Classification of topological quantum matter with reflection symmetries

Andreas P. Schnyder

Max Planck Institute for Solid State Research, Stuttgart

June 14th, 2016

SPICE Workshop on New Paradigms in Dirac-Weyl Nanoelectronics

Outline

0. Introduction: Topological band theory

1. Topological insulators with reflection symmetry

- Ca_3PbO , Sr_3PbO , Ba_3PbO arXiv:1606.03456

- 2. Topological nodal line semi-metals
 - Ca₃P₂, ZrSiS PRB 93, 205132 (2016)
- 3. Nodal non-centrosymmetric superconductors - CePt₃Si
- 4. Conclusions & Outlook

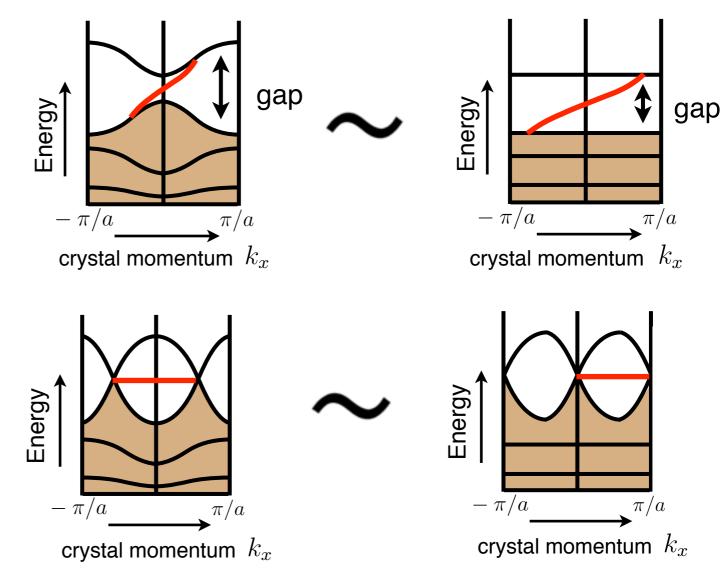
Mirror plane

Review articles: arXiv:1505.03535; J. Phys.: Condens. Matter 27, 243201 (2015)

Topological band theory

- Consider band structure: $H(\mathbf{k}) |u_n(\mathbf{k})\rangle = E_n(\mathbf{k}) |u_n(\mathbf{k})\rangle$
- (i) Topological equivalence for insulators (superconductors):

• (ii) Topological equivalence for band crossings (nodes in SCs):

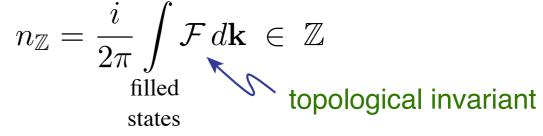


Symmetries to consider: time-reversal symmetry, particle-hole, reflection

 \triangleright top. equivalence classes distinguished by:

• Bulk-boundary correspondence:

 $|n_{\mathbb{Z}}| = \#$ gapless edge states (or surface states)



Reflection symmetry

Consider reflection R:
$$x \to -x$$

$$\begin{aligned} R^{-1}\mathcal{H}(-k_x,k_y,k_z)R &= \mathcal{H}(k_x,k_y,k_z) \end{aligned}$$
 with $R = s_x$

— w.l.o.g.: eigenvalues of $R \in \{-1, +1\}$

mirror Chern number:

 $k_x = 0 \implies \mathcal{H}(0, k_y, k_z)R - R\mathcal{H}(0, k_y, k_z) = 0$

– project $\mathcal{H}(0,k_y,k_z)$ onto eigenspaces of $R\colon \mathcal{H}_{\pm}(k_y,k_z)$

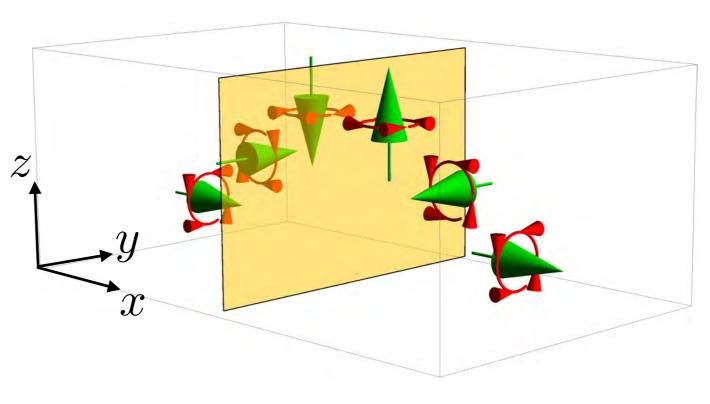
$$n_{\mathcal{M}}^{\pm} = \frac{1}{4\pi} \int_{2\mathrm{D}\,\mathrm{BZ}} \mathcal{F}_{\pm} d^{2}\mathbf{k}$$
Berry curvature in \pm eigenspace

