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How Many Types Of Energy Fermions Are There in Nature?

HourGlass Fermions
Group extensions by Wilson loops

Generalizes spatial nonsymmorphism to the Brillouin zone

Bulk fermions with 3,6,8 -fold degeneracies
Degeneracies on planes and surfaces

Exotic Transport Response



Chiral edge states
Do not rely on any symmetry.

C can be defined within
a mirror subspace (Teo,Fu,Kane)

e.g., SnTe, BiSb,CeBi
(Hsieh, Fu, Suyang, Nasser, Hasan, )

Or no edge states at all: Hughes Prodan BAB,

Symmetry-protected edge states

Time-reversal symmetry, spin-orbit coupling
(Kane,Mele)

e.g., HgTe, Bismuth

P

(BHK, Drozdov,
Yazdani, AA...)

G

2D+ 3D Mollenkamp, Hassan and many others

Turner and Vishwanath 2011; Teo, Ryu, Turner, others



Initial criterion for symmetry-protected edge states

Degeneracies at isolated points

1) Two points (k,,k,) with enhanced degeneracy
2) Trivial degeneracy on the line bridging k,-k,

Is This All?
Trivial SHI
k, 'kz Kk, Kk,
Z, topology (Fu, Kane,Mele)
Z topology (AA,Chen,Gilbert,BAB)

Many others

+1




Better criterion for symmetry-protected edge states

Connectivity of submanifold (5)
Degree of connectivity = D

1) Two submanifolds (5,,8,) with equal and enhanced connectivity (D, = D, >1).
2) §; bridges §; and §,, and has a connectivity (D;) that nontrivially divides D,

i.e., D,/D; = an integer greater than one.

Which symmetry groups have nontrivial connectivity?

More complete answer: all nonsymmorphic space groups.

Concept of connectivity: Zak



Example of Connectivity in Our New Top Ins

Weak TI: B. Yan, L.
Mu chler, and C.

Felser, Phys. Rev. Pertect
(Lzegtl.zl)@, 116406 termination
HourGlass
Fermion. Modified
. o . surface
3 Realistic Materials Found potential

and Synthesized

KHgX: X= As,Bi, Sb



KZnP: trivial phase KHgSb: topological phase

Different quantum numbers under spatial transformations.

* Inversion of (screw) rotational eigenvalues: exp[—iJ,m/3]

ooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooo

°
oooooooooooooooooooooooooooooooooooooooo

A J, = Mirror Chern number mod 6

Criterion for nontrivial topology in any space group with screw/rotational symmetry.

* generalizes previous criterion for symmorphic rotation (Chen Fang et al)



Cohomology and Crystals

Cohomology 1n crystallography

) How many ways can I make a 1D crystal
z M x — | that extends 1n z, and has also this reflection
symmetry?

Obvious (for cohomologists, trivial/split; for crystallographers: symmorphic) M 2 —3 |

000090909

Less obvious (for crystallographers: nonsymmorphic) M 2 =t (ZA )

AN VAN VAN
V V VAV VAVA

The two algebras differ only by insertion of spatial translations.



HourGlass Fermion

1 o
«—> kZ Symmetries:

@
......................................... [ ® Mx, Mz
kX

Group of the

M_2 =-exp (1k,) — 2 branches of eigenvalues = +/- 1 * exp(ik,/2)

4-fold-connected

Glide spin Hall effect
Hourglass
Monodromy:  k, = k, + 2m,
eig(M,) » —eig(M,)
kz=0 kz=pi kz=0 kz=p1

A degeneracy that is movable but unremovable.



Connectivity

Symmetries:
LMXx,

(Mx)z = t(Z) * (2w rotation) = —e tkz

Group of the wavevector

(T*Mx )% = -1

Kramers-like degeneracy at every wavevector,
1.c., mmm 1S two-fold connected.




Connectivity

®
kz=0

kz=p1

kx=0

kx=p1



Putting Everything Together

— o ©

kZ Mz:z— -z

Mirror Chern number: (Teo, Fu, Kane)
.k [ F(k)d?k in the even subspace.

Hourglass-flow topology

Rest of this talk: how do we diagnose this topology in the bulk wavefunction?

A non-abelian generalization of the theory of polarization.



ARPES on KHgSb



Bulk Indices
And Wilson Group Extensions




Wilson Band Structures Have ALWAYS Provided Faithful
Representations of Any Topological Insulator We Thought Of

Wilson loops: matrix representation of parallel transport around momentum loops.

