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Figure 1. Energy spectrum of the three different types of topological subgap states that can exist at the surface of nodal noncentrosymmetric
superconductors: (a) helical Majorana cone, (b) arc surface state, and (c) flat-band surface state. Figure adapted from [66].

with codimension p < dBZ (i.e. dn > 0), provided that they
are protected by a Z invariant or 2Z invariant. Z2 numbers,
on the other hand, guarantee only the stability of nodes with
dn = 0, i.e. point nodes. These findings are confirmed by
more rigorous derivations based on K theory [58–60] and
minimal Dirac Hamiltonians [61]. The latter approach uses
Clifford algebra to classify all possible symmetry-preserving
mass terms that can be added to the Hamiltonian. The
classification of global-symmetry-invariant nodal structures
(and Fermi surfaces) is summarized in table 1, where the first
row indicates the codimension p of the superconducting nodes.
For any codimension p there are three symmetry classes for
which stable superconducting nodes (or Fermi surfaces) exist
that are protected by a Z invariant or 2Z invariant, where the
prefix ‘2’ indicates that the topological number only takes on
even values. Furthermore, in each spatial dimension dBZ there
exist two symmetry classes that allow for topologically stable
point nodes (Fermi points) which are protected by a binary Z2

number.

3.2. Nodes off high-symmetry points

Second, we review the topological classification of
superconductors with nodes that are located away from high-
symmetry points of the Brillouin zone [57, 61]. These point
or line nodes are pairwise mapped onto each other by the
global antiunitary symmetries, which relate k to −k. An
analysis based on the minimal-Dirac-Hamiltonian method [61]
shows that only Z-type invariants can guarantee the stability of
superconducting nodes off high-symmetry points, whereas Z2

numbers do not lead to stable nodes. However, as illustrated
in terms of the example of section 3.3.3, Z2 numbers may
nevertheless give rise to zero-energy surface states at time-
reversal-invariant momenta of the surface Brillouin zone.
The complete classification of superconducting nodes that
are located away from high-symmetry points is presented in
table 1, where the second row gives the codimension p of
the superconducting node. Observe that this classification
scheme is related to the ten-fold classification of fully gapped
superconductors and insulators by the dimensional shiftdBZ →
dBZ + 1.

3.3. Examples

For the phenomenological model Hamiltonians given in
section 2, we derive in this subsection explicit expressions
for the topological invariants that protect the superconducting
nodes against gap opening. We also use these examples to
illustrate the bulk-boundary correspondence [64, 65], which
links the topological characteristics of the nodal gap structure
to the appearance of zero-energy states at the boundary.
Depending on the case, these zero-energy surface states are
either linearly dispersing Majorana cones, Majorana flat bands,
or arc surface states (see figure 1). We note that in real
superconducting materials the gap nodes are usually positioned
away from the high-symmetry points of the Brillouin zone.
Indeed, this is the case for the three examples of section 2,
which are therefore classified according to section 3.2.
Note that the topological invariants introduced here can be
straightforwardly generalized to more complicated systems.

3.3.1. The A phase of 3He. The A phase of 3He is
phenomenologically described by Hamiltonian (1), which
satisfies particle-hole symmetry C−1H(−k)C = −H(k) with
C = Kτx . Time-reversal symmetry, however, is broken,
because the superconducting order parameter of equation (1) is
complex. Hence, since C2 = +11, Hamiltonian (1) belongs to
symmetry class D. We infer from table 1 that the Weyl nodes of
the Hamiltonian (1), which have codimension p = 3 and occur
off high symmetry points, are protected by a Z topological
number. In order to derive a formula for this topological
number it is convenient to rewrite Hamiltonian (1) as

H(k) = N(k) · τ , (13)

i.e. a dot product between the pseudospin vector N(k) =(
"0kx/kF, "0ky/kF, h(k)

)
and the vector of Pauli matrices

τ = (τx, τy, τz). The unit vector field nk = N(k)/|N(k)|
exhibits singular points at the Weyl nodes K± of H(k).
These point singularities realize (anti)hedgehog defects in
momentum space and are characterized by the Chern number
[25–28]

NC = 1
4π

∫

C
d2k̃ nk ·

[
∂k1 nk × ∂k2 nk

]
, (14)
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Topological band theory
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Bloch theorem

[T (R), H ] = 0 |ψn⟩ = eikr |un(k)⟩ (1)

(2)

H(k) = e−ikrHe+ikr (3)

(4)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (5)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (6)

majoranas

γ1 = ψ + ψ† (7)

γ2 = −i
(

ψ − ψ†
)

(8)

and

ψ = γ1 + iγ2 (9)

ψ† = γ1 − iγ2 (10)

and

γ2
i = 1 (11)

{γi, γj} = 2δij (12)

mean field

γ†
E=0 = γE=0 (13)

⇒ γ†
k,E = γ−k,−E (14)

Ξ ψ+k,+E = τxψ
∗
−k,−E (15)

Ξ2 = +1 Ξ = τxK (16)

τx =

(

0 1
1 0

)

(17)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (18)

weak vs strong

|µ| < 4t (19)

n = 1 (20)

• (i) Topological equivalence for 
insulators (superconductors):

• Consider band structure: 

• (ii) Topological equivalence for  
band crossings (nodes in SCs):
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we have

kx ky π/a − π/a (1)

majoranas

γ1 = ψ + ψ† (2)

γ2 = −i
(

ψ − ψ†
)

(3)

and

ψ = γ1 + iγ2 (4)

ψ† = γ1 − iγ2 (5)

and

γ2
i = 1 (6)

{γi, γj} = 2δij (7)

mean field

γ†
E=0 = γE=0 (8)

⇒ γ†
k,E = γ−k,−E (9)

Ξ ψ+k,+E = τxψ
∗
−k,−E (10)

Ξ2 = +1 Ξ = τxK (11)

τx =

(

0 1
1 0

)

(12)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (13)

weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (16)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (17)

mx my mz (18)
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homotopy

ν = # kx (1)

∆±
k

= ∆s ± ∆t |dk| (2)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (3)

and

π3[U(2)] = q(k) :∈ U(2) (4)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (5)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (6)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(7)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(8)

+ λ cos ky

(

c†nky↓cnky↑ + c†nky↑cnky↓

)

(9)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (10)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (11)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(12)

a (13)

ξ±
k

= εk ± α |gk|(14)

crystal momentum
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• Bulk-boundary correspondence:

. symmetries to consider:

. top. equivalence classes distinguished by:

|nZ| = #gapless edge states (or surface states)

nZ =
i

2⇡

Z
F dk 2 Z

filled 
states
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1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(7)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(8)

+ λ cos ky

(

c†nky↓cnky↑ + c†nky↑cnky↓

)

(9)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (10)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (11)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(12)

a (13)

ξ±
k

= εk ± α |gk|(14)

crystal momentum

topological invariant



Reflection symmetry

— zero-energy states on surfaces that 
      are left invariant under the mirror symmetry

R�1H(�k
x

, k
y

, k
z

)R = H(k
x

, k
y

, k
z

)

R = s
x

=) H(0, ky, kz)R�RH(0, ky, kz) = 0

 — project                        onto eigenspaces of     :  

 Consider reflection R:

x

y

z
x ! �x

with

 mirror Chern number:
k
x

= 0

 Bulk-boundary correspondence:

Mirror plane

Berry curvature in       eigenspace

 — w.l.o.g.: eigenvalues of  R 2 {�1,+1}

±

R H±(ky, kz)H(0, ky, kz)
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n±
M =

1

4⇡

Z

2DBZ

F± d2k

— total Chern number:

— mirror Chern number: nM = n+
M � n�

M

nM = n+
M + n�

M



R� : R anti-commutes with T (C or S)
R+ : R commutes with T (C or S)

8

TABLE II. Classification of reflection symmetry protected topological insulators and fully gapped superconductors,? ? ? as well as of Fermi
surfaces and nodal points/lines in reflection symmetry protected semimetals and nodal superconductors, respectively. The first row specifies
the spatial dimension d of reflection symmetry protected topological insulators and fully gapped superconductors, while the second and third
rows indicate the codimension p = d � d

FS

of the reflection symmetric Fermi surfaces (nodal lines) at high-symmetry points [Fig. 3(a)] and
away from high-symmetry points of the Brillouin zone [Fig. 3(b)], respectively.

Reflection sym. class d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8
R A MZ 0 MZ 0 MZ 0 MZ 0
R

+

AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R

+

,R
++

AI MZ 0 0 0 2MZ 0 MZ
2

MZ
2

BDI MZ
2

MZ 0 0 0 2MZ 0 MZ
2

D MZ
2

MZ
2

MZ 0 0 0 2MZ 0
DIII 0 MZ

2

MZ
2

MZ 0 0 0 2MZ
AII 2MZ 0 MZ

2

MZ
2

MZ 0 0 0
CII 0 2MZ 0 MZ

2

MZ
2

MZ 0 0
C 0 0 2MZ 0 MZ

2

MZ
2

MZ 0
CI 0 0 0 2MZ 0 MZ

2

MZ
2

MZ

R�,R��

AI 0 0 2MZ 0 TZ
2

Z
2

MZ 0
BDI 0 0 0 2MZ 0 TZ

2

Z
2

MZ
D MZ 0 0 0 2MZ 0 TZ

2

Z
2

DIII Z
2

MZ 0 0 0 2MZ 0 TZ
2

AII TZ
2

Z
2

MZ 0 0 0 2MZ 0
CII 0 TZ

2

Z
2

MZ 0 0 0 2MZ
C 2MZ 0 TZ

2

Z
2

MZ 0 0 0
CI 0 2MZ 0 TZ

2

Z
2

MZ 0 0
R�+

BDI, CII 2Z 0 2MZ 0 2Z 0 2MZ 0
R

+� DIII, CI 2MZ 0 2Z 0 2MZ 0 2Z 0
R

+� BDI MZ� Z 0 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

R�+

DIII MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0 2MZ� 2Z 0
R

+� CII 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0
R�+

CI 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0
a
Z
2

and MZ
2

invariants only protect Fermi surfaces of dimension zero (d
FS

= 0) at high-symmetry points of the Brillouin
zone.

b
Fermi surfaces located within the mirror plane but away from high symmetry points cannot be protected by a Z

2

or MZ
2

topological invariant. Nevertheless, the system can exhibit gapless surface states that are protected by a Z
2

or MZ
2

topological invariant.
c

For gapless topological materials the presence of translation symmetry is always assumed. Hence, there is no distinction
between TZ

2

and Z
2

for gapless topological materials.

classification of reflection symmetric semimetals and nodal
superconductors.

IV. CLASSIFICATION OF REFLECTION SYMMETRY
PROTECTED GAPLESS TOPOLOGICAL MATERIALS

Having discussed the classification of fully gapped re-
flection symmetric topological materials, we are now ready
to classify reflection symmetric topological semimetals and
nodal superconductors. As for fully gapped systems, reflec-
tion symmetries lead to an enrichment of the ten-fold clas-
sification of topological semimetals (nodal superconductors)
with new topological phases. The classification depends on
the codimension p = d � d

FS

of the Fermi surface (nodal
line/point) and on whether the reflection operator R commutes
or anticommutes with the nonspatial symmetries. More-
over, we need to distinguish how the Fermi surface (nodal

line/point) transforms under the mirror reflection and nonspa-
tial symmetries. There are three different cases to be con-
sidered: (i) The Fermi surface is invariant under both reflec-
tion and global symmetries [Fig. 3(a) and Table II], (ii) Fermi
surfaces are invariant under reflection, but transform pairwise
into each other by the global antiunitary symmetries [Fig. 3(b)
and Table II], and (iii) different Fermi surfaces are pairwise
related to each other by both reflection and nonspatial sym-
metries [Fig. 3(c) and Table III].