- total Chern number: $n_{\mathcal{M}} = n_{\mathcal{M}}^+ + n_{\mathcal{M}}^-$

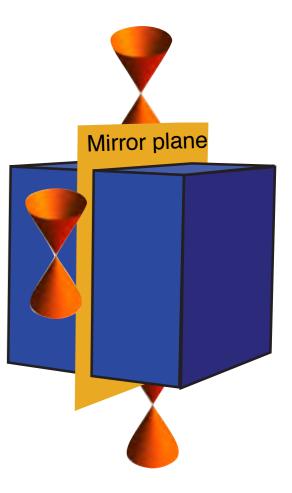
— mirror Chern number:
$$n_{\mathcal{M}} = n_{\mathcal{M}}^+ - n_{\mathcal{M}}^-$$

Bulk-boundary correspondence:

 zero-energy states on surfaces that are left invariant under the mirror symmetry

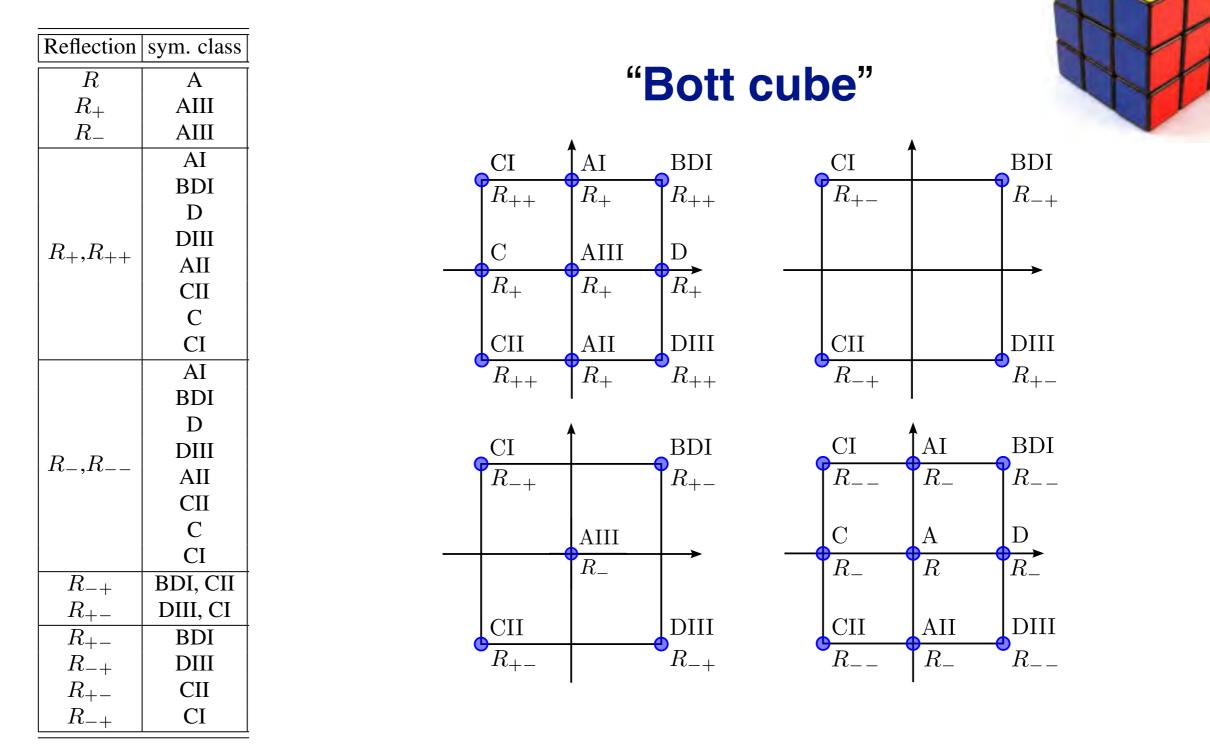


Teo, Fu, Kane PRB '08



```
R_+: R commutes with T (C or S)
```

 R_{-} : R anti-commutes with T (C or S)



Morimoto, Furusaki PRB 2013; Chiu, Schnyder PRB 2014;

 R_+ : R commutes with T (C or S) R_- : R anti-commutes with T (C or S)

	TI/TSC				
Reflection	FS1				
	FS2				
R	A				
R_+	AIII				
R_{-}	AIII				
	AI				
	BDI				
	D				
R_{+}, R_{++}	DIII				
	AII				
	CII				
	C				
	CI				
	AI				
	BDI				
	D				
$R_{-}, R_{}$	DIII				
	AII				
	CII				
	С				
	CI				
R_{-+}	BDI, CII				
R+-	DIII, CI				
R_{+-}	BDI				
R_{-+}	DIII				
R_{+-}	CII				
R_{-+}	CI				

For which symmetry class and dimension is there a topological insulator or topological semi-metal protected by reflection symmetry?

