects. However, there is no obstacle to the introduction of strong interactions,
so the field is ripe for producing novel strongly interacting phases. That said, there exist numerous constraints on
the possible models that can be achieved in cold atoms (and on temperature/entropy limits). To ensure successful
implementations, our research approach will follow two strategies: i) Starting from idealized exactly-solvable models
that are known to have novel topological groundstates, we shall develop realistic cold atom settings that can come as
close to these idealized models as possible. (Examples include multi particle interactions, and parton constructions.)
ii) Starting from the available experimental settings, we shall identify what novel models can be built up from the
tools that are already (or soon to be) in place. Focusing on the regimes that can support strong correlations, we shall
look for possible topological phases. (Examples include models of particle-assisted hopping which could be used to
engineer mutual anyon statistics between particles, long-range interactions in systems with ”synthetic dimensions”,
the introduction of lattice symmetries.) We shall focus on those cases (of symmetries, degrees of freedom) where
theoretical insights suggest possible topological phases and provide expectation of the signatures in the numerical
studies that we shall conduct.
Both approaches will require the experience of the full team – knowledge of the classification of topological phases,

of exactly solvable models, use of numerical methods, and connection to cold atom experiments – making this an area
that could not be achieved wihout the Simons collaboration.
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Symmetry criteria for Dirac semimetals and quadruplet band stickings

To obtain movable but unremovable Dirac nodes, one needs to find momentum lines with at least two distinct 2D
irreducible representations (irreps). This is work in progress.

To obtain unmovable and unremovable Dirac nodes, one needs to find momentum points with at least one 4D irrep.
One approach is by three antiunitaries with skew-symmetric representations, as described in Sec. IA. Our approach
there also gives quadruplet band stickings along lines.

I. SYMMETRY CRITERION FOR 4D IRREDUCIBLE REPRESENTATIONS

A. By three antiunitary elements with skew-symmetric representations

Let the group of a wavevector k̄ be generated by at least three antiunitary symmetries

T1, T2, T3, (1)

such that their Bloch-wave representations (T̂
j

(k)) are skew-symmetric where k = k̄, i.e.,

8 j 2 {1, 2, 3}, T̂
j

(k)2 = ei�j

(k) with ei�j

(k̄) = �1. (2)

T̂
j

(k̄)2 = �I implies there are no 1D irrep at k̄. In the next equation, we particularize to some k̄ and omit writing
out the momentum dependence. The three generators have the algebra

T̂
i

T̂
j

= ei✓ij T̂
j

T̂
i

, for j 6= i, where ei✓ij = e�i✓

ji . (3)

Our result

ei(✓12+✓23+✓31) 6= 1 ) irrep is at least 4D. (4)

This is proven in Sec. IA 2 and IA 3. In Sec. IA 1, we discuss the physical realizations of three antiunitaries.

1. Physical realization of three antiunitaries

Let us discuss how {T
j

} may arise in crystals. Various realizations distinguish between k̄ as an isolated point or
a high-symmetry line. The easiest approach would be to look in nonmagnetic crystals where time reversal (T ) is a
symmetry; there are obvious generalizations to magnetic crystals where, e.g., the product (T1/2) of time reversal with
fractional translations is a symmetry. We would further look for space groups that contain at least two Z2 elements;
a Z2 element is defined by something that squares to identity, modulo translations and 2⇡ rotations. There are only
four types: identity (trivially), spatial inversion, two-fold rotations (screw or not), and reflections (glide or not). The
product of time reversal with any of this four Z2 types are respectively classified as:

T e, T i, T c, Tm, with obvious generalization T↵ �! T↵

1/2. (5)

Consider the space of momenta (S(T↵)) which is invariant under the antiunitary T↵, and in which the Bloch-wave
representation (T̂↵(k); k 2 S(T↵)) of T↵ is skew-symmetric. More precisely, the unitary component of the antiunitary
representation is skew-symmetric, or equivalently see Eq. (2). These are momenta where states are at least Kramers-
degenerate – in short, we call S the Kramers space of a certain antiunitary. In what follows, we only consider T↵ for
which its Kramers space are nonvanishing. Clearly,