Our derivation of these classification schemes, which are
presented in Tables II and III, relies primarily on the so-called
minimal Dirac-matrix Hamiltonian method.? ? This method
is based on considering reflection symmetric Dirac-matrix
Hamiltonians with the smallest possible matrix dimension for
a given symmetry class of the ten-fold way. The topologi-
cal properties of the Fermi surfaces (nodal lines) described by
these Dirac-matrix Hamiltonians is then determined by the ex-
istence or non-existence of symmetry-preserving mass terms

Morimoto, Furusaki PRB 2013; Chiu, Schnyder PRB 2014;

“Bott cube” 41

t = 0

t = 1 t = 2

t = 3

FIG. 10 (Color online) The 27 symmetry classes with reflec-
tion symmetry can be visualized as the extension of the Bott
clock.

acterized by a Z
2

invariant, nd�1

k1=0(⇡) = ±1, the mirror
Z
2

invariant MZ
2

is defined by

nMZ2
= 1 � ��nd�1

k1=0

� nd�1

k1=⇡

�� , (4.9)

with nk1=0(⇡)d�1 2 {+1, �1}. A nontrivial value (�1) of
these mirror indices indicates the appearance of Dirac or
Majorana boundary modes at reflection symmetric sur-
faces, i.e., at surfaces that are perpendicular to the reflec-
tion hyperplane x

1

= 0. At surfaces that break reflection
symmetry, however, the boundary modes are in general
gapped.
(iii) TZ

2

invariant: In symmetry classes where R anti-
commutes with the TR and PH operators (R

�

and R
��

in Table VIII), the second descendant Z
2

invariants are
well defined only in the presence of translation symmetry.
That is, boundary modes of these phases can be gapped
out by density-wave type perturbations, which preserve
reflection and AZ symmetries but break translation sym-
metry. Hence, these topological states are protected by
a combination of reflection, translation, and AZ antiuni-
tary symmetries.
(iv) MZ�Z and MZ

2

�Z
2

invariants: In some cases,
topological properties of reflection symmetric insulators
(SCs) with chiral symmetry are described both by a
global Z or Z

2

invariant and a mirror index MZ or MZ
2

,
which are independent of each other. At boundaries
which are perpendicular to the mirror plane the number
of protected gapless states is given by max {|nZ| , |nMZ|}
(Chiu et al., 2013), where nZ denotes the global Z invari-
ant, whereas nMZ is the mirror Z invariant.

Before discussing the gapless surface modes of crys-
talline materials, let us note that the classification of
reflection-symmetric TIs and TSCs (Table VIII) can
be generalized to any order-two symmetry (Z

2

symme-
try) and, moreover, to include the presence of topolog-
ical defects (cf. Sec. III.C.2). The generalized classifi-

cation can be inferred from K-groups labeled by 6 in-
tegers K(s, t, d, d

k

, D, D
k

), where d
k

(D
k

) is the num-
ber of momentum (spatial) coordinates that are flipped
by the Z

2

operation, s denotes the AZ symmetry class,
t = 0, 1, 2, 3 labels the reflection Bott clock (Fig. 10),
and (d, D) are the dimensions of the defect Hamilto-
nian. It was shown by Shiozaki and Sato, 2014 that
the generalized classification follows from the relation
K(s, t, d, d

k

, D, D
k

) = K(s�d+D, t�d
k

+D
k

, 0, 0, 0, 0).
For reflection symmetric TIs and SCs, we have d

k

= 1,
D

k

= 0, and D = 0, which reproduces Table VIII.

a. Bulk-boundary correspondence in topological crystalline

systems While protected gapless modes always exist at
any boundary in TIs/TSCs in AZ symmetry classes, this
is not the case in topological crystalline materials; pro-
tected gapless modes do not exist at boundaries that
are not invariant under spatial symmetries, although
their absence does not indicate the trivial bulk topol-
ogy. Complementary to studying boundary modes in
physical Hamiltonians, studying gapless boundary modes
in the entanglement Hamiltonian or in the entanglement
spectrum is a generic way to distinguish the topology of
topological (crystalline) materials (Chang et al., 2014;
Fidkowski, 2010; Ryu and Hatsugai, 2006). For exam-
ple, for TIs/TSCs protected by inversion symmetry, for
which there is no boundary that respects the inversion,
and hence there is no protected gapless boundary mode
in physical Hamiltonians, stable gapless boundary modes
in the entanglement spectrum indicate the nontriviality
of the bulk topology (Hughes et al., 2011; Turner et al.,
2012, 2010).

Another di↵erence between the boundary modes of
crystalline TIs/TSCs and those of ordinary TIs/TSCs
exists with regard to disorder. While the surface modes
of TIs/TSCs with AZ symmetries are robust to spatial
disorder (Sec. III.F), the protection of the gapless sur-
face modes of topological crystalline materials relies cru-
cially on spatial symmetries, which typically are broken
by disorder. However, the gapless surface modes of crys-
talline TIs/TSCs may evade Anderson localization when
disorder respects the spatial symmetries on average. For
example, the weak TIs in class AII in d = 3 rely on the
existence of lattice translation symmetries. Once trans-
lational symmetry is not imposed, the surfaces of weak
TIs can be gapped out by charge density wave, which
preserves TRS. However, when translation symmetry is
respected on average, the surface states do not Anderson
localize (Diez et al., 2014; Fulga et al., 2014; Mong et al.,
2012; Obuse et al., 2014; Ringel et al., 2012). Similarly,
for class AII+R

�

in d = 3, the surface modes are de-
localized when TRS is strictly preserved and reflection
symmetry is preserved on average (Fu and Kane, 2012),
even though the number of surface Dirac cones is even.
For symmetry classes other than AII+R

�

, the presence

Classification of topological materials with reflection symmetry



Classification of topological materials with reflection symmetry
R� : R anti-commutes with T (C or S)R+ : R commutes with T (C or S)

TI/TSC d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

Reflection FS1 p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7

FS2 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1

R A MZ 0 MZ 0 MZ 0 MZ 0

R+ AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R+,R++

AI MZ 0 0 0 2MZ 0 MZ2 MZ2

BDI MZ2 MZ 0 0 0 2MZ 0 MZ2

D MZ2 MZ2 MZ 0 0 0 2MZ 0

DIII 0 MZ2 MZ2 MZ 0 0 0 2MZ
AII 2MZ 0 MZ2 MZ2 MZ 0 0 0

CII 0 2MZ 0 MZ2 MZ2 MZ 0 0

C 0 0 2MZ 0 MZ2 MZ2 MZ 0

CI 0 0 0 2MZ 0 MZ2 MZ2 MZ

R�,R��

AI 0 0 2MZ 0 TZ2 Z2 MZ 0

BDI 0 0 0 2MZ 0 TZ2 Z2 MZ
D MZ 0 0 0 2MZ 0 TZ2 Z2

DIII Z2 MZ 0 0 0 2MZ 0 TZ2

AII TZ2 Z2 MZ 0 0 0 2MZ 0

CII 0 TZ2 Z2 MZ 0 0 0 2MZ
C 2MZ 0 TZ2 Z2 MZ 0 0 0

CI 0 2MZ 0 TZ2 Z2 MZ 0 0

R�+ BDI, CII 2Z 0 2MZ 0 2Z 0 2MZ 0

R+� DIII, CI 2MZ 0 2Z 0 2MZ 0 2Z 0

R+� BDI MZ� Z 0 0 0 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2

R�+ DIII MZ2 � Z2 MZ2 � Z2 MZ� Z 0 0 0 2MZ� 2Z 0

R+� CII 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2 MZ� Z 0 0 0

R�+ CI 0 0 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2 MZ� Z 0

Tabelle I Classification of topological insulators and superconductors (“TI/TSC”) as well as of stable Fermi
surfaces (“FS1” and ”FS2”) and nodal points/lines in 27 symmetry classes with reflection symmetry, in terms of
the spatial dimension d of topological insulators and superconductors, and the codimension p of Fermi surfaces
(nodal lines). “FS1” denote Fermi surfaces (nodal lines) which are within mirror planes and at high-symmetry
points, whereas “FS2” denote those that are away from high-symmetry points. Z2, MZ2 and TZ2 invariants only
protect Fermi surfaces of dimension zero (dFS = 0) at high-symmetry points of the Brillouin zone. For entries
labeled with Z2, MZ2, TZ2, Fermi surfaces located within the mirror plane but away from high symmetry points
cannot be protected by a Z2 or MZ2 topological invariant. Nevertheless, the system can exhibit gapless surface
states that are protected by a Z2 or MZ2 topological invariant. For gapless topological materials the presence of
translation symmetry is always assumed. Hence, there is no distinction between TZ2 and Z2 for gapless topological
materials.

? For which symmetry class and dimension is 
there a topological insulator or topological 
semi-metal protected by reflection symmetry?



Classification of topological materials with reflection symmetry
R� : R anti-commutes with T (C or S)R+ : R commutes with T (C or S)

TI/TSC d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

Reflection FS1 p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7

FS2 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1
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R+ AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R+,R++

AI MZ 0 0 0 2MZ 0 MZ2 MZ2

BDI MZ2 MZ 0 0 0 2MZ 0 MZ2

D MZ2 MZ2 MZ 0 0 0 2MZ 0

DIII 0 MZ2 MZ2 MZ 0 0 0 2MZ
AII 2MZ 0 MZ2 MZ2 MZ 0 0 0

CII 0 2MZ 0 MZ2 MZ2 MZ 0 0

C 0 0 2MZ 0 MZ2 MZ2 MZ 0

CI 0 0 0 2MZ 0 MZ2 MZ2 MZ

R�,R��

AI 0 0 2MZ 0 TZ2 Z2 MZ 0

BDI 0 0 0 2MZ 0 TZ2 Z2 MZ
D MZ 0 0 0 2MZ 0 TZ2 Z2
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R�+ DIII MZ2 � Z2 MZ2 � Z2 MZ� Z 0 0 0 2MZ� 2Z 0

R+� CII 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2 MZ� Z 0 0 0

R�+ CI 0 0 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2 MZ� Z 0

Tabelle I Classification of topological insulators and superconductors (“TI/TSC”) as well as of stable Fermi
surfaces (“FS1” and ”FS2”) and nodal points/lines in 27 symmetry classes with reflection symmetry, in terms of
the spatial dimension d of topological insulators and superconductors, and the codimension p of Fermi surfaces
(nodal lines). “FS1” denote Fermi surfaces (nodal lines) which are within mirror planes and at high-symmetry
points, whereas “FS2” denote those that are away from high-symmetry points. Z2, MZ2 and TZ2 invariants only
protect Fermi surfaces of dimension zero (dFS = 0) at high-symmetry points of the Brillouin zone. For entries
labeled with Z2, MZ2, TZ2, Fermi surfaces located within the mirror plane but away from high symmetry points
cannot be protected by a Z2 or MZ2 topological invariant. Nevertheless, the system can exhibit gapless surface
states that are protected by a Z2 or MZ2 topological invariant. For gapless topological materials the presence of
translation symmetry is always assumed. Hence, there is no distinction between TZ2 and Z2 for gapless topological
materials.
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R� : R anti-commutes with T (C or S)R+ : R commutes with T (C or S)