 R_+ : R commutes with T (C or S) R_- : R anti-commutes with T (C or S)

	TI/TSC	<i>d</i> =1	d=2	d=3	d=4	d=5	d=6	d=7	d=8
Reflection	FS1	p=8	p=1	p=2	p=3	p=4	p=5	p=6	p=7
	FS2	<i>p</i> =2	p=3	p=4	p=5	p=6	p=7	p=8	p=1
R	А	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0
R_+	AIII	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$
R_{-}	AIII	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0
	AI	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$
	BDI	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$
	D	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
R_{+}, R_{++}	DIII	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	AII	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0
	CII	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0
	C	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0
	CI	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$
	AI	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0
	BDI	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$
	D	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2
$R_{-}, R_{}$	DIII	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$
	AII	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
	CII	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	C	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0
	CI	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0
R_{-+}	BDI, CII	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0
R_{+-}	DIII, CI	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0
R_{+-}	BDI	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2\oplus\mathbb{Z}$
R_{-+}	DIII	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0
R_{+-}	CII	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0
R_{-+}	CI	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0

Chiu, Schnyder PRB 2014

 R_+ : R commutes with T (C or S) R_- : R anti-commutes with T (C or S)

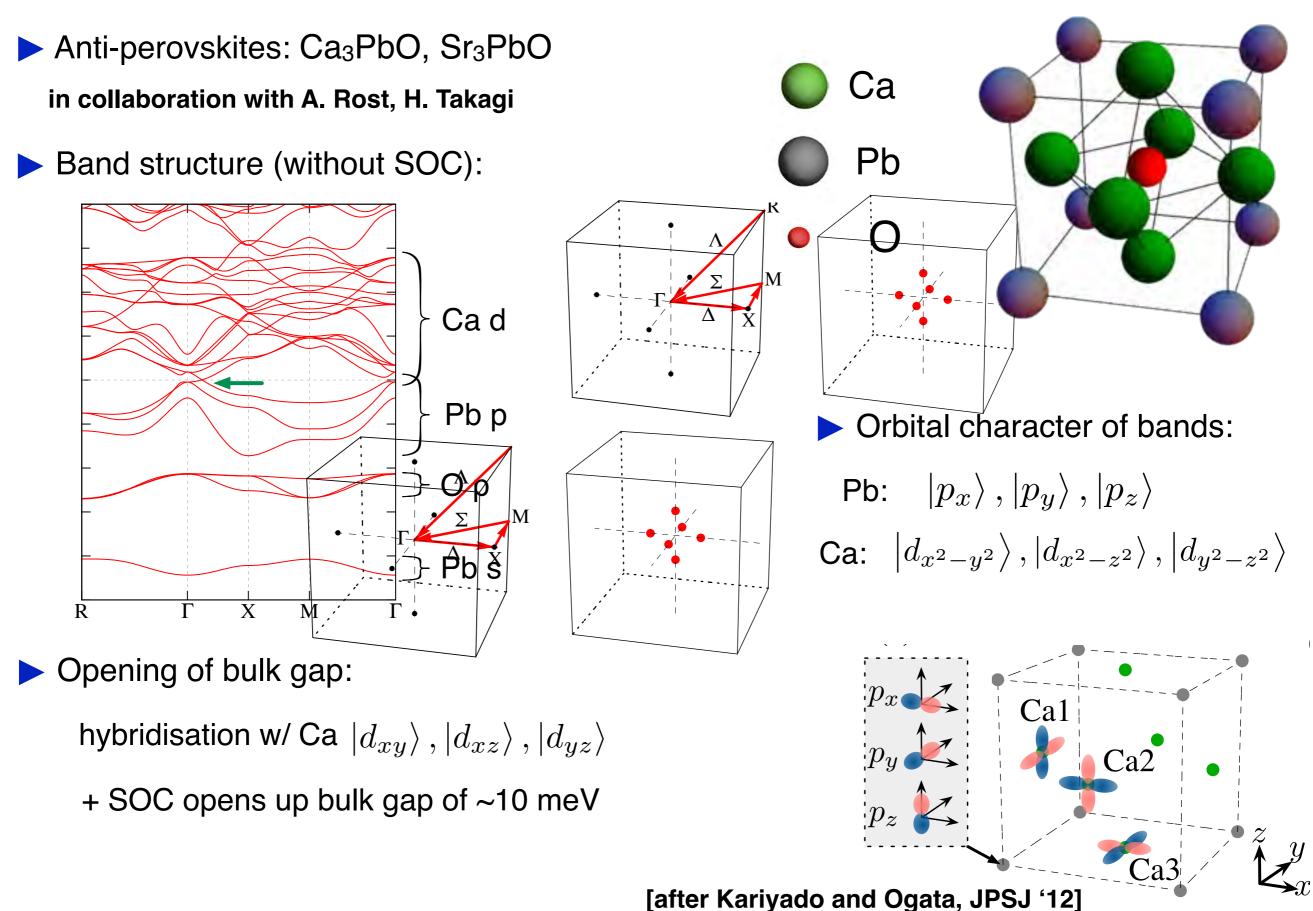
	TI/TSC	d=1	d=2	d=3	d=4	d=5	d=6	d=7	d=8
Reflection	FS1	p=8	p=1	p=2	p=3	p=4	p=5	p=6	p=7
	FS2	<i>p</i> =2	p=3	<i>p</i> =4	p=5	p=6	p=7	p=8	p=1
R	А	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0
R_+	AIII	0	$M\mathbb{Z}$	0	ME	Ω	$M\mathbb{Z}$	0	$M\mathbb{Z}$
R_{-}	AIII	$M\mathbb{Z}\oplus\mathbb{Z}$		$M\mathbb{Z}\oplus\mathbb{Z}$	0 0		0	$M\mathbb{Z}\oplus\mathbb{Z}$	0
	AI	$M\mathbb{Z}$		Π	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$
	BDI	$M\mathbb{Z}_2$	$M\mathbb{Z}$	CePt ₃ Si	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$
	D	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
R_{+}, R_{++}	DIII	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	AII	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0
	CII	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0
	С	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0
	CI	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$
	AI	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0
	BDI	0	0	0	$2M\mathbb{Z}$	Ο	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$
	D	$M\mathbb{Z}$	0	0	BC	a₃PbO	, Sr₃Pb	$lacksquare{}$ $\mathbb{C}\mathbb{Z}_2$	\mathbb{Z}_2
$R_{-}, R_{}$	DIII	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$
	AII	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
	CII	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	С	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0
	CI	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0
R_{-+}	BDI, CII	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0
R_{+-}	DIII, CI	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0
R_{+-}	BDI	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$
R_{-+}	DIII	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0
R_{+-}	CII	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0
R_{-+}	CI	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0