W = exp(—fA dky);

<q0>

Amn = <Um,ky‘ Ok, Unk,)

explifnk, |-
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Dai Xi, Z. Fang, BAB, X. Qi, Rui Yu, A Alexandradinata
Also Soluyanov and Vanderbilt



We Define A Wilson Group

Since Wilson loops winding gives correct surface symmetries, we
define a wilson group

All elements g (spatial or time-reversal symmetries) such that

§W§_1 _ W::l

05 - 05
A : B
& 0 | & 0o ———
0.5 - 1 05 -
0.5 0.25 0  -05 0.25 0



Cohomology and Crystals

Cohomology 1n crystallography

) How many ways can I make a 1D crystal
z M x — | that extends 1n z, and has also this reflection
symmetry?

Obvious (for cohomologists, trivial/split; for crystallographers: symmorphic) M 2 —3 |

000090909

Less obvious (for crystallographers: nonsymmorphic) M 2 =t (ZA )

AN VAN VAN
V V VAV VAVA

The two algebras differ only by insertion of spatial translations.



Group Extensions

Cohomology in crystallography

Different extensions are classified by the second cohomology group:

H%*(G,,T) = Z,
G, = {1,Mx}>/ \:r = {tG)"|n€L)
— each extension corresponds to a different crystal order / space group.

In essence, this is how one determines there are
1) 17 space groups 1n two spatial dimensions,

2) 219 in 3D, Most groups

4) a finite number in any finite spatial dimension.

(Hilbert’s 18’th problem, 1900)

Nonsymmorphicity exists only in real space, why not in momentum space?



Group Extensions

Topological Insulators exist because of a nontrivial extension of the time - reversal
symmetry group with that of spin.

With Spin, We can have two situations:
TA2=1 (spinful, but no spin-orbit coupling}

TA2=-1 (spinful, with spin-orbit coupling, nontrivial Tl possible)



New Topological Classes
Wilson Group Can Be Extended Nontrivially

éilq/éﬁ——l _ )q/ﬂzl

M, W_ (7, k) M ' = W,(m, k)

d |

R
For kx=Pi, the Mirror is NOT part of the i
Wilson Group - translates the origin of o
the Wilson line. szx
Can Build a Nontrivial Mirror. | .

27 27 27 2T
MeW_. M.'=W__, with M, =W___, M,. M2 =Et2) W

There exists an extension by the Wilson loop!
Gives the correct prediction of the possible surface modes, Gives the equivalent of spatial nonsymmorphic symmetries to the
Brillouin zone

The two glide-invariant planes in our case study correspond to different representations of the same symmetries — by deducing the possible Wilson
‘bandstructures’ in both planes, we demonstrated that one plane allows for a glide-spin-Hall subtopology, and the other does not.



Ordinary glide plane: k, = 0 Projective glide plane: Kk, =7
Mx hy = —ky
K
Mz = —t(2) MZ2=—t(2)w!
Trivial extension by Nontrivial extension by
quasimomentum translation. quasimomentum translation.

Different extensions lead to different 2D topologies.




Cohomological Insulators

*—©@
7 MwMt =w
®
g. TWT-1 =w1!

Ordinary representation

M2z = (2w rot.)(spatial trans.)

= —t(2)

M,T = THl,

Identical to the algebra of the surface
symmetries

— surface prediction 1s valid.

-/\;lac — W—m—o Mx

*—0
& MM l=w

1
-1 _ -1
ng TWT =W

Projective representation

Mi=—-t(Z)w1

M, T = TM,W
M, T are generalized symmetries that
encode parallel transport.

Different from the algebra of the
surface symmetries.

The Wilsonian algebra determines the possible topologies of the Wilson bands along XU.

H5(G,,N)

N={E"t2)"W°|a€ZybccZ}



Cohomology determines the band sub-topology

*—0
R

o ! M WM, =W
«RT Vi = —t(Hw™

Wle) kZ) — ei9|9, kZ)l t(ZA)lg) kZ) — e—l'kzle’kz>

Energy- and momentum-dependent quantum numbers:
elg[J\7[x] = +ie —i(k,+6)/2

Hypothetical Glide Spin Hall Effect
k, =k, +4n

0 -0+ 2n

eig[Mx] - _eig[Mx]

Assumption: Wilson bands
come 1n multiples of four.



Multiplication rules in the group extension,

e.g., Mi = —t(2)W 1,

constrain the Wilson energies.

4 possible 2D topologies

piece

| > 6

together

N/\ /N

KX

Distinct connectivities of the Wilson energies
correspond to topologically inequivalent groundstates.




Summary and outlook

We introduced a criterion for symmetry-protected band topologies. The 1dea is
to generalize symmetry-protected degeneracy by connectivity.

This motivates nonsymmorphic crystals which have nontrivial connectivity.

While the surface analysis gets many things right, the sure-fire method to
classify band topology is through the Wilson loop. The connectivity criterion
should be applied to the Wilson ‘bands’.

Spin-off: There exists further of the
230 Space Group topologies!