TI/TSC d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

Reflection FS1 p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7

FS2 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1
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R+ AIII 0 MZ 0 MZ 0 MZ 0 MZ
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Tabelle I Classification of topological insulators and superconductors (“TI/TSC”) as well as of stable Fermi
surfaces (“FS1” and ”FS2”) and nodal points/lines in 27 symmetry classes with reflection symmetry, in terms of
the spatial dimension d of topological insulators and superconductors, and the codimension p of Fermi surfaces
(nodal lines). “FS1” denote Fermi surfaces (nodal lines) which are within mirror planes and at high-symmetry
points, whereas “FS2” denote those that are away from high-symmetry points. Z2, MZ2 and TZ2 invariants only
protect Fermi surfaces of dimension zero (dFS = 0) at high-symmetry points of the Brillouin zone. For entries
labeled with Z2, MZ2, TZ2, Fermi surfaces located within the mirror plane but away from high symmetry points
cannot be protected by a Z2 or MZ2 topological invariant. Nevertheless, the system can exhibit gapless surface
states that are protected by a Z2 or MZ2 topological invariant. For gapless topological materials the presence of
translation symmetry is always assumed. Hence, there is no distinction between TZ2 and Z2 for gapless topological
materials.
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Figure 2.5: (a) Momentum path in the cubic Brillouin zone on which the band

structure is calculated. (b) Positions of the Dirac points in the entire Brillouin

zone.

at the Fermi energy, the Fermi energy must be at the Dirac point in order to maintain the

charge stoichiometric condition. Due to the cubic symmetry of the crystal, existence of

a Dirac point on the �–X line implies that there exist six symmetrically equivalent Dirac

points in the whole Brillouin zone. Specifically, six Dirac points are located at (k
0

, 0, 0),

(�k
0

, 0, 0), (0, k
0

, 0), (0,�k
0

, 0), (0, 0, k
0

), and (0, 0,�k
0

). These positions of Dirac points

in the Brillouin zone are schematically shown in Fig. 2.5(b). In the case of Ca
3

PbO, we

have k
0

= 0.11875.

The magnified view of the band structure on the �–X line is plotted in Fig. 2.6 with

the irreducible representations of the bands. Note that each k-point on the �–X line has

C
4v

symmetry, while the �-point has O
h

symmetry. In Fig. 2.6, the notations in ref. 62

are used to label the irreducible representations. At the �-point, even parity states (�+

7

and �+

8

) come from the Ca 3d orbitals and the odd parity states (��
6

and ��
8

) from

the Pb 6p orbitals. Then, we can see from Fig. 2.6 that the top of p-bands is located

above the bottom of d-bands. Another important point is that both bands forming the

Dirac electron belong to the same irreducible representation �
7

. This is the reason why

a small gap appears at the Dirac point. When two bands are in the same irreducible

representation, a band repulsion (anticrossing) occurs in general.

In order to check whether the Dirac electron is really formed, three-dimensional (3d)

plot of the dispersion relations around the Dirac point at (k
0

, 0, 0) on the k
x

–k
y

plane

with several k
z

is shown in Figs. 2.7(a)–2.7(c). For k
z

= 0 [Fig. 2.7(a)], the calculated

dispersion shows a conical structure, which is characteristic for Dirac electrons. We can

see that the Dirac electron in this material has slightly tilted and anisotropic dispersion.

Figures 2.7(b) and 2.7(c) show that the size of the gap between the lower and upper

bands becomes larger as k
z

is increased from zero. This behavior confirms the three-

dimensionality of the dispersion of the discovered Dirac electron. As is pointed out before,

a small mass gap exists even for k
z

= 0 case. Figures 2.7(d)–2.7(f) shows the dispersion

23

 Anti-perovskites: Ca3PbO, Sr3PbO 
 Ca

Pb

O

By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.

T. KARIYADO and M. OGATAJ. Phys. Soc. Jpn. 81 (2012) 064701 FULL PAPERS

064701-2 #2012 The Physical Society of Japan

Ca3PbO is a reflection symmetry protected TI 

 Band structure (without SOC):

in collaboration with A. Rost, H. Takagi

[Thesis] January, 2012

(a) (b) (c)

x
yz

Ca1
Ca2

Ca3

px

py

pz
tp1

tp2

tp3

tp4

tp5

tdp

td0 td1

td2

td3

Figure 3.3: (a) Orbitals involved in the basis set. (b) Definitions of transfer

integrals between two p-orbitals. (c) Definitions of transfer integrals between

two d-orbitals and between p- and d-orbitals.

where indices ↵ and ↵0 run through 1 to 12, representing the 12 basis orbitals in the order

listed in eq. (3.1). Here, the matrix elements are transformed by attaching momentum-

dependent phase factors to the basis orbitals as |p
x,y,z

�i ! ei(kx+k
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�i. This transformation is performed

in order to make the matrix elements having simple forms. The transformed basis and

matrix elements are used hereafter. Then E
↵↵

0(k) can be expressed in a 12⇥12 matrix

form as

Êk =

 

ˆ̃Epp
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0
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0̂ Êqq
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!

(q, q0 = p, d) (3.5)

and

�̂k = �̂(0) + �̂(1)

k . (3.6)

Note that ˆ̃Eqq

0

k and �̂k are 6⇥6 matrices while Êqq

0

k is a 3⇥3 matrix.

3.1.3 Detailed Description of the Matrix Elements

Spin-orbit coupling In the following, we explicitly show the matrix elements. Let us

start from �̂k = �̂(0) + �̂(1)

k . Here, �̂(0) represents the standard L · S coupling on the Pb
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mainly come from Pb 6p orbitals. Finally, highly entangled bands above the Fermi energy

mainly come from Ca 3d orbitals. Remember that there are three Ca atoms in a unit

cell and there are 15 Ca 3d orbitals as a consequence. Since the Pb 6p orbital originated

bands (p-bands) lie below the Fermi energy, the expected configuration Ca2+
3

Pb4�O2� is

actually realized. However, the top of p-bands is located above the bottom of the Ca 3d

bands (d-bands). In other words, Pb 6p shell is not completely filled. Later it turns out

that the overlapping of the top of p-bands and the bottom of d-bands is crucial for the

emergence of Dirac electron in this material.
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Figure 2.4: DOS (a-d) and the band structure (e) of Ca
3

PbO obtained in the

first-principles calculation. (a) shows the total and partial DOS for each atom,

and (b-d) show the partial DOS for each atom decomposed into components

with s, p, and d orbital like symmetry. In (e), the position of Dirac point

is marked with an arrow. Note that the energy is measured from the Fermi

energy.

As a result of the overlap between the p-bands and d-bands, two bands cross the Fermi

energy. In Fig. 2.4(e), we can see that two bands approach the Fermi energy on the �–

X line. Then, a Dirac electron is formed from these two bands at the point indicated

by an arrow in Fig. 2.4(e). Note that there actually exists a very small gap of about

15 meV at the marked point. This point will be discussed soon later. As can be seen

from Fig. 2.4(e), a Dirac point, which is defined as a center of linear dispersion of Dirac

electron, exists exactly at the Fermi energy, remarkably. Since there are no other bands
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Figure 2.5: (a) Momentum path in the cubic Brillouin zone on which the band

structure is calculated. (b) Positions of the Dirac points in the entire Brillouin

zone.

at the Fermi energy, the Fermi energy must be at the Dirac point in order to maintain the

charge stoichiometric condition. Due to the cubic symmetry of the crystal, existence of

a Dirac point on the �–X line implies that there exist six symmetrically equivalent Dirac

points in the whole Brillouin zone. Specifically, six Dirac points are located at (k
0

, 0, 0),

(�k
0

, 0, 0), (0, k
0

, 0), (0,�k
0

, 0), (0, 0, k
0

), and (0, 0,�k
0

). These positions of Dirac points

in the Brillouin zone are schematically shown in Fig. 2.5(b). In the case of Ca
3

PbO, we

have k
0

= 0.11875.

The magnified view of the band structure on the �–X line is plotted in Fig. 2.6 with

the irreducible representations of the bands. Note that each k-point on the �–X line has

C
4v

symmetry, while the �-point has O
h

symmetry. In Fig. 2.6, the notations in ref. 62

are used to label the irreducible representations. At the �-point, even parity states (�+

7

and �+

8

) come from the Ca 3d orbitals and the odd parity states (��
6

and ��
8

) from

the Pb 6p orbitals. Then, we can see from Fig. 2.6 that the top of p-bands is located

above the bottom of d-bands. Another important point is that both bands forming the

Dirac electron belong to the same irreducible representation �
7

. This is the reason why

a small gap appears at the Dirac point. When two bands are in the same irreducible

representation, a band repulsion (anticrossing) occurs in general.

In order to check whether the Dirac electron is really formed, three-dimensional (3d)

plot of the dispersion relations around the Dirac point at (k
0

, 0, 0) on the k
x

–k
y

plane

with several k
z

is shown in Figs. 2.7(a)–2.7(c). For k
z

= 0 [Fig. 2.7(a)], the calculated

dispersion shows a conical structure, which is characteristic for Dirac electrons. We can

see that the Dirac electron in this material has slightly tilted and anisotropic dispersion.

Figures 2.7(b) and 2.7(c) show that the size of the gap between the lower and upper

bands becomes larger as k
z

is increased from zero. This behavior confirms the three-

dimensionality of the dispersion of the discovered Dirac electron. As is pointed out before,

a small mass gap exists even for k
z

= 0 case. Figures 2.7(d)–2.7(f) shows the dispersion
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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Now, the interesting question is how these symmetries re-
strict the form of Eq. (1). For a 3D time-reversal (TR) invari-
ant strong topological insulator, the Hamiltonian HSTI satis-
fies T HSTI(�k)T�1 = HSTI(k), with the time-reversal opera-
tor T = �yK and the complex conjugation operator K. This
symmetry locks the Dirac node at the time-reversal invariant
points of the BZ, such as, e.g., k = 0. We observe that the lin-
ear term ki�0 is forbidden by time-reversal symmetry. Hence,
the surface states of TR invariant strong topological insulators
are described by

HSTI(k) = ky�x � kx�y, (3)

and are therefore always of type I.
However, type-II Dirac fermions can appear at the surface

of reflection symmetric TCIs (and weak TR symmetric topo-
logical insulators). The reflection symmetric Hamiltonian of
these type-II surface states is generically given by

Hsurf
TCI(kx, ky) = Aky�0 + ky�x � kx�y, (4)

with A > 1. (Without loss of generality we have set the Fermi
velocities to 1 and assumed that the reflection plane is kx = 0.)
The type-II Dirac state (4) is protected by reflection symmetry
x! �x, which acts on (4) as

RxHsurf
TCI(�kx, ky)R�1

x = Hsurf
TCI(kx, ky), (5)

with the reflection operator Rx = �x. Since reflection flips the
sign of kx, it allows the linear term Aky�0 but forbids kx�0.

The crucial di↵erence between type-I and type-II Dirac sur-
face states is that the former have closed circular Fermi sur-
faces, whereas the latter exhibit open electron and hole pock-
ets which touch each other. As one varies the Fermi energy
EF , the Fermi surface of type-I Dirac states can be shrunk to
a single point, which is called a type-I Dirac point. In con-
trast, type-II Dirac states give rise to electron and hole pock-
ets, whose size depends on the Fermi energy. At a certain EF
the electron and hole Fermi surfaces touch each other, thereby
realizing a Lifshitz transition. The touching of the electron
and hole pockets is called a type-II Dirac point. As opposed
to type-I Dirac points, the density of states at type-II Dirac
points remains finite. In addition, we observe that in type-
II Dirac states one of the two surface bands must bend over
in order to connect bulk valence and conduction bands. As
a consequence, there is a maximum in the dispersion of the
surface states. The latter gives rise to a van Hove singularity,
which leads to a kink in the surface density of states. This can
be used as an experimental fingerprint of type-II Dirac states.