Chiu, Schnyder PRB 2014

1. Topological insulators with reflection symmetry

Y. Nohara (MPI-FKF) Yang-Hao Chan (A. Sinica) Ching-Kai Chiu (UMD)

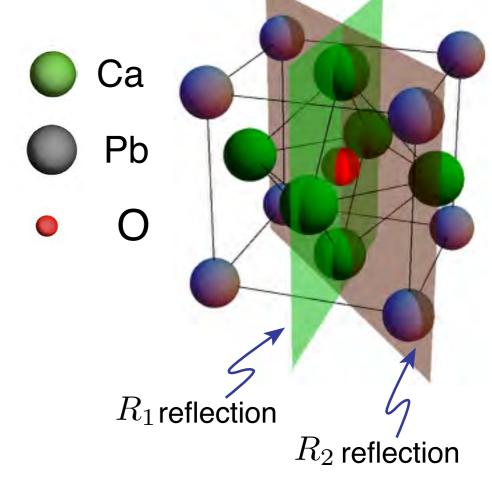
Ca₃PbO, Sr₃PbO



 R_{-}

Symmetries:

- Time-reversal: $T^{-1}\mathcal{H}(-\mathbf{k})T = +\mathcal{H}(\mathbf{k})$ $T = is_y\mathcal{K}$
- two reflection symmetries : R_1 and R_2
 - R_j anti-commutes with T: $TR_jT^{-1} = -R_j$
 - \implies two mirror Chern numbers: $n_{\mathcal{M}_1}, n_{\mathcal{M}_2}$



Symmetries:

- Time-reversal: $T^{-1}\mathcal{H}(-\mathbf{k})T = +\mathcal{H}(\mathbf{k})$ $T = is_y\mathcal{K}$

- two reflection symmetries : R_1 and R_2

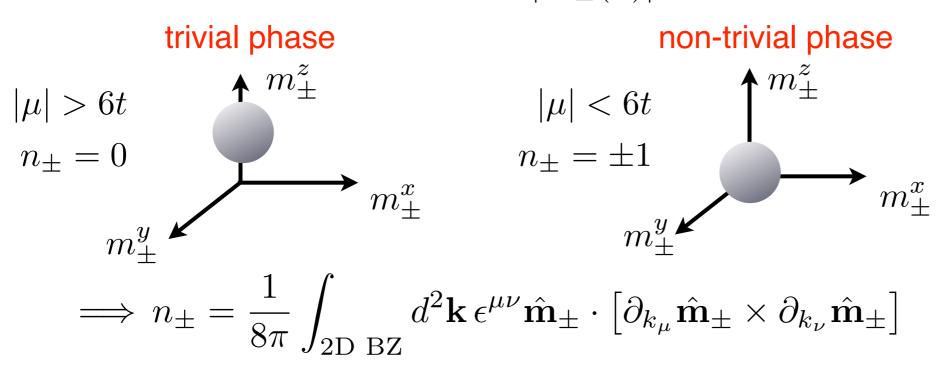
 R_j anti-commutes with T: $TR_jT^{-1} = -R_j$

 \implies two mirror Chern numbers: $n_{\mathcal{M}_1}, n_{\mathcal{M}_2}$

Effective low-energy Hamiltonian for one Dirac cone within R₁ mirror plane:

$$\mathcal{H}_{\pm}(k_y,k_z) = \pm \sin k_z \sigma_x \pm \sin k_y \sigma_y \pm \varepsilon_{\mathbf{k}} \sigma_z = \mathbf{m}_{\pm}(\mathbf{k}) \cdot \vec{\sigma}$$

$$E = \pm |\mathbf{m}_{\pm}(\mathbf{k})| \qquad \hat{\mathbf{m}}_{\pm} = \frac{\mathbf{m}_{\pm}(\mathbf{k})}{|\mathbf{m}_{\pm}(\mathbf{k})|}$$