S(T e) is comprised of isolated points (eight in 3D crystals) ,

S(T i) is the full Brillouin zone ,

S(T c) is comprised by one or two ‘reflection’-invariant planes ,

S(Tm) is comprised by ‘rotation’-invariant line(s) . (6)

3 antiunitaries

4-dim irrep, projective 
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Generators of the little group of A-point (⇡,⇡,⇡)

C4z, T , Ī, and C̄2x.
For convenient, we will add a symmetry C̄2y= C4z · C̄2x · C�1

4z , which means we can replace the generator C4z by
C̄2y.
As argued above, in the spinful case, the relations can be yielded at (⇡,⇡,⇡):

[C4z, T ] = 0 ; {C4z, Ī} = 0;

C̄2xC4z = �C�1
4z C̄2x ; C̄2yC4z = �C�1

4z C̄2y;

[Ī , C̄2x] = 0 ; [Ī , C̄2y] = 0;

(C̄2x)
2 = 1 ; (C̄2y)

2 = 1; (10)

Eigenvalues of C4z

Assuming |'i is given as an Block state at A-point, which satisfies C4z|'i = � · |'i, we can get |T 'i, |Ī'i, |C̄2x'i
and |C̄2y'i states possessing the C4z eigenvalues of �⇤, ��, ��⇤ and ��⇤, respectively. We can prove as follows.

C4z|T 'i = C4z · T |'i = T · C4z|'i = T · �|'i = �⇤|T 'i
C4z|Ī'i = C4z · Ī|'i = �Ī · C4z|'i = �Ī · �|'i = ��|Ī'i

C4z|C̄2x'i = C4z · C̄2x|'i = �C̄2x · C�1
4z |'i = �C̄2x · �⇤|'i = ��⇤|C̄2x'i

C4z|C̄2y'i = ��⇤|C̄2y'i (11)

Then we can rewrite the four generators as: T , Ī, T ĪC̄2x and T ĪC̄2y.
Thus, we can have three antiunitary generators as: T1 = T ; T2 = T ĪC̄2x; T3 = T ĪC̄2y, which act on the {�;�⇤}

subspace. Then the left generator Ī can change {�;�⇤} subspace into {��;��⇤} subspace.
Let look at the {�;�⇤} subspace, the three operators satisfies two commutation and one anticommutation relations,

and (T
i

)2 = �1, which will give us the 4-fold representation at least:

(T1)2 = T 2 = �1

(T2)2 = T ĪC̄2x · T ĪC̄2x = T T ĪC̄2xĪC̄2x = (T )2 · (Ī)2 · (C̄2x)2 = �1

(T3)2 = T ĪC̄2y · T ĪC̄2y = T T ĪC̄2y ĪC̄2y = (T )2 · (Ī)2 · (C̄2y)2 = �1

[T1, T2] = 0; [T1, T3] = 0; {T2, T3} = 0 (12)

Then, the 8-fold degeneracy is expected.
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and |C̄2y'i states possessing the C4z eigenvalues of �⇤, ��, ��⇤ and ��⇤, respectively. We can prove as follows.

C4z|T 'i = C4z · T |'i = T · C4z|'i = T · �|'i = �⇤|T 'i
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To obtain an 8-fold, we need another unitary
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C̄2xC4z = �C�1
4z C̄2x ; C̄2yC4z = �C�1

4z C̄2y;
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Assuming |'i is given as an Block state at A-point, which satisfies C4z|'i = � · |'i, we can get |T 'i, |Ī'i, |C̄2x'i
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Then we can rewrite the four generators as: T , Ī, T ĪC̄2x and T ĪC̄2y.
Thus, we can have three antiunitary generators as: T1 = T ; T2 = T ĪC̄2x; T3 = T ĪC̄2y, which act on the {�;�⇤}

subspace. Then the left generator Ī can change {�;�⇤} subspace into {��;��⇤} subspace.
Let look at the {�;�⇤} subspace, the three operators satisfies two commutation and one anticommutation relations,

and (T
i

)2 = �1, which will give us the 4-fold representation at least:

(T1)2 = T 2 = �1

(T2)2 = T ĪC̄2x · T ĪC̄2x = T T ĪC̄2xĪC̄2x = (T )2 · (Ī)2 · (C̄2x)2 = �1
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[T1, T2] = 0; [T1, T3] = 0; {T2, T3} = 0 (12)

Then, the 8-fold degeneracy is expected.