Topology of anti-perovskite materials. As an example of
a TCI with type-II Dirac surface states, we consider the cu-
bic anti-perovskite materials A3EO with space group Pm3̄m
(Table I). The crystal structure of A3EO is an inverse per-
ovskite structure, where the oxygen atom O is surrounded oc-
tahedrally by the alkaline earth metal atoms A [see Fig. 1(a)].
We choose Ca3PbO as a generic representative of this mate-
rials class. The bulk band structure of Ca3PbO displays six
Dirac cones, which are gapped by spin-orbit coupling. While
Ca3PbO is known to be a trivial TR invariant insulator [12]

tol. factor bulk gap topology
Ca3PbO 0.999 ⇠ 15 meV nontrivial
Ca3SnO 0.993 ⇠ 5 meV nontrivial
Sr3PbO 0.978 ⇠ 18 meV nontrivial
Sr3SnO 0.973 ⇠ 7 meV nontrivial
Ba3PbO 0.962 ⇠ 10 meV nontrivial
Ba3SnO 0.957 gapless –

TABLE I. Familiy of anti-perovskite materials with cubic space
group Pm3̄m. The tolerance (tol.) factor indicates the deviation from
the ideal inverse perovskite structure [15]. The bulk gap values are
obtained from ab-initio first principles calculation. The wavefunc-
tion topology is determined by the mirror Chern numbers Cx0 , Cx⇡ ,
and Cx,y (see Methods). We find that the topology is nontrivial, with
Cx0 = Cx,y = 2 and Cx⇡ = 0, for all compounds except for Ba3SnO.

(i.e., a trivial class AII insulator [3]), it has recently been ar-
gued that reflection symmetries give rise to a nontrivial wave-
function topology with non-zero mirror Chern numbers [16].

Let us now discuss in detail how the non-trivial topology
of A3EO arises due to reflection symmetry. First, we observe
that the space group Pm3̄m possesses nine di↵erent reflection
symmetries Ri which transform r = (x, y, z) as (see Fig. 1)

Rxr =(�x, y, z), Ry,±zr =(x,±z,±y), (6a)
Ryr =(x,�y, z), Rz,±xr =(±z, y,±x), (6b)
Rzr =(x, y,�z), Rx,±yr =(±y,±x, z). (6c)

By Fourier transforming into momentum space, we find that
there are 12 mirror planes in the Brillouin zone (BZ), namely,
ki = 0, ⇡ and ki = ±k j for i, j = x, y, z and i , j. For each
of these reflection planes we can define a mirror Chern num-
ber [4, 5, 22]. However, due to the cubic rotational symme-
tries, only 3 out of these 12 mirror invariants are independent.
Without loss of generality, we choose as an independent set
the mirror Chern numbers Cx0 , Cx⇡ , and Cx,y that are defined
for the reflection planes kx = 0, kx = ⇡, and kx = ky, respec-
tively. Both first-principles calculations and low-energy ef-
fective considerations show that for the cubic anti-perovskites
the mirror Chern numbers take the values Cx0 = Cx,y = 2
and Cx⇡ = 0 (see Methods and Table I). Thus, in total there
are nine nonzero mirror Chern numbers, i.e., Ci0 = Ci,± j = 2
for i, j = x, y, z and i , j. As shown in Appendix B, the
low-energy description of A3EO is given by six gapped Dirac
cones. Within this low-energy model one finds that there ex-
ists only one bulk gap term m which respects the reflection
symmetries and which gaps out all six Dirac cones. The sign
of this gap opening term, sgn(m), determines the mirror Chern
numbers, i.e.,

Cx,y = sgn(m) + bx,y, Cx0 = 2 sgn(m) + bx, (7)

where bx,y and bx are the mirror Chern numbers of the “back-
ground” bands, i.e., those filled bands that are not included
in the low-energy description of the bulk Dirac cones. For
the cubic anti-perovskites we find that bx,y = 1 and bx = 0.
Hence, Cx0 is always non-zero even if the sign of the gap term
switches.

A > 0 : type-II Dirac state

2

Now, the interesting question is how these symmetries re-
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points remains finite. In addition, we observe that in type-
II Dirac states one of the two surface bands must bend over
in order to connect bulk valence and conduction bands. As
a consequence, there is a maximum in the dispersion of the
surface states. The latter gives rise to a van Hove singularity,
which leads to a kink in the surface density of states. This can
be used as an experimental fingerprint of type-II Dirac states.

Topology of anti-perovskite materials. As an example of
a TCI with type-II Dirac surface states, we consider the cu-
bic anti-perovskite materials A3EO with space group Pm3̄m
(Table I). The crystal structure of A3EO is an inverse per-
ovskite structure, where the oxygen atom O is surrounded oc-
tahedrally by the alkaline earth metal atoms A [see Fig. 1(a)].
We choose Ca3PbO as a generic representative of this mate-
rials class. The bulk band structure of Ca3PbO displays six
Dirac cones, which are gapped by spin-orbit coupling. While
Ca3PbO is known to be a trivial TR invariant insulator [12]
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Ca3SnO 0.993 ⇠ 5 meV nontrivial
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We choose Ca3PbO as a generic representative of this mate-
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tively. Both first-principles calculations and low-energy ef-
fective considerations show that for the cubic anti-perovskites
the mirror Chern numbers take the values Cx0 = Cx,y = 2
and Cx⇡ = 0 (see Methods and Table I). Thus, in total there
are nine nonzero mirror Chern numbers, i.e., Ci0 = Ci,± j = 2
for i, j = x, y, z and i , j. As shown in Appendix B, the
low-energy description of A3EO is given by six gapped Dirac
cones. Within this low-energy model one finds that there ex-
ists only one bulk gap term m which respects the reflection
symmetries and which gaps out all six Dirac cones. The sign
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Classification of topological materials with reflection symmetry
R� : R anti-commutes with T (C or S)R+ : R commutes with T (C or S)

TI/TSC d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

Reflection FS1 p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7

FS2 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1

R A MZ 0 MZ 0 MZ 0 MZ 0

R+ AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R+,R++

AI MZ 0 0 0 2MZ 0 MZ2 MZ2

BDI MZ2 MZ 0 0 0 2MZ 0 MZ2

D MZ2 MZ2 MZ 0 0 0 2MZ 0

DIII 0 MZ2 MZ2 MZ 0 0 0 2MZ
AII 2MZ 0 MZ2 MZ2 MZ 0 0 0

CII 0 2MZ 0 MZ2 MZ2 MZ 0 0

C 0 0 2MZ 0 MZ2 MZ2 MZ 0

CI 0 0 0 2MZ 0 MZ2 MZ2 MZ

R�,R��

AI 0 0 2MZ 0 TZ2 Z2 MZ 0

BDI 0 0 0 2MZ 0 TZ2 Z2 MZ
D MZ 0 0 0 2MZ 0 TZ2 Z2

DIII Z2 MZ 0 0 0 2MZ 0 TZ2

AII TZ2 Z2 MZ 0 0 0 2MZ 0

CII 0 TZ2 Z2 MZ 0 0 0 2MZ
C 2MZ 0 TZ2 Z2 MZ 0 0 0

CI 0 2MZ 0 TZ2 Z2 MZ 0 0

R�+ BDI, CII 2Z 0 2MZ 0 2Z 0 2MZ 0

R+� DIII, CI 2MZ 0 2Z 0 2MZ 0 2Z 0

R+� BDI MZ� Z 0 0 0 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2

R�+ DIII MZ2 � Z2 MZ2 � Z2 MZ� Z 0 0 0 2MZ� 2Z 0

R+� CII 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2 MZ� Z 0 0 0

R�+ CI 0 0 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2 MZ� Z 0

Tabelle I Classification of topological insulators and superconductors (“TI/TSC”) as well as of stable Fermi
surfaces (“FS1” and ”FS2”) and nodal points/lines in 27 symmetry classes with reflection symmetry, in terms of
the spatial dimension d of topological insulators and superconductors, and the codimension p of Fermi surfaces
(nodal lines). “FS1” denote Fermi surfaces (nodal lines) which are within mirror planes and at high-symmetry
points, whereas “FS2” denote those that are away from high-symmetry points. Z2, MZ2 and TZ2 invariants only
protect Fermi surfaces of dimension zero (dFS = 0) at high-symmetry points of the Brillouin zone. For entries
labeled with Z2, MZ2, TZ2, Fermi surfaces located within the mirror plane but away from high symmetry points
cannot be protected by a Z2 or MZ2 topological invariant. Nevertheless, the system can exhibit gapless surface
states that are protected by a Z2 or MZ2 topological invariant. For gapless topological materials the presence of
translation symmetry is always assumed. Hence, there is no distinction between TZ2 and Z2 for gapless topological
materials.
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FIG. 1. Crystal structure and electronic bands of Ca3P2.
(a) Crystal structure of Ca3P2, which contains two planes
with three Ca atoms (blue) and three P atoms (red) that are
separated by interstitial Ca atoms (black). The gray dashed
lines indicate the unit cell. (b) Top and side view of the crys-
tal structure. The P-p

x

and Ca-d
z

2 orbitals included in the
tight-binding model are shown schematically. (c) Calculated
electronic band structure of Ca3P2. The weights of the P-p

x

and Ca-d
z

2 orbitals that are located within the layers are indi-
cated by the width of the corresponding band. (d) Fermi ring
of Ca3P2 as obtained from the tight-binding model, Eq. (2.2).
The bulk and surface Brillouin zones are outlined by the green
and black lines, respectively.

cell [Fig. 1(b)]. With these definitions, we find that the
bands close to the Fermi energy mainly originate from
the Ca-d

z

2 and P-p
x

orbitals that are located within the
layers [Fig. 1(c)]. The other orbitals of the in-plane atoms
(Ca-d

xy

, Ca-d
xz

, Ca-d
yz

, Ca-d
x

2�y

2 , P-p
y

, and P-p
z

), as
well as all the orbitals of the Ca interstitials, contribute
insignificantly to the low-energy bands and can be ne-
glected for the construction of the tight-binding model.

Guided by these observations, we use the six Ca-d
z

2

and the six P-p
x

orbitals that are located within the
two layers as a basis set for the low-energy-tight binding
model. Hence, the tight-binding Hamiltonian is defined
in terms of a twelve-component Bloch spinor

| ↵

k i =
1p
N

X

R

eik·(R+s↵) |�↵

Ri , (2.1)

where ↵ is the orbital index, R denotes the lattice vec-
tors, and s

↵

represents the position vectors of the six

Ca (↵ = 1, . . . , 6) and the six P sites (↵ = 7, . . . 12), as
specified in Figs. 1(a) and 1(b). For completeness, the
numerical values of the position vectors s

↵

are given in
Table I of Appendix A. At this stage of the discussion,
we ignore the spin degree of freedom of the Bloch spinor,
since spin-orbit coupling is negligibly small for the light
elements Ca and P. Using the spinor (2.1), we construct
the matrix elements of the Bloch Hamiltonian as

H↵�(k) = h ↵

k |H| �

ki =
X

R

eik·(R+s↵�s�)t↵�

R , (2.2)

where t↵�

R is the hopping amplitude from orbital ↵ in
the unit cell at the origin to orbital � in the unit cell
at position R. To simplify the form of the matrix el-
ements (2.2), we absorb a momentum dependent phase
factor in the definition of the basis orbitals, i.e., we let
| ↵

k i ! eik·s↵ | ↵

k i. We observe that Hamiltonian (2.2)
has a nested block structure

H(k) =

✓
HCaCa HCaP

HPCa HPP

◆
, H

ij

=

✓
hll

ij

hlu
ij

hul
ij

huu
ij

◆
, (2.3)

where the sub-blocks hmn

ij

with fixed i, j 2 {Ca,P} and
fixed m, n 2 {l, u} are 3 ⇥ 3 matrices. The outer blocks
H

ij

represent hopping processes among and between the
Ca and P orbitals, whereas the inner blocks (huu

ij

, hll
ij

)

and (hlu
ij

, hul
ij

) describe intralyer and interlayer hoppings,
respectively. The detailed form of the matrix elements
hmn

ij

is specified in Appendix A1, where we also de-
scribe how the hopping parameter values are determined
from a maximally localized Wannier function (MLWF)
method [57, 58].
In Fig. 1(d) we plot the energy isosurface of Hamil-

tonian (2.2) at E = EF ± 20 meV, which shows that
the tight-binding model correctly captures the fourfold
degenerate Dirac ring of Ca3P2. Comparing the first-
principle band structure of Fig. 1(c) with the tight-
binding bands displayed in Fig. 2, we find that the tight-
binding model closely reproduces the bands with dom-
inant Ca-d

z

2 and P-p
x

orbital character. In particular,
the linear dispersion close to the Dirac ring agrees well
with the first-principle results.