Ca Pb O R_1 reflection R_2 reflection

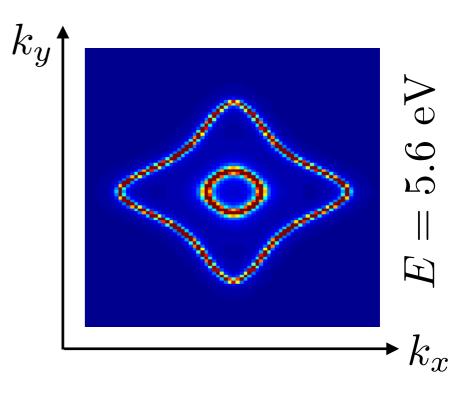
Mirror Chern numbers:

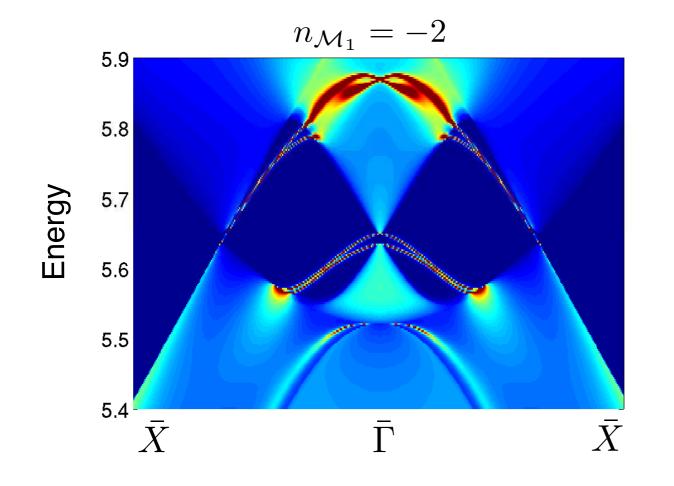
- for Ca₃PbO:
$$n_{\mathcal{M}_1} = -2, n_{\mathcal{M}_2} = +2$$

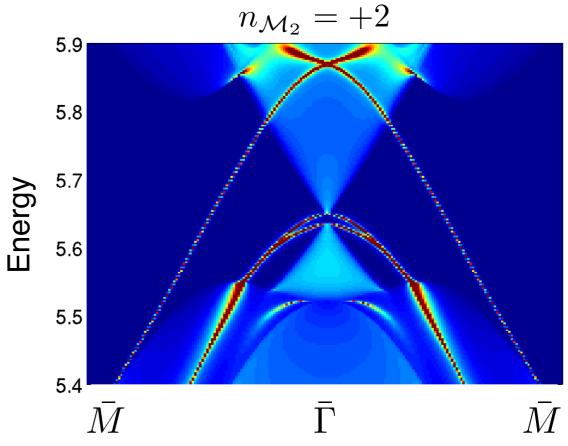
Bulk-boundary correspondence:

 $|n_{\mathcal{M}}| = \#$ Dirac cone surface states

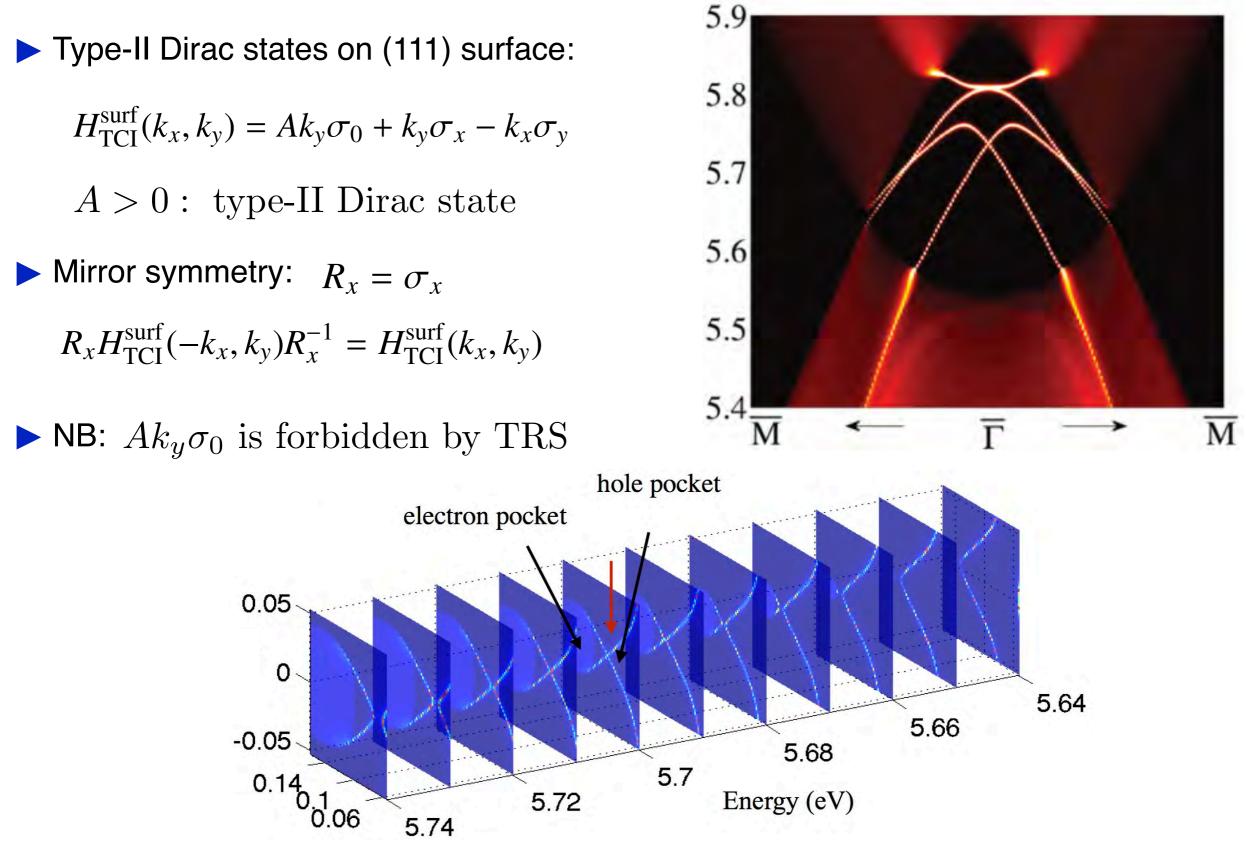
Dirac cone surface states on (001) surface:







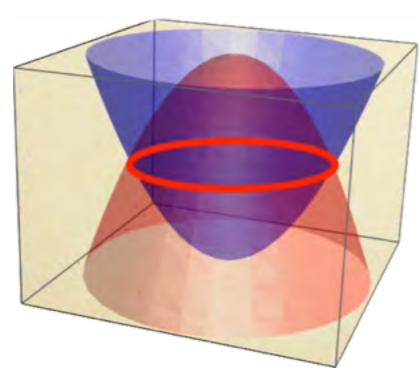
Chiu, Chan, Nohara, Schnyder, arXiv:1606.03456



 \Rightarrow dense Landau level spectrum

Chiu, Chan, Nohara, Schnyder, arXiv:1606.03456

2. Topological nodal line semi-metals



Ching-Kai Chiu (UMD)

Yang-Hao Chan (A. Sinica)

 R_+ : R commutes with T (C or S) R_- : R anti-commutes with T (C or S)

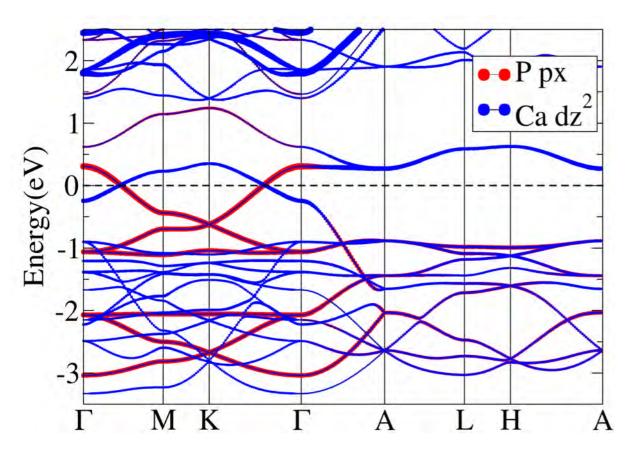
	TI/TSC	<i>d</i> =1	d=2	d=3	d=4	d=5	d=6	d=7	d=8
Reflection	FS1	p=8	p=1	p=2	p=3	p=4	p=5	p=6	p=7
	FS2	<i>p</i> =2	p=3	p=4	p=5	p=6	p=7	p=8	p=1
R	А	$M\mathbb{Z}$	0	Mℤ <	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0
R_+	AIII	0	$M\mathbb{Z}$	0	MEL	Ο	$M\mathbb{Z}$	0	$M\mathbb{Z}$
R_{-}	AIII	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0 0		0	$M\mathbb{Z}\oplus\mathbb{Z}$	0
	AI	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$
	BDI	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$
	D	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
R_{+}, R_{++}	DIII	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	AII	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0
	CII	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0
	C	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0
	CI	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$
	AI	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0
	BDI	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$
	D	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2
$R_{-}, R_{}$	DIII	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$
	AII	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
	CII	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	C	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0
	CI	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0
R_{-+}	BDI, CII	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0
R_{+-}	DIII, CI	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0
R_{+-}	BDI	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$
R_{-+}	DIII	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0
R_{+-}	CII	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0
R_{-+}	CI	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0