4-fold, 3 projective antiunitaries 4-fold, 3 projective anti-unitaries

Inversion

All other Fermions 3, 6, 8 fold, here also have projective representations 
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FIG. 3. Highlighted are the line and surface degeneracies in (a) SG 220, (b) SG 198,212, and 213, (c) SGs 130 and 135, and
(d) SG 218. We have indicated the mirror symmetries which protect the line nodes, as well as the antiunitary symmetries that
protect the Kramers degenerate surface nodes.

one of them, without loss of generality. Using the notation of Eq. (39), we can take as our generating set the matrices

G1 = �(G1) =

 
P4 0

0 P ⇤
4

!
, (159)

G3 = �(G3) =

0

BBB@

�0 0 0 0

0 ��0 0 0

0 0 �0 0

0 0 0 ��0

1

CCCA
, (160)

G4 = �(G4) =

 
R4 0

0 R⇤
4

!
, (161)

T =

 
0 ��0 ⌦ �0

�0 ⌦ �0 0

!
K, (162)
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I. SYMMETRY ANALYSIS OF 3D AND 6D IRREPS

A. Notation

A Bravais lattice in three dimensions has three basis vectors, indicated by t
i

, i = 1, 2, 3. Reciprocal space lattice
vectors are indicated by g

i

, where g
i

· t
j

= 2⇡�
ij

. The new fermions described in the main text occur only in the
primitive cubic, body-centered cubic, and primitive tetragonal lattices; their lattice and reciprocal lattice vectors are
shown in Table I. Diagrams of the first Brillouin zone for each of these Bravais lattices are shown in Figure 1, with
high symmetry points labelled.
We indicate non-symmorphic symmetry operations using Seitz notation, i.e., a point group operation O followed

by a translation v = v
i

t
i

is indicated by {O|v} or, component-wise, {O|v1v2v3}. The rules for combining operations
is as follows:

{O2|v2}{O1|v1} = {O2O1|v2 +R2v1}. (1)

We thus have the following useful relations:

{O|v}�1 = {O�1|�O�1v}, (2)

{O|v} = {E|v}{O|0} = {O|0}{E|O�1v}. (3)

We will always use E for the identity operator and I for inversion. We frequently use R to indicate a 2⇡ rotation; since
we are interested in spin-1/2 particles, this operator is always represented by �I. We use C2x, C2y, C2z to indicate
2-fold rotations about the x-, y- or z- hat axes; otherwise, we use C

n,n

x

n

y

n

z

to indicate an n-fold rotation about the
n
x

x̂+n
y

ŷ+n
z

ẑ axis. Similarly, �
x

,�
y

,�
z

indicate mirror operations through the planes perpendicular to the indicated
axis and �

n

x

n

y

n

z

indicates a mirror operation through the plane perpendicular to the n
x

x̂+ n
y

ŷ+ n
z

ẑ direction. We
also encounter four-fold roto-inversions; we define S4x ⌘ IC�1

4x and similarly for y and z. Pure translations are
indicated by {E|t}. Irreducible representation (irrep) of the group of translations are labeled by reciprocal space
vectors; in the irrep labeled by k, an integer translation t ⌘ n

i

t
i

is represented by the phase e�ik·t.
The little group Gk0 of a point k0 in reciprocal space is the set of all space group operations {O|v} such that