1. Symmetries

As we will see in the following sections, time-reversal,
inversion, reflection, and SU(2) spin-rotation symmetry
play a crucial role for the protection of the Dirac ring.
Let us therefore discuss how these symmetries act on the
tight-binding Hamiltonian.
First of all, since we did not include the spin degree

of freedom in Eq. (2.2), the tight-binding model is fully
SU(2) spin-rotation invariant. That is, our model is di-
agonal in spin space with Hamiltonian (2.2) represent-
ing the diagonal element. As a consequence, the time-
reversal operator is simply given by the identity matrix
times the complex conjugation operator K, i.e., T = K,

dz2

p
x

charge balanced: Ca2+ — P3-

Chan, Chiu, Chou, Schnyder, Phys. Rev. B 93, 205132 (2016)
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FIG. 3. (Color online) (a) Band structure of Ca3P2 in a (001) slab geometry. �̄ (b) Surface density of states for Ca3P2. �̄ (c)
Band structure within the kz = 0 plane. Red corresponds to R = �1, blue to R = +1. (d) Band structure within the kz = ⇡
plane. (e) Ugly

between these two types of the invariants can be written
is in a simple form

(Nk=0
MZ +Nk=⇡

MZ )⇡ = P1 (mod 2⇡) (2.10)

Unfortunately, in our case R
k

in quote the equation is
k-dependent so that @R has to be computed to confirm
the relation between N

MZ and the Berry phase. obtain
the value of @R = 3⇡ from Yang-hong’s numerics and
Nk=⇡

MZ = 3 as shown in fig. 3 (d). By Eq. (2.9), we have
an alternative way to obtain the same value of the Berry
phase.
However, the ⇡ Berry phase, which leads to the pres-

ence of the surface modes, does not explain that end sur-
face modes end up at the bulk Fermi ring. Weyl node
discussion needed

III. LOW-ENERGY THEORY OF CA3P2

In the presence of a Dirac line, SU(2) symmetry for
spin-1/2 is required for the protection of the Dirac line.
Furthermore, reflection symmetry can protect the Dirac
line and lock it in the mirror plane. Even when reflec-
tion symmetry is broken, inversion symmetry and TRS
is su�cient to protect the Dirac line. The Hamiltonian
of a simple Dirac line is written as use the 1st or 2nd
quantization

ĤDirac =
X

✓,k,kz

c†k,kz

⇥
(k2 � k20)⌧z�0 + k

z

⌧
y

�0

⇤
ck,kz

, (3.1)

H = (k2
r

� k20)⌧z�0 + k
z

⌧
y

�0, (3.2)

where k = (k cos ✓, k sin ✓, 0) and ⌧
↵

and �
↵

describe or-
bital(atom) and spin degree freedom respectively. The
Fermi ring located at k

z

= 0 and k2
x

+ k2
y

= k20. TRS,
reflection symmetry and inversion symmetry are pre-
served with the symmetry operators Tk!�k = ⌧0�y

K,
R

kz!�kz = ⌧
z

�
z

, Pk!�k = ⌧
z

�
z

. To have the stable
Dirac line, SU(2) in spin is necessary to forbid hybridiza-
tion of the two spins so that the Hamiltonian can be
written as in spinless case

H = (k2
r

� k20)⌧z + k
z

⌧
y

(3.3)

with the symmetry operators r = ⌧
z

, p = ⌧
z

, and t =
⌧0K.

IV. TOPOLOGICAL FEATURES

A. Topological invariants of Dirac rings

Consider only reflection symmetry then the Hamilto-
nian belongs to class A+R with p = 2 described by MZ
invariant, which is determined by the number of the oc-
cupied states in one of the eigenspaces of r, (say r = 1).

N
MZ(kr) =

⇢
1, |k

r

| < k0
0, |k

r

| > k0
. (4.1)

The Fermi ring located at k
r

= k0 is protected by the
di↵erence of N

MZ. Even without reflection symmetry, in-
version symmetry and TRS also stabilize the Fermi ring
since ⌧

x

, which is the only term gapping the ring, is for-
bidden by those symmetries. The ring is not locked at

R = +1

R = �1

�k0+k0

Topological nodal line: Mirror invariant
 Reflection   (               ):               

— number of occupied states with R = +1

� �M K

n+,0
occ

(k) =

⇢
1 |k| < k

0

0 |k| > k
0

N0

MZ = n+,0
occ

(|k| > k
0

)� n+,0
occ

(|k| < k
0

)

k

3

dz2

px

mirror plane

P4

P6

P1P2 Ca1Ca2

Ca6Ca4

P6
Ca6Ca4

P4

mirror plane
(lower plane)

dz2
px

FIG. 1. Crystal structure and electronic bands of Ca3P2.
(a) Crystal structure of Ca3P2, which contains two planes
with three Ca atoms (blue) and three P atoms (red) that are
separated by interstitial Ca atoms (black). The gray dashed
lines indicate the unit cell. (b) Top and side view of the crys-
tal structure. The P-p

x

and Ca-d
z

2

orbitals included in the
tight-binding model are shown schematically. (c) Calculated
electronic band structure of Ca3P2. The weights of the P-p

x

and Ca-d
z

2

orbitals that are located within the layers are indi-
cated by the width of the corresponding band. The weight of
the Ca-d

z

2

orbital is multiplied by two to make it more visible
on the scale of the plot. (d) Fermi ring of Ca3P2 as obtained
from the tight-binding model, Eq. (2.2). The bulk and sur-
face Brillouin zones are outlined by the green and black lines,
respectively.

tial occupancy of the Ca atoms within the virtual crys-
tal approximation [65]. Figure 1(c) shows the calculated
band structure of Ca

3

P
2

within an energy range of ±3 eV
around the Fermi energy E

F

. To obtain the orbital char-
acter of the bands we introduce a local coordinate system
for each Ca and P site, whose definition is illustrated in
Fig. 1(b). In each coordinate frame the x axis is oriented
along the c direction, whereas the z axis lies with the ab
plane, pointing towards the lower left edge of the unit
cell [Fig. 1(b)]. With these definitions, we find that the
bands close to the Fermi energy mainly originate from
the Ca-d

z

2 and P-p
x

orbitals that are located within the
layers [Fig. 1(c)]. The other orbitals of the in-plane atoms
(Ca-d

xy

, Ca-d
xz

, Ca-d
yz

, Ca-d
x

2�y

2 , P-p
y

, and P-p
z

), as
well as all the orbitals of the Ca interstitials, contribute
insignificantly to the low-energy bands and can be ne-
glected for the construction of the tight-binding model.

Guided by these observations, we use the six Ca-d
z

2

and the six P-p
x

orbitals that are located within the
two layers as a basis set for the low-energy-tight binding

model. Hence, the tight-binding Hamiltonian is defined
in terms of a twelve-component Bloch spinor

| ↵

k i =
1p
N

X

R

eik·(R+s
↵

) |�↵

Ri , (2.1)

where ↵ is the orbital index, R denotes the lattice vec-
tors, and s

↵

represents the position vectors of the six
Ca (↵ = 1, . . . , 6) and the six P sites (↵ = 7, . . . 12), as
specified in Figs. 1(a) and 1(b). For completeness, the
numerical values of the position vectors s

↵

are given in
Table I of Appendix A. At this stage of the discussion,
we ignore the spin degree of freedom of the Bloch spinor,
since spin-orbit coupling is negligibly small for the light
elements Ca and P. Using the spinor (2.1), we construct
the matrix elements of the Bloch Hamiltonian as

H↵�(k) = h ↵

k |H| �

ki =
X

R

eik·(R+s
↵

�s
�

)t↵�

R , (2.2)

where t↵�

R is the hopping amplitude from orbital ↵ in the
unit cell at the origin to orbital � in the unit cell at posi-
tion R. To simplify the form of the matrix elements (2.2)
and have a single-valued Hamiltonian, we absorb a mo-
mentum dependent phase factor in the definition of the
basis orbitals, i.e., we let | ↵

k i ! eik·s
↵ | ↵

k i. We observe
that Hamiltonian (2.2) has a nested block structure

H(k) =

✓
H

CaCa

H
CaP

H
PCa

H
PP

◆
, H

ij

=

✓
hll

ij

hlu

ij

hul

ij

huu

ij

◆
, (2.3)

where the sub-blocks hmn

ij

with fixed i, j 2 {Ca, P} and
fixed m, n 2 {l, u} are 3 ⇥ 3 matrices. The outer blocks
H

ij

represent hopping processes among and between the
Ca and P orbitals, whereas the inner blocks (huu

ij

, hll

ij

)

and (hlu

ij

, hul

ij

) describe intralyer and interlayer hoppings,
respectively. The detailed form of the matrix elements
hmn

ij

is specified in Appendix A1, where we also de-
scribe how the hopping parameter values are determined
from a maximally localized Wannier function (MLWF)
method [66, 67].

In Fig. 1(d) we plot the energy isosurface of Hamil-
tonian (2.2) at E = E

F

± 20 meV, which shows that
the tight-binding model correctly captures the fourfold
degenerate Dirac ring of Ca

3

P
2

. Comparing the first-
principles band structure of Fig. 1(c) with the tight-
binding bands displayed in Fig. 2, we find that the tight-
binding model closely reproduces the bands with dom-
inant Ca-d

z

2 and P-p
x

orbital character. In particular,
the linear dispersion close to the Dirac ring agrees well
with the first-principles results.

1. Symmetries

As we will see in the following sections, time-reversal,
inversion, reflection, and SU(2) spin-rotation symmetry
play a crucial role for the protection of the Dirac ring.
Let us therefore discuss how these symmetries act on the
tight-binding Hamiltonian.

R(k) =

0

BB@

13⇥3 0 0 0
0 13⇥3e�ikz 0 0
0 0 �13⇥3 0
0 0 0 �13⇥3e�ikz

1

CCA
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FIG. 3. Drumhead surface states and Berry phase. (a) Sur-
face band structure of Ca3P2 as obtained from the tight-
binding model (2.2) for the (001) surface in slab geometry.
(b) Momentum-resolved surface density of states of Hamilto-
nian (2.2) for the (001) surface. Bright yellow and dark blue
correspond to high and low density, respectively. (c) Vari-
ation of the Berry phase (2.7) of Hamiltonian (2.2) along
high-symmetry lines of the (001) surface Brillouin zone [see
Fig. 1(d)]. (d) Surface spectrum of the low-energy e↵ective
model (3.2) for the (001) face as a function of surface mo-
menta k

x

and k

y

. The bulk states with reflection eigenvalues
R = +1 and R = �1 are colored in blue and red, respectively.
The drumhead surface state is indicated by the green area.
[*Add label “(d)”. Add numbers to k
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Semi-infinite slab. computed using iterative Greens
function.