Chiu, Schnyder PRB 2014

px dz2

see talk by Leslie Schoop

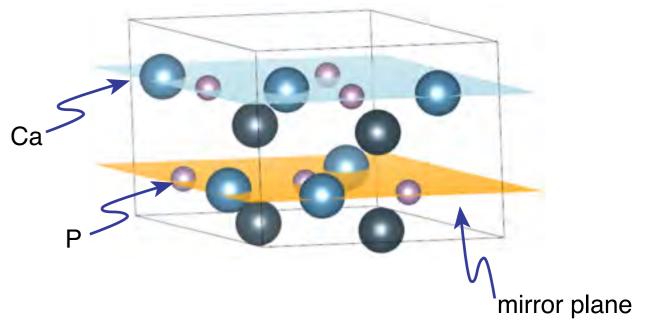
Band structure:



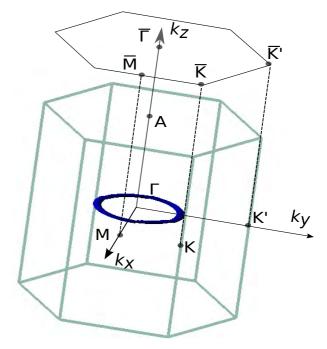
charge balanced: $Ca^{2+} - P^{3-}$

- Orbital character of bands near E_F: (6 Ca atoms, 6 P atoms)
 - Ca: d_{z^2} orbitals from 6 Ca atoms
 - P: p_x orbitals from 6 P atoms

Crystal structure P6₃/mcm

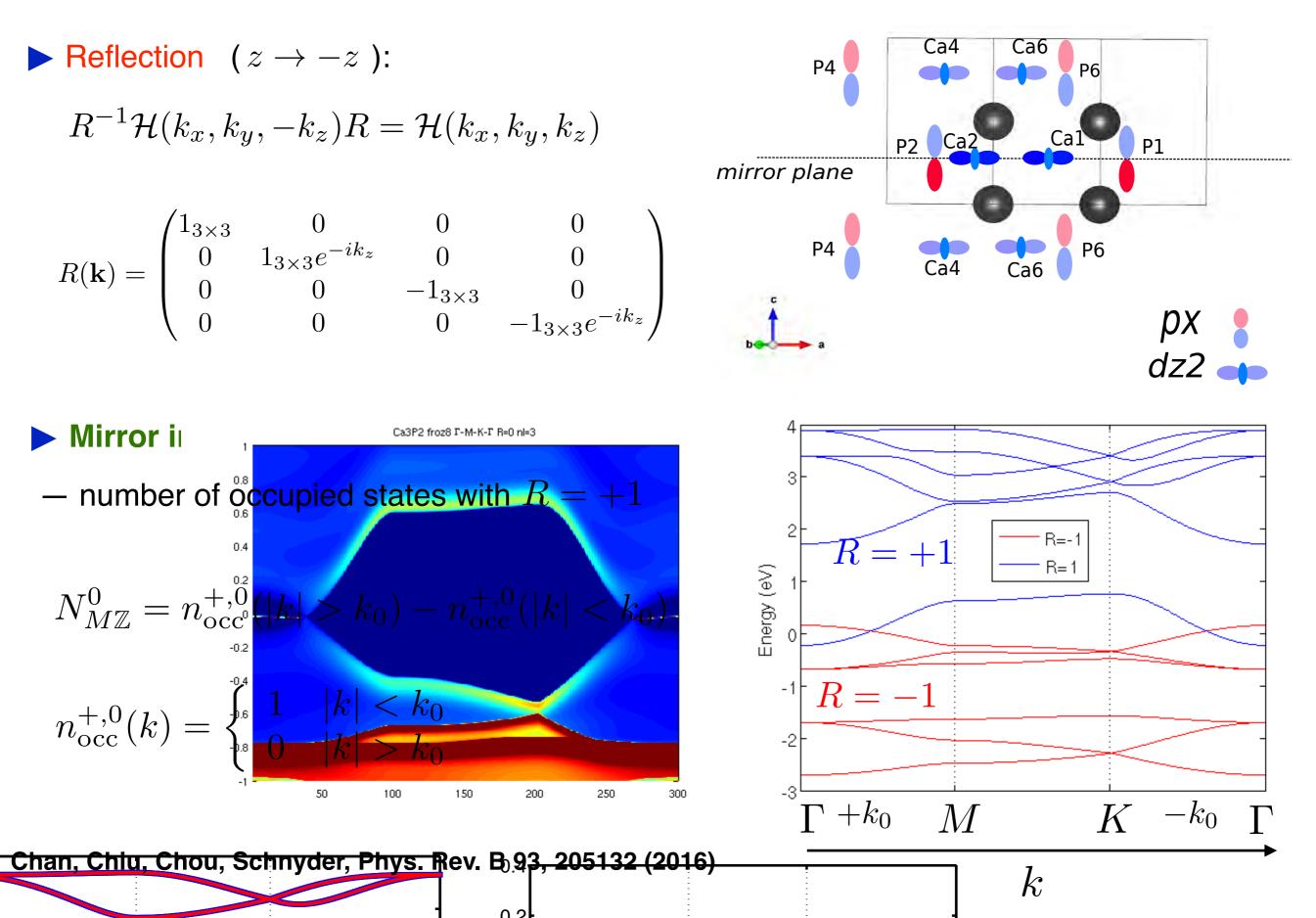


Dirac ring within reflection plane



Chan, Chiu, Chou, Schnyder, Phys. Rev. B 93, 205132 (2016)