Ok0 = k0 + n
i

g
i

, i.e., the set of all space group operations whose ‘symmorphic part’ leaves k invariant up to an
integer reciprocal lattice vector; later we will consider the e↵ect of including time reversal in this definition. If a d-
dimensional irrep exists, a generic Hamiltonian which respects the space group symmetries can display a d-dimensional
degeneracy at k0. However, if multiple irreps with dimensions d1, d2, ... exist, not all will necessarily be realized in
a given material. Furthremore, notice that two-fold degeneracies (Weyl fermions) can exist without protection by a
space group symmetry.
If a d-band crossing exists, and if the Fermi level is near the crossing, then these bands constitute the low-energy

dispersion relation of a fermion with d components. Here we are exploring fermions beyond the Weyl and Dirac
paradigm. These new fermions consist of 3-, 6- and 8-band crossings in the presence of time reversal symmetry; the

Bravais lattice Lattice vectors Reciprocal lattice vectors

Primitive cubic (a, 0, 0), (0, a, 0), (0, 0, a) 2⇡
a

(1, 0, 0), 2⇡
a

(0, 1, 0), 2⇡
a

(0, 0, 1)

Body-centered cubic a

2 (�1, 1, 1), a

2 (1,�1, 1), a

2 (1, 1,�1) 2⇡
a

(0, 1, 1), 2⇡
a

(1, 0, 1), 2⇡
a

(1, 1, 0)

Primitive tetragonal (a, 0, 0), (0, a, 0), (0, 0, c) 2⇡
a

(1, 0, 0), 2⇡
a

(0, 1, 0), 2⇡
c

(0, 0, 1)

TABLE I. Lattice and reciprocal lattice vectors 2

orem. All three of these systems host a complementary
3-fold degeneracy at �P due to TR symmetry. SG 214 is
unique in that the 3-fold degeneracy at �P persists even
if time reversal symmetry is broken, as the P and �P
points are related by a two-fold screw rotation in the full
symmetry group.
In the presence of TR symmetry, six space groups can

host 6-fold degeneracies. In all cases, these arise as 3-
fold degeneracies which are doubled by the presence of
TR symmetry. Four of these – SGs 198, 205, 212, and 213
– correspond to simple-cubic Bravais lattice, and the 6-
fold degeneracy occurs at the TR invariant R point at the
corner of the BZ. The other two 6-fold degeneracies occur
in SGs 206 and 230 at the P point. Although this point
is not TR invariant, these SGs are inversion symmetric,
and hence all degeneracies are doubled.
Finally, we find, in agreement with previous work[26],

that seven SGs may host 8-fold degeneracies. Two of
these, SGs 130 and 135 have a tetragonal Bravais lattice;
these are special in that they require 8-fold degeneracies
at the time-reversal invariant A point. In addition, SGs
222, 223 and 230 may host 8-fold degeneracies. SGs 222
and 223 are simple-cubic, and an 8-fold fermion can occur
at the R point in the BZ; for SG 230, it occurs at the
time-reversal invariant H point.
There are two more SGs that can host 8-fold degenera-

cies, SG 218 and SG 220. These di↵er from the others in
that they lack inversion symmetry. Energy bands away
from high symmetry points need no longer come in pairs.
SG 218 has a simple cubic Bravais lattice, and an 8-fold
degeneracy may occur at the R point. In SG 220 the
degeneracy may occur at the H point.
Low energy e↵ective models For each of the band

crossings in Table I, we compute a low-energy expan-
sion of the most general Hamiltonian consistent with the
symmetries of the little group near the degeneracy point,
k0, in terms of �k ⌘ k � k0. Full details of the con-
structions are in the Supp. Mat. Representative plots of
the band dispersion along high symmetry lines are shown
in Figs. 1–3, where inessential higher-order terms have
been added for the sake of clarity.
We begin by analyzing the threefold degeneracy points.

The k · p Hamiltonian for SG 199 takes the form

H199(�, �k) =

0

B@
0 ei��k

x

e�i��k
y

e�i��k
x

0 ei��k
z

ei��k
y

e�i��k
z

0

1

CA , (1)

where � is a real parameter; without loss of generality
we set the zero of energy at zero throughout and omit
an overall energy scale. The bands are non-degenerate
away from �k = 0, unless � = n⇡/3 for integer n,
in which case bands become degenerate along the lines
|�k

x

| = |�k
y

| = |�k
z

|. While the locations of these de-
generacies in (�k,�) change in the presence of higher or-
der terms, they identify two topologically distinct phases.