The presence and absence of the surface modes on
the z-direction surfaces are determined by Berry phase
(charge polarization)

P1 = �i

Z
⇡

�⇡

X

Ej<0

hu
kz,j

|@
kz |ukz,j

idk
z

(2.7)

The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.

Cite Vanderbilt and King-Smith [59], give formula for
surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator

(�1)N
0
MZ+N

⇡
MZei@R = eiP1 , (2.8)

where @R = i
R

⇡

0

P
Ej<0huk,j

|R†
k

(@
k

R
k

)|u
k,j

idk and k ⌘
k

z

. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as R

k

. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ + N⇡

MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case R

k

in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between N

MZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any k

x

and
k

y

from the tight-binding Hamiltonian cite Hamiltonian
equation and N⇡

MZ = 3 as shown in fig. 3 (d). Therefore,
computing N0

MZ + N⇡

MZ can also show the value of the
Berry phase by Eq. (2.8). For spinful system @R can be
ignored.

In generic reflection systems, @R is k
x

, k
y

-independent
when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only k

z

. Hence, the location of reflection protected Fermi
ring indicates the change of N

MZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only

the change of N
MZ is able to capture multiple protected

Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.
[*Mention all symmetries that lead to quantization of

Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)

(�1)n
+,0
occ

(k)+n+,⇡
occ

(k)ei@R = eiP(k)
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C. Surface states and Berry phase

In this section, we present the surface spectrum of
Ca

3

P
2

as obtained from the tight-binding model (2.2)
and show that, due to a non-zero Berry phase, there ap-
pear nearly flat ingap states at the surface. Figure 3(a)
displays the surface band structure for the (001) surface
in a three-dimensional slab geometry with 60 unit cells.
The surface momentum is varied along a high-symmetry
path, which is drawn in red in the surface Brillouin
zone of Fig. 1(d). Using an iterative Green’s function
method [68] we compute the momentum resolved surface
density of states for a semi-infinite (001) slab, which is
shown in Fig. 3(b). As indicated by the green area in
Fig. 3(d) and by the green and yellow lines in Figs. 3(a)
and 3(b), respectively, the surface state is nearly disper-
sionless, taking the shape of a drumhead that is bounded
by the projected Dirac ring. We note that nearly or com-
pletely flat surface states have recently also been studied
in photonic crystals [69], in noncentrosymmetric super-
conductors [70–73], in bernal graphite [74], and in topo-
logical crystalline insulator heterostructures [48].

In contrast to crystalline topological insulators the sur-
face states of the semimetal (2.2) are not directly related
to the mirror invariant (2.7), but are connected to a non-
zero Berry phase. To make this connection explicit, we
decompose the (001) slab considered in Fig. 3 into a fam-
ily of one-dimensional systems parametrized by the in-
plane momentum kk = (k

x

, k
y

). For fixed kk, the Berry
phase is defined as

P(kk) = �i
X

E

j

<E

F

Z
⇡

�⇡

hu
j

(k)|@
k

z

|u
j

(k)idk
z

, (2.9)

where the sum is over filled Bloch eigenstates |u
j

(k)i of
Hamiltonian (2.2). As was shown by King-Smith and
Vanderbilt [75], the Berry phase P(kk) is related to the
charge q

end

at the end of the one-dimensional system with
fixed in-plane momentum kk, i.e.,

q
end

=
e

2⇡
P(kk) mod e. (2.10)

Hence, when P(kk) 6= 0 an ingap state appears at kk in
the surface Brillouin zone. For the tight-binding Hamil-
tonian (2.2) we find that there are two di↵erent sym-
metries which each quantize the Berry phase (2.9) to
0 or ⇡, namely, the reflection symmetry (2.5) and the
product of time-reversal and inversion symmetry IT ,
see Appendix B. In Fig. 3(c) we numerically compute
P(kk) using the tight-binding wave functions of Hamil-
tonian (2.2). We obtain that the Berry phase equals ⇡
for kk inside the projected Dirac ring, while it is zero for
kk outside the ring. This indicates that surface states
occur within the projected Dirac ring, which is in agree-
ment with the surface spectrum of Figs. 3(a) and 3(b).
The Berry phase is defined modulo 2⇡, since large gauge
transformations of the wave functions change it by 2⇡.
As a result, P protects only single, but not multiple, sur-
face states at a given kk.

(a) (b)

(c) (d)

k
x

(1/a)

k
y

(1/a)

E(eV )

FIG. 3. Drumhead surface states and Berry phase.
(a) Surface band structure of Ca3P2 as obtained from the
tight-binding model (2.2) for the (001) surface in slab geom-
etry with 60 unit cells. The surface state is highlighted in
green. (b) Momentum-resolved surface density of states of
Hamiltonian (2.2) for the (001) surface. White and dark red
correspond to high and low density, respectively. (c) Vari-
ation of the Berry phase (2.9) of Hamiltonian (2.2) along
high-symmetry lines of the (001) surface Brillouin zone [see
Fig. 1(d)]. (d) Surface spectrum of the low-energy e↵ective
model (3.1) for the (001) face as a function of surface mo-
menta k

x

and k
y

. The bulk states at k
z

= 0 with reflection
eigenvalues R = +1 and R = �1 are colored in blue and red,
respectively. The drumhead surface state is indicated by the
green area.

Remarkably due to the IT symmetry, the Berry
phase P along any closed loop in the three-dimensional
Brillouin zone is quantized (see Appendix B). This allows
us to interprete the Berry phase as a topological invari-
ant which guarantees the stability of the Dirac line in the
presence of the IT symmetry. That is, for a loop inter-
linking with the Dirac ring, we find that P = ±⇡ which
shows that the Dirac band crossing is protected by the
product of inversion with time-reversal symmetry. The
Berry phase represents a Z

2

-type invariant, since it is de-
fined only up to multiples of 2⇡. In contrast, the mirror
number (2.7) is a Z-type invariant, which can take on
any integer number. Therefore, only the mirror invari-
ant N

MZ can give rise to the stability of multiple Dirac
lines at the some location in the Brillouin zone.

D. Relation between Berry phase
and mirror invariant

The analysis of the previous section suggests that the
topological stability of the Dirac ring is closely related
to the appearance of surface states. In order to put this
connection on a firmer footing, we present here a relation

Surface spectrum
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�̄

5
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E

FIG. 3. Drumhead surface states and Berry phase. (a) Sur-
face band structure of Ca3P2 as obtained from the tight-
binding model (2.2) for the (001) surface in slab geometry.
(b) Momentum-resolved surface density of states of Hamilto-
nian (2.2) for the (001) surface. Bright yellow and dark blue
correspond to high and low density, respectively. (c) Vari-
ation of the Berry phase (2.7) of Hamiltonian (2.2) along
high-symmetry lines of the (001) surface Brillouin zone [see
Fig. 1(d)]. (d) Surface spectrum of the low-energy e↵ective
model (3.2) for the (001) face as a function of surface mo-
menta k

x

and k

y

. The bulk states with reflection eigenvalues
R = +1 and R = �1 are colored in blue and red, respectively.
The drumhead surface state is indicated by the green area.
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Semi-infinite slab. computed using iterative Greens
function.

The presence and absence of the surface modes on
the z-direction surfaces are determined by Berry phase
(charge polarization)

P1 = �i

Z
⇡
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kz,j

|@
kz |ukz,j

idk
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(2.7)

The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.

Cite Vanderbilt and King-Smith [59], give formula for
surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator

(�1)N
0
MZ+N

⇡
MZei@R = eiP1 , (2.8)

where @R = i
R

⇡

0

P
Ej<0huk,j

|R†
k

(@
k

R
k

)|u
k,j

idk and k ⌘
k

z

. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as R

k

. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ + N⇡

MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case R

k

in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between N

MZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any k

x

and
k

y

from the tight-binding Hamiltonian cite Hamiltonian
equation and N⇡

MZ = 3 as shown in fig. 3 (d). Therefore,
computing N0

MZ + N⇡

MZ can also show the value of the
Berry phase by Eq. (2.8). For spinful system @R can be
ignored.

In generic reflection systems, @R is k
x

, k
y

-independent
when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only k

z

. Hence, the location of reflection protected Fermi
ring indicates the change of N

MZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only

the change of N
MZ is able to capture multiple protected

Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.
[*Mention all symmetries that lead to quantization of

Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)

(�1)n
+,0
occ

(k)+n+,⇡
occ

(k)ei@R = eiP(k)

Bulk-boundary correspondence:

— surface charge: �surf =
e

2⇡
P mod e

Chan, Chiu, Chou, Schnyder, Phys. Rev. B 93, 205132 (2016)
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FIG. 3. Drumhead surface states and Berry phase. (a) Sur-
face band structure of Ca3P2 as obtained from the tight-
binding model (2.2) for the (001) surface in slab geometry.
(b) Momentum-resolved surface density of states of Hamilto-
nian (2.2) for the (001) surface. Bright yellow and dark blue
correspond to high and low density, respectively. (c) Vari-
ation of the Berry phase (2.7) of Hamiltonian (2.2) along
high-symmetry lines of the (001) surface Brillouin zone [see
Fig. 1(d)]. (d) Surface spectrum of the low-energy e↵ective
model (3.2) for the (001) face as a function of surface mo-
menta k

x

and k

y

. The bulk states with reflection eigenvalues
R = +1 and R = �1 are colored in blue and red, respectively.
The drumhead surface state is indicated by the green area.
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Semi-infinite slab. computed using iterative Greens
function.
The presence and absence of the surface modes on

the z-direction surfaces are determined by Berry phase
(charge polarization)

P1 = �i

Z
⇡
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|@
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idk
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(2.7)

The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.
Cite Vanderbilt and King-Smith [59], give formula for

surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator

(�1)N
0
MZ+N

⇡
MZei@R = eiP1 , (2.8)

where @R = i
R

⇡

0

P
Ej<0huk,j

|R†
k

(@
k

R
k

)|u
k,j

idk and k ⌘
k

z

. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as R

k

. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ + N⇡

MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case R

k

in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between N

MZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any k

x

and
k

y

from the tight-binding Hamiltonian cite Hamiltonian
equation and N⇡

MZ = 3 as shown in fig. 3 (d). Therefore,
computing N0

MZ + N⇡

MZ can also show the value of the
Berry phase by Eq. (2.8). For spinful system @R can be
ignored.
In generic reflection systems, @R is k

x

, k
y

-independent
when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only k

z

. Hence, the location of reflection protected Fermi
ring indicates the change of N

MZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only

the change of N
MZ is able to capture multiple protected

Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.
[*Mention all symmetries that lead to quantization of

Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)
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face band structure of Ca3P2 as obtained from the tight-
binding model (2.2) for the (001) surface in slab geometry.
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nian (2.2) for the (001) surface. Bright yellow and dark blue
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Semi-infinite slab. computed using iterative Greens
function.

The presence and absence of the surface modes on
the z-direction surfaces are determined by Berry phase
(charge polarization)

P1 = �i

Z
⇡
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The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.