Wang, Alexandradinata, Cava, BAB, Nature
Alexandradinata, Wang, BAB, PRX



Semimetals: Why Are They Interesting?
See Ali's Talk Tomorrow

Weyl, Dirac: Experimentally Discovered materials firs
theoretically predicted.

Two - types of “Dirac” Semimetal:
1. Two 2-fold irreps crossing linearly (CdAs):

4t K ,1001] direction

CdAs BL/ L 4ol

Dirac points =2 =

NN Degeneracy

Dirac Point

|

-200

arvav (no)
N

-100 0 100 200
Energy (mV)

2. One 4-fold irrep (HgTe):

-300

2-fold
4‘f0|d F."ﬂm—1

Degeneracy : &
< 6ol I_EFV B°x

%
oLl s L L 10

-180 -120 -60 0 60 -30 0 30 60 90 120 150
¢ deg) 0 deg)

N 2-fold

Topological Semimetals: weird transport

Dirac Semimetals generically break into Weyl (due to
symmetry) and can have negative magneto-resistance.

Ong Felser Cava Hasan Ding Chen Yazdani Mollenkamp

Volovik, Murakami, Burkov, Balents, Moore, Vishwanath, Savrasov, Kane, Fu, Grushin, Zhang, Qi, Hosur, Bardarson, Weng, Dali,
Soluyanov, Bergholtz, Fang, Yao, Nagaosa, Vanderbilt, Sachdev and others



New Types of Fermions

Barry Bradlyn, Jennifer Cano, Zhijun Wang, Maia Vergniory, Claudia Felser, Bob Cava, BAB, submitted

3-fold Degeneracy (in several symmetry groups)
— —
Violates spin 2S5+1 degeneracy (always even) k . S

Linear crossing, but Chern number 2 bands. Spin 1, 3/2

C=2

(a) SGs 199 and 214

arXiv:1509.00861
Dirac Cone Protected by Non-Symmorphic Symmetry: 4 fold nonsymmorphic
Leslie M. Schoop, Mazhar N. Ali, Carola StraBBer, Viola Duppel, Stuart S. P. Parkin, Bettina V. Lotsch, Christian R. Ast



3-fold, 6-fold, 8-fold Crossings: All Different Fermions

For 8-fold see also Benjamin J. Wieder, Youngkuk Kim, A. M. Rappe, C. L. Kane, arXiv:1512.00074

K dot p models

(b) SG 220

3-fold degeneracy,
Line-nodes on  |5k.| = |0k, | = |0k.

(a) SGs 130 and 135

4-fold degenerate at corner of BZ:

Dirac Line Nodes

(c) SGs 198, 212 and 213

o-fold degeneracy,
Surface-nodes on dk; = 0 of the BZ

(c) SGs 218 and 220

Four non-degenerate and two doubly
degenerate pairs of bands on |0kz| = [0ky| = |0k.|



NonSymmorphicity, Degeneracies, and Group Cohomology
(8-fold crossings example, everything else is similar)

Start With Non-Symmorphic 4-Fold

T,Rl,RQ |7 >CZ_11751_127CZ—13
! o1 3 antiunitaries
T2 1 T2 —{e* 3" Rl A
Ty =i Ry - T
2 _ pR2 _ Non 2
R1 R2 1 “Symorphic Tz = —1

TiTj — €i9ij T]TZ
R/ R, = ei(912+913+931)R2R1
Ii {Rl, RQ} =0

only 4-fold degeneracy
avallable

6?3(912-1-3234-931) 7& 1

4-dim irrep, projective




NonSymmorphicity, Degeneracies, and Group Cohomology
SG 130

T1 — T; T2 — Tjégx; T3 — TI_CQy
To obtain an 8-fold, we need another unitary

C4Z‘90> = A- ‘90>

{)\; )\*} a Inversin {—)\; —)\*}

4-told, 3 projective antiunitaries 4-told, 3 projective anti-unitaries

All other Fermions 3, 6, 8 fold, here also have projective representations

All distinct, all different responses



New Fermions: Classification And Surface/Line Degeneracies

Barry Bradlyn, Jennifer Cano, Zhijun Wang, Maia Vergniory, Claudia Felser, Bob Cava, BAB

TCZz
Bravais lattice Lattice vectors Reciprocal lattice vectors
Primitive cubic (a,0,0), (0,a,0), (0,0,a) 27(1,0,0), 27(0,1,0), 2 (0,0, 1) { R
Body-centered cubic %(—1,1,1), %(1,-1,1), £(1,1,—1) 2%(0,1,1), 25(1,0,1), 2%(1,1,0) S~ °
Primitive tetragonal (a,0,0),(0,a,0),(0,0,c) 27(1,0,0), 22(0,1,0), 22(0,0, 1)