SG La k d Generators

198 cP R 6 {C�
3,111|010}, {C2x| 12

3
20}, {C2y|0 3

2
1
2}

199 cI P 3 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

205 cP R 6 {C�
3,111|010}, {C2x| 12

3
20}, {C2y|0 3

2
1
2}, {I|000}

206 cI P 6 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

212 cP R 6 {C2x| 12
1
20},{C2y|0 1

2
1
2},{C

�
3,111|000},{C2,11̄0| 14

1
4

1
4}

213 cP R 6 {C2x| 12
1
20},{C2y|0 1

2
1
2},{C

�
3,111|000},{C2,11̄0| 34

3
4

3
4}

214 cI P 3 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

220 cI P 3 {C3,1̄1̄1|0 1
2

1
2},{C2y|0 1

2
1
2},{C2x| 32

3
20},{IC

�
4x| 1211}

230 cI P 6 {C3,1̄1̄1|0 1
2

1
2},{C2y|0 1

2
1
2},{C2x| 32

3
20},{IC

�
4x| 1211}

130 tP A 8 {C4z|000}, {�x̄y

|00 1
2}, {I|

1
2

1
2

1
2}

135 tP A 8 {C4z| 12
1
2

1
2}, {�x̄y

|00 1
2}, {I|000}

218 cP R 8 {C2x|001}, {C2y|000}, {C�
3,111|001}, {�x̄y

| 12
1
2

1
2}

220 cI H 8 {C2x| 12
1
20}, {C2y|0 1

2
3
2}, {C

�
3,111|001}, {�x̄y

| 12
1
2

1
2}

222 cP R 8 {C�
4z|000}, {C2x|000}, {C�

3,111|010}, {I| 12
1
2

1
2}

223 cP R 8 {C�
4z| 12

1
2

1
2}, {C2x|000}, {C�

3,111|010}, {I|000}
230 cI H 8 {C4z|0 1

20}, {C2y|1 1
2

1
2}, {C3,111|111}, {I|000}

TABLE I. Summary of all new fermion types in solid state
systems. La indicates the type of lattice (cP is cubic primitive,
cI is cubic body-centered, and tP is tetragonal primitive), d
indicates the maximum degeneracy at the relevant k point in
the presence of time reversal symmetry and Rep the label of
the relevant representation(s). Group generators are defined
in the Supplementary Material.

First, for ⇡/3 < � < 2⇡/3, the �k 6= 0 Hamiltonian is
adiabatically connected to the one with � = ⇡/2 for suf-
ficiently small |�k| > 0. The three bands  ±, 0 have
energies ✏± = ±|�k|2, ✏0 = 0. Furthermore, the Chern
numbers of each of these bands over any closed sur-
face enclosing the degeneracy point are ⌫± = ⌥2 and
⌫0 = 0. These Berry fluxes characterize the entire phase
⇡/3 < � < 2⇡/3. At � = n⇡/3, the ⌫ = 0 band be-
comes degenerate with both the bands  ± at di↵erent
points in momentum space; these degeneracies transport
Berry curvature between  + and  �. The properties of
all the phases for the other values of � can be derived
from those for ⇡/3 < � < 2⇡/3 (see Supp. Mat. ) . This
3-fold degenerate fermion thus appears, from a topolog-
ical perspective, as a double – but linearly dispersing –
Weyl fermion with a trivial (⌫ = 0) band passing through
the gapless point. The energy spectrum is pictured in
Fig. 1a.
To linear order in �k, the low energy description of

the 3-fold degeneracy in SG 214 is completely identical
to that of SG 199. The next 3-fold degeneracy is in SG
220. The linear-order k · p reads

H220 = H199(0, (�ky, �kx,��kz)) (2)