Cite Vanderbilt and King-Smith [59], give formula for
surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator

(�1)N
0
MZ+N

⇡
MZei@R = eiP1 , (2.8)

where @R = i
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⇡

0

P
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idk and k ⌘
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. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as R

k

. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ + N⇡

MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case R

k

in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between N

MZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any k

x

and
k

y

from the tight-binding Hamiltonian cite Hamiltonian
equation and N⇡

MZ = 3 as shown in fig. 3 (d). Therefore,
computing N0

MZ + N⇡

MZ can also show the value of the
Berry phase by Eq. (2.8). For spinful system @R can be
ignored.

In generic reflection systems, @R is k
x

, k
y

-independent
when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only k

z

. Hence, the location of reflection protected Fermi
ring indicates the change of N

MZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only

the change of N
MZ is able to capture multiple protected

Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.
[*Mention all symmetries that lead to quantization of

Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)
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Semi-infinite slab. computed using iterative Greens
function.
The presence and absence of the surface modes on

the z-direction surfaces are determined by Berry phase
(charge polarization)
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The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.
Cite Vanderbilt and King-Smith [59], give formula for

surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator

(�1)N
0
MZ+N

⇡
MZei@R = eiP1 , (2.8)

where @R = i
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. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as R

k

. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ + N⇡

MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case R

k

in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between N

MZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any k

x

and
k

y

from the tight-binding Hamiltonian cite Hamiltonian
equation and N⇡

MZ = 3 as shown in fig. 3 (d). Therefore,
computing N0

MZ + N⇡

MZ can also show the value of the
Berry phase by Eq. (2.8). For spinful system @R can be
ignored.
In generic reflection systems, @R is k

x

, k
y

-independent
when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only k

z

. Hence, the location of reflection protected Fermi
ring indicates the change of N

MZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only

the change of N
MZ is able to capture multiple protected

Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.
[*Mention all symmetries that lead to quantization of

Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)
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Low-energy effective theory for Ca3P2

— reflection:

 low-energy effective Hamiltonian:

 symmetry operators:

He↵(k) = (k2k � k20)⌧z + kz⌧y + f(k)⌧0

even in k

— time-reversal: — inversion: 

 Gap-opening term       is symmetry forbidden:

— breaks reflection symmetry:

— breaks inversion + TRS:
) nodal line is stable

R = ⌧z T = ⌧0K I = ⌧z

⌧
x

R�1⌧
x

R = �⌧
x

(IT )�1⌧
x

IT = �⌧
x

  Z versus Z2 classification:

He↵(k)⌦ �0 = (k2k � k20)⌧z ⌦ �0 + kz⌧y ⌦ �0 + f(k)⌧0 ⌦ �0

—

) Z classification

) Z2 classification

• (IT )-symmetric:

• but breaks R:

(⌧z ⌦ �0K)�1m̂(⌧z ⌦ �0K) = m̂

(⌧z ⌦ �0)
�1m̂(⌧z ⌦ �0) 6= m̂

consider gap opening term m̂ = ⌧
x

⌦ �
y

:



3.  Nodal non-centrosymmetric  
   superconductors

CePt3Si
R. Queiroz (MPI-FKF) P. Brydon (U Otago)C. Timm (TU Dresden)



Normal state: 

• Lack of inversion causes anti-symmetric SO coupling:

3He  A1 phase

Key symmetries of superconductivity
 Inversion and time reversal symmetry

Sendai, March 2009 Manfred Sigrist, ETH Zürich

CePt3Si

ferromagnetic

SC

paramagnetic

UGe2

1st GCOE
   International Symposium

[E. Bauer et al.  PRL ’04]

H =
X

k

 †
k ("k�0 + |gk|�3) kConsider

gk = kyx̂ − kxŷ (35)

gk = kx

(

1 + g2

[

k2
y + k2

z

])

x̂ (36)

+ky

(
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[

k2
x + k2

z

])

ŷ (37)

+kz

(

1 + g2

[

k2
x + k2

y

])

ẑ (38)

Superconducting gap

∆(k) = (∆sσ0 + dk · σ) iσy (39)

Normal state

h(k) = εk σ0 + αgk · σ (40)

Uk (gk · σ)U †
k = |gk|σ3, (41)

that is

Uk = cos
θ

2
− ink · σ sin

θ

2
, nk =

gk × êz

|gk × êz|
, (42)

The Hamiltonian is:

H =
∑

kµν

c†kµ (εkσ0 + αgk · σ)µν ckν =
∑

ks

ξks b†ksbks (43)

Consider for example

ξ±k = εk ± |gk| (44)

g−k = −gk (45)

gk ∝ ky êx − kxêy (46)

Spin basis

µ =↑, ↓ s = ± (47)

Asymmetric potential gradient

∇U ∥ êz (p × ∇U) · σ (48)

Define n-vector

n =
1

√

ε2
k + |∆k|2

⎛

⎝

εk

Re∆k

Im∆k

⎞

⎠ (49)

SO coupling for C4v point group:

• Lack of inversion allows for admixture of spin-singlet 
and spin-triplet pairing components
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gk ∥ dk (1)

ν = −2.0 ν = +2.0 ν = +4.0 (2)

g
(1,3)
inter = g

(2,3)
inter = −0.05 (3)

(4)

∆0,t ≫ ∆0,s (5)

and

∆(l)
s,k = ∆0,s

∑

i

wi cos (k · Ti) (6)

∆(l)
t,k = (−1)l∆0,t

∑
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wi sin (k · Ti) (7)

D(k) =
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+gz
k + ε1k − i(∆t,k − ∆s,k) +ε⊥k

+ε∗⊥k
−gz

k
+ ε1k − i(∆t,k + ∆s,k)

)

(8)

(9)

The topology of the nodal lines is described by the following invariant

ν1 =
1

2π
Im

∮

dklTr [∂kl
ln Dk] . (10)

gap functions

∆0,t > ∆0,s, ∆1,s (11)

(12)

∆(l)
s,k = (−1)l

[

∆0,s − ∆1,s

∑

i

cos (k · Ti)
]

(13)

(14)

∆(l)
t,k = ∆0,t

∑

i

sin (k · Ti) (15)

�k = (�s�0 +�t dk · ~�) i�y (             )

zk
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Abbildung 1: Panel (a): Chiral surface bound states at the (111) face of the A phase
of superfluid 3He (class A). The color scale is such that dark blue corresponds to zero
energy. There is a dispersionless zero mode in a one-dimensional submanifold of the surface
Brillouin zone. Panels (b) and (c): Band structure for the (111) face of 3He A as a function
of surface momentum qx and qy, respectively. The red (blue) bands are localized on the top
(bottom) surface. Panel (d): Fermi points in the three-dimensional Brillouin zone of 3He
A. Due to the Fermion doubling theorem the lattice Hamiltonian has two nodal points.
Note that the projection of the line connecting the two Fermi points onto the surface
corresponds to the surface flat band in (a). The parameter values are: t1 = 4.0, µ = 6.0,
and ∆0 = 2.0.
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ω > ωres
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Energy [meV]
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Gaps on the two Fermi surfaces:
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1 frist chapter

These are the gaps

∆±
k = ∆s ± ∆p |dk| (1)

Particle-hole redundancy:

κxy/T
κxy

T
(2)

ϕ−E = ΞϕE , γ†
E = γ−E ⇒ Majorana state at E = 0 (3)

BdG Hamiltonian

H =
1

2

∑

k

(

c† c
)

HBdG

(

c
c†

)

, HBdG =

(

h0 ∆
∆† −hT

0

)

(4)
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H(k) :

negative 
helicity FS

full gap

pronounced angular dependence of jgkj leads to a strong
polarization dependence. Thus we get different peak posi-
tions for the E and T2 polarizations in !00

""ð!þÞ. As a
further consequence, the Raman spectra reveals up to two
kinks on each band (þ and $) at !=2c ¼ j1& p=4j and
!=2c ¼ j1& pj [21]. Furthermore, no singularities are
present. Nevertheless, the main feature, namely, the two-
peak structure, is still present, and one can directly deduce
the value of p from the peak and kink positions. Finally, for
p ' 1, one recovers the pure triplet case (d), in which the
unscreened Raman response is given by
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Clearly, only the area on the Fermi surface with !=2d >
jgkj contributes to the Raman intensity. Since jgkj 2 ½0; 1)
has a saddle point at jgkj ¼ 1=4, we find kinks at charac-
teristic frequencies !=2d ¼ 1=4 and !=2d ¼ 1. In con-
trast to the Rashba-type ASOC, we find a characteristic low
energy expansion / ð!=2dÞ2 for both the A1 and the E
symmetry, while / ð!=2dÞ4 for the T2 symmetry [22].
Assuming weak coupling theory, we expect the pair-
breaking peaks (as shown in Fig. 4) for Li2PdxPt3$xB
roughly in the range 4–30 cm$1.

In summary, we have calculated for the first time the
electronic (pair-breaking) Raman response in the newly
discovered NCSs such as CePt3Si (G ¼ C4v) and
Li2PdxPt3$xB [G ¼ Oð432Þ]. Taking the pronounced
ASOC into account, we provide various analytical results

for the Raman response function and cover all relevant
cases from weak to strong triplet-singlet ratio p. Our
theoretical predictions can be used to analyze the under-
lying condensate in parity-violated NCSs and allows the
determination of p.
We thank P.M.R. Brydon and M. Sigrist for helpful

discussions.
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[5] B. Fåk, S. Raymond, D. Braithwaite, G. Lapertot, and
J.-M. Mignot, Phys. Rev. B 78, 184518 (2008).

[6] T. P. Devereaux, D. Einzel, B. Stadlober, R. Hackl, D. H.
Leach, and J. J. Neumeier, Phys. Rev. Lett. 72, 396 (1994).

[7] K. V. Samokhin, Phys. Rev. B 76, 094516 (2007).
[8] gk has the symmetry properties: g$k ¼ $gk and

ggðg$1kÞ ¼ gk, where g is any symmetry operation of
the point group G of the crystal.

[9] P. Badica, T. Kondo, and K. Togano, J. Phys. Soc. Jpn. 74,
1014 (2005).

[10] V.M. Edel’stein, Sov. Phys. JETP 68, 1244 (1989).
[11] L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87,

037004 (2001).
[12] H. Q. Yuan, D. F. Agterberg, N. Hayashi, P. Badica, D.

Vandervelde, K. Togano, M. Sigrist, and M.B. Salamon,
Phys. Rev. Lett. 97, 017006 (2006), and references therein.

[13] P. Frigeri, D. Agterberg, I. Milat, and M. Sigrist, Eur.
Phys. J. B 54, 435 (2006).

[14] K.-W. Lee and W. E. Pickett, Phys. Rev. B 72, 174505
(2005).

[15] H. Monien and A. Zawadowski, Phys. Rev. B 41, 8798
(1990).

[16] The vertices Eð1Þ and Eð2Þ look completely different, but
the Raman response is exactly the same because Eð1Þ and
Eð2Þ are both elements of the same symmetry class.

[17] Because of screening, the constant term (k ¼ 0, l ¼ 0) in
the A1 vertex generates no Raman response; thus, we used
(k ¼ 1, l ¼ 0). For all of the other vertices, the leading
term is given by (k ¼ 1, l ¼ 1).

[18] H.-Y. Kee, K. Maki, and C.H. Chung, Phys. Rev. B 67,
180504 (2003).

[19] T. P. Devereaux and D. Einzel, Phys. Rev. B 51, 16 336
(1995); 54, 15 547 (1996).

[20] Note that, even though the gap function does not depend
on # (see Fig. 1), we obtain a small polarization depen-
dence. This unusual behavior only in A1 symmetry is due
to screening and leads to a small shoulder for p * 1.