SG |La| k |d|Generators
198|cP|R|6|{C5 1111010}, {Cax |5 20}, {C2y 022}
199 cI | P|3|{C511,]101}, {Cas| L 10}, {Coy |01 1}
205|cP|R |6 |{C5 111|010}, {Cax|5 50}, {C2y]03 5}, {1]000} T Coy
206 cI |P|6]{C5 11101}, {Cox |1 20}, {Cay[0L1 Tay TCoq
212|cP |R|6|{C2:]5350},{C2[055},{C51111000} {Cs 170l 75 3} (2) Line Nodes in SG 220 (b) Surface Nodes in SGs 198,212, and
213|cP|R|6]{C2|550},{C2y[05 5 },{C5 1111000} {C2 11015 § §} 21
214| cI |P|3|{C5 141|101}, {Caz|5 50}, {C2y[05 3
220| cl | P|3|{C5.111|05 5 }.{C2y|03 2 }.{Caz| 220} ,{IC,, |11} Ty - Oyz
230| cI |P|6|{C5111[05 5}{C2y[03 3},{Ce| 3 30} {1C, | 311} R
130{tP |A |8]{C4:|000}, {oz,|001}, {1]1 12 1“ )
135(tP |A|8[{Cuz|3 22}, {05y]003 }, {I]000} Ni\
218|cP | R |8]{C24|001}, {C2,|000}, {C5 111|001}, {05y |24 3} i\ x
220 1 [H[8 | {Car |3 20}, {Cay 02 2}, {Cy 11y 001}, {2, 1323 L ST
222|cP|R|8|{C;.]|000}, {C2,]000}, {C5 11,1010}, {155 5} M
223|cP|R|8|{CL|53 3} {C2:[000},{C5,,|010}, {1000}
230| cI |H|8|{C4:]050}, {C2y|12 1}, {C5,111|111}, {1000}

(¢) Dirac line nodes in SGs 130 and 135 (d) Line nodes in SG 218

For 8-fold see also Benjamin J. Wieder, Youngkuk Kim, A. M. Rappe, C. L. Kane



The Different Classes of New Fermions: 3,6,8 Fold

AsPdS

1
0.5 X

Energy(eV)

"g
0.5

b AL
i

A
M

A 6-fold fermion can occur at the R point in the dashed circle.

Li2Pd3B

Energy(eV)
S

6-fold fermion occur below Er at the R point SG 205 A 6-fold fermio:

Energy(eV)
=

<

o g(@

_/

A 6-fold fermion can occur at the R point SGs 212 and 213

T X M K R

PdBi204

0.5

Energy(eV)

=
va

N
A
<

Energy(eV)
Energy(eV)

8-Fold Fermions at the A-naint

SGs 130 and 135

4

. Ba4Bi3

0.5
9 L
<2
2 0
5] 2 ; <
= 2 3 &
53}

058 % g

| H N KHIHHE P

DN

A 3-fold (resp. 8-fold) fermion can occur at the P (resp. H) point. SG 220

Ni3(BiS)2 K2Pb203
1
——
e b e e ] >
2 E g O XY\ A
2 F g
& 1 a
0.5~ X
1
I X HHH R X -1 _ @
H N P H [r— H N H

b Er at the P point SG 206 . .
1 oceiabove B at The T pom A 3-fold fermion can occur at the P point. SG 199

La3Pbl3

X 7 g
A /
N SE

AsPdS, FeS2
K3BiTe3 PtP2
M3(XS)2 where M= Ni,Pd, X= Pb, Bi KBiF6

I A2 B2 03 (A=K, Rb, B= Ge, Sn, Pb) Li2(Pd/Pt)3B
w7 PdSb2 Re2(W/Mo)3C

La3Pbli3
)

Tt X M KHHHH R X e X M R X

An 8-fold) fermion can occur at the R point. SGs 222 and 223

CsSn

LaPd3S4

Energy(eV)
(=]

An 8-fold fermion can occur at the R point SGs 218

A4Pn3 where A= Ca, Sr, Ba, Eu and R= La, Ce and C|eaner Materials:
Pn = pnictogen (As, Sb, Bi)

MPd3S4 where M= rare earth (see La very close to M. Vergniory, C

the Fermi level) Felser, B. Cava
X3Y where X=Nb,Ta and Y= A-IV; A-V (Sb for ex)

Th3P4, PdBi204, AuBi205, WO3, CsSn, CsSi Bradlyn, Cano, i
preparation



Results

New Types of Fermions in Nature!

Large Degeneracy Fermions, but degeneracy point not their exotic only
property

Degeneracies on surfaces

Transport, localization, superconductors, interaction behaviors when large
degeneracies are involved

New Types of Fermi Arcs
New Types of Dirac Lines

Measuring Projective Representations - physical consequences