Line nodes appear along the lines |�k
x

| = |�k
y

| = |�k
z

|
(Fig. 1b). Mirror and 3-fold rotation symmetry dictate
that these line nodes persist to all orders in the k · p ex-
pansion, as proved in the Supplementary Material. The

For 8-fold see also Benjamin J. Wieder, Youngkuk Kim, A. M. Rappe, C. L. Kane
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3-fold or 6-fold fermions in SGs 198-214

SG 198

This space group has a simple cubic Bravais lattice without inversion, and a 6-fold fermion can occur at the R point
in Fig. 1(b). The antiunitary operator of the special little group can be TC̄2y, where C̄2y is followed by a fractional
translation ~t(0, 1/2, 1/2). This kind of 6-fold fermions can be found in the family of AsPdS and K3BiTe3, shown in
Fig. 2.
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FIG. 2. A 6-fold fermion can occur at the R point in the dashed circle. (a) The SOC band structure of AsPdS shows a 6-fold
fermion occurs below E
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. (b) The 6-fold fermion occurs about E
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in the SOC band structure of K3BiTe3, which can be tuned
by electron-doping.

SG 199

This space group has a body-centered cubic Bravais lattice without inversion, and a 3-fold fermion can occur at the
P point in Fig. 1(c). There is no any antiunitary symmetry in the P -point little group even considering time-reveal
symmetry in the system. This 3-fold fermion can be found in the family of Ni
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:::
(a)

::::
The

::::
SOC

:::::
band

::::::::
structure

::
of

::::::::
Ni3(BiS)2::

is
::::::::
computed,

::::
with

:::
the

::::::
fermion

:
just

being slightly above E
F

.
::
(b)

:
The SOC band structure of Ni3(BiS):K2::::::

Pb2O3 is computed
::::::::
presented,

:::::::
hosting

:::
the

:::::
3-fold

:::::::
fermion

::
in

:::
the

::::::
valence

::::::
energy.
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in Fig. 1(b). The antiunitary operator of the special little group can be TI. This 6-fold fermion can be found in the
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SGs 212 and 213

These space groups have a simple cubic Bravais lattice with
:::::::
without inversion, and a 6-fold fermion can occur at

the R point in Fig. 1(b).
::::
The

::::::::::
antiunitary

::::::::
operator

::
of

::::
the

::::::
special

:::::
little

:::::
group

::::
can

:::
be

:::::
TC̄2y,::::::

where
::::
C̄2y::

is
::::::::
followed

::
by

::
a

::::::::
fractional

::::::::::
translation

:::::::::::::
~t(0, 1/2, 1/2).

::::
The

::::::::
fermions

::::::
could

:::
are

::
in

::::
the

:::::::
systems

:::::::::::::
Li2(Pd/Pt)3B:

[? ]
:::
and

::::::::::::::
Re2(W/Mo)3C [?

],
::::::
shown

:::
in

::::
Fig.

::
6.

:

κ##### X  M κ#####  R  X-1

-0.5

0

0.5

1

En
er

gy
(e

V
)

Li2Pd3B

EF

κ##### X  M κ#####  R  X-1

-0.5

0

0.5

1

En
er

gy
(e

V
)

Re2W3C

EF

FIG. 6.
::
A

:::::
6-fold

:::::::
fermion

:::
can

:::::
occur

::
at

:::
the

::
R
::::::
point.

:::
(a)

::
is

:::
the

::::
SOC

:::::
band

::::::::
structure

::
of

::::::::
Li2Pd3B.:::

(b)
::
is

:::
the

::::
SOC

:::::
band

::::::::
structure

:
of
:::::::::
Re2W3C.