[21] Interestingly, the T2 symmetry displays only a change in
slope at !=2c ¼ j1þ pj instead of a kink. A detailed
analysis can be found in [22].

[22] L. Klam, D. Manske, and D. Einzel (unpublished).

FIG. 4 (color online). Theoretical prediction of the Raman
spectra !00

""ð!$Þ [blue] and !00
""ð!þÞ [red] for E (solid lines),

T2 (dashed lines), and A1 [dotted line, only in (d)] polarizations
for the point group Oð432Þ. The insets display the point and line
nodes of the gap function !$.

PRL 102, 027004 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

16 JANUARY 2009

027004-4

pronounced angular dependence of jgkj leads to a strong
polarization dependence. Thus we get different peak posi-
tions for the E and T2 polarizations in !00

""ð!þÞ. As a
further consequence, the Raman spectra reveals up to two
kinks on each band (þ and $) at !=2c ¼ j1& p=4j and
!=2c ¼ j1& pj [21]. Furthermore, no singularities are
present. Nevertheless, the main feature, namely, the two-
peak structure, is still present, and one can directly deduce
the value of p from the peak and kink positions. Finally, for
p ' 1, one recovers the pure triplet case (d), in which the
unscreened Raman response is given by

!00
""ð!Þ / 2d

!
<
!
"2
k

jgkj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!=2dþ jgkjÞð!=2d$ jgkjÞ

p
#

FS
:

Clearly, only the area on the Fermi surface with !=2d >
jgkj contributes to the Raman intensity. Since jgkj 2 ½0; 1)
has a saddle point at jgkj ¼ 1=4, we find kinks at charac-
teristic frequencies !=2d ¼ 1=4 and !=2d ¼ 1. In con-
trast to the Rashba-type ASOC, we find a characteristic low
energy expansion / ð!=2dÞ2 for both the A1 and the E
symmetry, while / ð!=2dÞ4 for the T2 symmetry [22].
Assuming weak coupling theory, we expect the pair-
breaking peaks (as shown in Fig. 4) for Li2PdxPt3$xB
roughly in the range 4–30 cm$1.

In summary, we have calculated for the first time the
electronic (pair-breaking) Raman response in the newly
discovered NCSs such as CePt3Si (G ¼ C4v) and
Li2PdxPt3$xB [G ¼ Oð432Þ]. Taking the pronounced
ASOC into account, we provide various analytical results

for the Raman response function and cover all relevant
cases from weak to strong triplet-singlet ratio p. Our
theoretical predictions can be used to analyze the under-
lying condensate in parity-violated NCSs and allows the
determination of p.
We thank P.M.R. Brydon and M. Sigrist for helpful

discussions.

*L.Klam@fkf.mpg.de
[1] E. Bauer, G. Hilscher, H. Michor, C. Paul, E.W. Scheidt,

A. Gribanov, Y. Seropegin, H. Noël, M. Sigrist, and P.
Rogl, Phys. Rev. Lett. 92, 027003 (2004).

[2] P. A. Frigeri, D. F. Agterberg, A. Koga, and M. Sigrist,
Phys. Rev. Lett. 92, 097001 (2004); 93, 099903 (2004).

[3] K. V. Samokhin and V. P. Mineev, Phys. Rev. B 77, 104520
(2008).

[4] E. Bauer, I. Bonalde, and M. Sigrist, Low Temp. Phys. 31,
748 (2005).
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Figure 1. Energy spectrum of the three different types of topological subgap states that can exist at the surface of nodal noncentrosymmetric
superconductors: (a) helical Majorana cone, (b) arc surface state, and (c) flat-band surface state. Figure adapted from [66].

with codimension p < dBZ (i.e. dn > 0), provided that they
are protected by a Z invariant or 2Z invariant. Z2 numbers,
on the other hand, guarantee only the stability of nodes with
dn = 0, i.e. point nodes. These findings are confirmed by
more rigorous derivations based on K theory [58–60] and
minimal Dirac Hamiltonians [61]. The latter approach uses
Clifford algebra to classify all possible symmetry-preserving
mass terms that can be added to the Hamiltonian. The
classification of global-symmetry-invariant nodal structures
(and Fermi surfaces) is summarized in table 1, where the first
row indicates the codimension p of the superconducting nodes.
For any codimension p there are three symmetry classes for
which stable superconducting nodes (or Fermi surfaces) exist
that are protected by a Z invariant or 2Z invariant, where the
prefix ‘2’ indicates that the topological number only takes on
even values. Furthermore, in each spatial dimension dBZ there
exist two symmetry classes that allow for topologically stable
point nodes (Fermi points) which are protected by a binary Z2

number.

3.2. Nodes off high-symmetry points

Second, we review the topological classification of
superconductors with nodes that are located away from high-
symmetry points of the Brillouin zone [57, 61]. These point
or line nodes are pairwise mapped onto each other by the
global antiunitary symmetries, which relate k to −k. An
analysis based on the minimal-Dirac-Hamiltonian method [61]
shows that only Z-type invariants can guarantee the stability of
superconducting nodes off high-symmetry points, whereas Z2

numbers do not lead to stable nodes. However, as illustrated
in terms of the example of section 3.3.3, Z2 numbers may
nevertheless give rise to zero-energy surface states at time-
reversal-invariant momenta of the surface Brillouin zone.
The complete classification of superconducting nodes that
are located away from high-symmetry points is presented in
table 1, where the second row gives the codimension p of
the superconducting node. Observe that this classification
scheme is related to the ten-fold classification of fully gapped
superconductors and insulators by the dimensional shiftdBZ →
dBZ + 1.

3.3. Examples

For the phenomenological model Hamiltonians given in
section 2, we derive in this subsection explicit expressions
for the topological invariants that protect the superconducting
nodes against gap opening. We also use these examples to
illustrate the bulk-boundary correspondence [64, 65], which
links the topological characteristics of the nodal gap structure
to the appearance of zero-energy states at the boundary.
Depending on the case, these zero-energy surface states are
either linearly dispersing Majorana cones, Majorana flat bands,
or arc surface states (see figure 1). We note that in real
superconducting materials the gap nodes are usually positioned
away from the high-symmetry points of the Brillouin zone.
Indeed, this is the case for the three examples of section 2,
which are therefore classified according to section 3.2.
Note that the topological invariants introduced here can be
straightforwardly generalized to more complicated systems.

3.3.1. The A phase of 3He. The A phase of 3He is
phenomenologically described by Hamiltonian (1), which
satisfies particle-hole symmetry C−1H(−k)C = −H(k) with
C = Kτx . Time-reversal symmetry, however, is broken,
because the superconducting order parameter of equation (1) is
complex. Hence, since C2 = +11, Hamiltonian (1) belongs to
symmetry class D. We infer from table 1 that the Weyl nodes of
the Hamiltonian (1), which have codimension p = 3 and occur
off high symmetry points, are protected by a Z topological
number. In order to derive a formula for this topological
number it is convenient to rewrite Hamiltonian (1) as

H(k) = N(k) · τ , (13)

i.e. a dot product between the pseudospin vector N(k) =(
"0kx/kF, "0ky/kF, h(k)

)
and the vector of Pauli matrices

τ = (τx, τy, τz). The unit vector field nk = N(k)/|N(k)|
exhibits singular points at the Weyl nodes K± of H(k).
These point singularities realize (anti)hedgehog defects in
momentum space and are characterized by the Chern number
[25–28]
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4π
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Figure 1. Energy spectrum of the three different types of topological subgap states that can exist at the surface of nodal noncentrosymmetric
superconductors: (a) helical Majorana cone, (b) arc surface state, and (c) flat-band surface state. Figure adapted from [66].

with codimension p < dBZ (i.e. dn > 0), provided that they
are protected by a Z invariant or 2Z invariant. Z2 numbers,
on the other hand, guarantee only the stability of nodes with
dn = 0, i.e. point nodes. These findings are confirmed by
more rigorous derivations based on K theory [58–60] and
minimal Dirac Hamiltonians [61]. The latter approach uses
Clifford algebra to classify all possible symmetry-preserving
mass terms that can be added to the Hamiltonian. The
classification of global-symmetry-invariant nodal structures
(and Fermi surfaces) is summarized in table 1, where the first
row indicates the codimension p of the superconducting nodes.
For any codimension p there are three symmetry classes for
which stable superconducting nodes (or Fermi surfaces) exist
that are protected by a Z invariant or 2Z invariant, where the
prefix ‘2’ indicates that the topological number only takes on
even values. Furthermore, in each spatial dimension dBZ there
exist two symmetry classes that allow for topologically stable
point nodes (Fermi points) which are protected by a binary Z2

number.

3.2. Nodes off high-symmetry points

Second, we review the topological classification of
superconductors with nodes that are located away from high-
symmetry points of the Brillouin zone [57, 61]. These point
or line nodes are pairwise mapped onto each other by the
global antiunitary symmetries, which relate k to −k. An
analysis based on the minimal-Dirac-Hamiltonian method [61]
shows that only Z-type invariants can guarantee the stability of
superconducting nodes off high-symmetry points, whereas Z2

numbers do not lead to stable nodes. However, as illustrated
in terms of the example of section 3.3.3, Z2 numbers may
nevertheless give rise to zero-energy surface states at time-
reversal-invariant momenta of the surface Brillouin zone.
The complete classification of superconducting nodes that
are located away from high-symmetry points is presented in
table 1, where the second row gives the codimension p of
the superconducting node. Observe that this classification
scheme is related to the ten-fold classification of fully gapped
superconductors and insulators by the dimensional shiftdBZ →
dBZ + 1.

3.3. Examples

For the phenomenological model Hamiltonians given in
section 2, we derive in this subsection explicit expressions
for the topological invariants that protect the superconducting
nodes against gap opening. We also use these examples to
illustrate the bulk-boundary correspondence [64, 65], which
links the topological characteristics of the nodal gap structure
to the appearance of zero-energy states at the boundary.
Depending on the case, these zero-energy surface states are
either linearly dispersing Majorana cones, Majorana flat bands,
or arc surface states (see figure 1). We note that in real
superconducting materials the gap nodes are usually positioned
away from the high-symmetry points of the Brillouin zone.
Indeed, this is the case for the three examples of section 2,
which are therefore classified according to section 3.2.
Note that the topological invariants introduced here can be
straightforwardly generalized to more complicated systems.

3.3.1. The A phase of 3He. The A phase of 3He is
phenomenologically described by Hamiltonian (1), which
satisfies particle-hole symmetry C−1H(−k)C = −H(k) with
C = Kτx . Time-reversal symmetry, however, is broken,
because the superconducting order parameter of equation (1) is
complex. Hence, since C2 = +11, Hamiltonian (1) belongs to
symmetry class D. We infer from table 1 that the Weyl nodes of
the Hamiltonian (1), which have codimension p = 3 and occur
off high symmetry points, are protected by a Z topological
number. In order to derive a formula for this topological
number it is convenient to rewrite Hamiltonian (1) as

H(k) = N(k) · τ , (13)

i.e. a dot product between the pseudospin vector N(k) =(
"0kx/kF, "0ky/kF, h(k)

)
and the vector of Pauli matrices

τ = (τx, τy, τz). The unit vector field nk = N(k)/|N(k)|
exhibits singular points at the Weyl nodes K± of H(k).
These point singularities realize (anti)hedgehog defects in
momentum space and are characterized by the Chern number
[25–28]

NC = 1
4π

∫

C
d2k̃ nk ·

[
∂k1 nk × ∂k2 nk

]
, (14)

5

Phys. Rev. B 93, 205132 (2016)

arXiv:1606.03456