SG 214

This space group has a body-centered cubic Bravais lattice without inversion, and a 3-fold fermion can occur at the
P point in Fig. 1(c) even with an antiunitary generator TC4z. This unique 3-fold fermion can be found in the family
of La3PbI3, shown in Fig. 7.
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2

3-fold or 6-fold fermions in SGs 198-214

SG 198

This space group has a simple cubic Bravais lattice without inversion, and a 6-fold fermion can occur at the R point
in Fig. 1(b). The antiunitary operator of the special little group can be TC̄2y, where C̄2y is followed by a fractional
translation ~t(0, 1/2, 1/2). This kind of 6-fold fermions can be found in the family of AsPdS and K3BiTe3, shown in
Fig. 2.
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FIG. 2. A 6-fold fermion can occur at the R point in the dashed circle. (a) The SOC band structure of AsPdS shows a 6-fold
fermion occurs below E

F

. (b) The 6-fold fermion occurs about E
F

in the SOC band structure of K3BiTe3, which can be tuned
by electron-doping.

SG 199

This space group has a body-centered cubic Bravais lattice without inversion, and a 3-fold fermion can occur at the
P point in Fig. 1(c). There is no any antiunitary symmetry in the P -point little group even considering time-reveal
symmetry in the system. This 3-fold fermion can be found in the family of Ni
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X
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Pb,
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and
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=
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Rb;
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B
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Ge,
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Sn,
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Pb) [? ], shown in Fig. 3.
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(a)

::::
The

::::
SOC

:::::
band

::::::::
structure

::
of

::::::::
Ni3(BiS)2::

is
::::::::
computed,

::::
with

:::
the

::::::
fermion

:
just

being slightly above E
F

.
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(b)

:
The SOC band structure of Ni3(BiS):K2::::::

Pb2O3 is computed
::::::::
presented,

:::::::
hosting

:::
the

:::::
3-fold

:::::::
fermion

::
in

:::
the

::::::
valence

::::::
energy.
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could
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are
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and
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This space group has a simple cubic Bravais lattice without inversion, and an 8-fold fermion can occur at the R
point in Fig. 1(b), which can be found below E

F

in the family of CsSn (CsSi), shown in Fig. 9.
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3-fold(or 6-fold) and 8-fold fermions coexisting in SGs 220 and 230

SG 220

This space group has a body-centered cubic Bravais lattice without inversion. A 3-fold (resp. 8-fold) fermion can
occur at the P (resp. H) point in Fig. 1(c). There is no antiunitary symmetry in the P-point little group, while there
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rare-earth element (i.g. La, Ce), Pn (pnictogen) = As, Sb, Bi.
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FIG. 10. An 8-fold) fermion can occur at the R point. (a) The SOC band structure of Ta3Sb. (b) The SOC band structure of
LaPd3S4.

3-fold(or 6-fold) and 8-fold fermions coexisting in SGs 220 and 230

SG 220

This space group has a body-centered cubic Bravais lattice without inversion. A 3-fold (resp. 8-fold) fermion can
occur at the P (resp. H) point in Fig. 1(c). There is no antiunitary symmetry in the P-point little group, while there
is an antiunitary operator TC̄2y, followed by a translation ~t(0, 1/2, 1/2) in the H-point little group. These fermions
can be found around the E

F

in the anti-Th3P4 phase in the systems A4Pn3 and R4Pn3 for A = Ca, Sr, Ba, Eu, R =
rare-earth element (i.g. La, Ce), Pn (pnictogen) = As, Sb, Bi.
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FIG. 11. A 3-fold (resp. 8-fold) fermion can occur at the P (resp. H) point. (a) The SOC band structure of Ba4Bi3. (b) The
SOC band structure of La4Bi3.

A4Pn3 where A= Ca, Sr, Ba, Eu and R= La, Ce and 
Pn = pnictogen (As, Sb, Bi)
MPd3S4 where M= rare earth (see La very close to 
the Fermi level) 
X3Y where X=Nb,Ta and Y= A-IV; A-V (Sb for ex)
Th3P4, PdBi2O4, AuBi2O5, WO3, CsSn, CsSi
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Results

New Types of Fermions in Nature!
 
Large Degeneracy Fermions, but degeneracy point not their exotic only 
property

Degeneracies on surfaces

Transport, localization, superconductors, interaction behaviors when large 
degeneracies are involved

New Types of Fermi Arcs

New Types of Dirac Lines

Measuring Projective Representations - physical consequences