Topological nodal line: Mirror invariant



Drumhead surface state and Berry

Berry phase & charge polarization:

$$\mathcal{P}(k_{\parallel}) = -i \sum_{j \in \text{filled}} \int_{-\pi}^{\pi} \left\langle u_{k_{\perp}}^{(j)} \right| \partial k_{\perp} \left| u_{k_{\perp}}^{(j)} \right\rangle dk_{\perp}$$

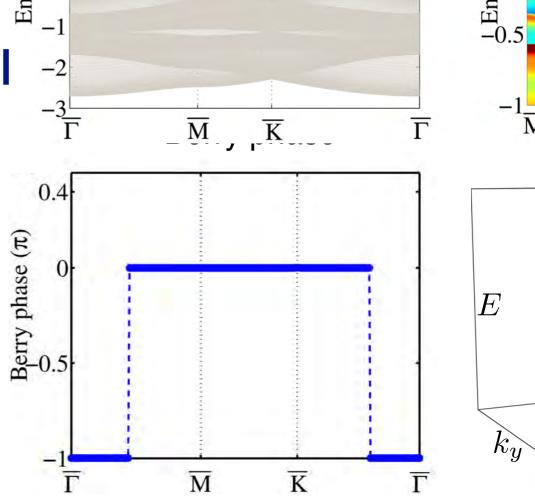
- $\mathcal{P}(k_{\parallel})$ quantized to $\pi \Rightarrow$ stable line node

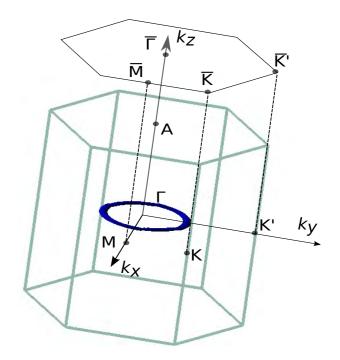
In Ca₃P₂ Berry phase is quantized due to:

(i) reflection symmetry $z \rightarrow -z$

(ii) inversion + time-reversal symmetry

$$(-1)^{n_{\text{occ}}^{+,0}(k) + n_{\text{occ}}^{+,\pi}(k)} e^{i\partial R} = e^{i\mathcal{P}(k)}$$





Drumhead surface state and Berry

Berry phase & charge polarization:

$$\mathcal{P}(k_{\parallel}) = -i \sum_{j \in \text{filled}} \int_{-\pi}^{\pi} \left\langle u_{k_{\perp}}^{(j)} \right| \partial k_{\perp} \left| u_{k_{\perp}}^{(j)} \right\rangle dk_{\perp}$$

- $\mathcal{P}(k_{\parallel})$ quantized to $\pi \Rightarrow$ stable line node

— In Ca₃P₂ Berry phase is quantized due to:

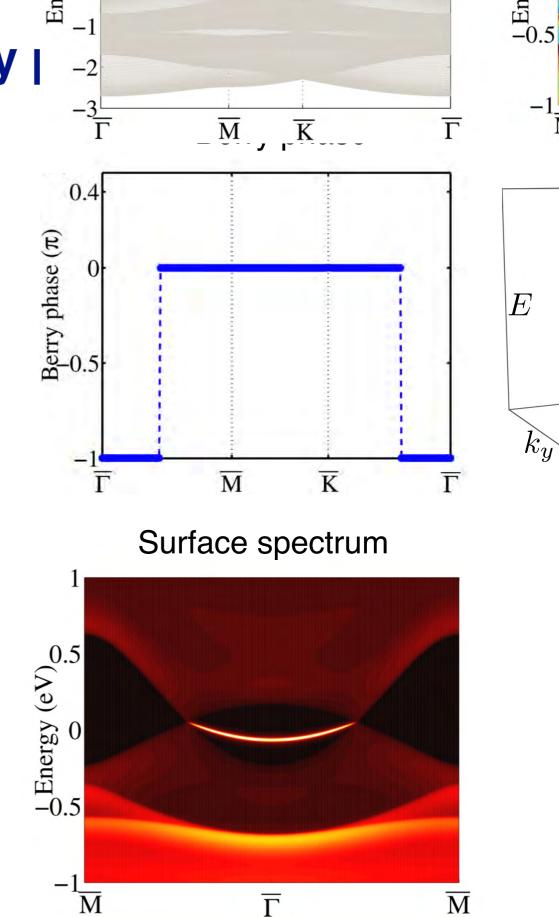
(i) reflection symmetry $z \rightarrow -z$

(ii) inversion + time-reversal symmetry (a)

$$(-1)^{n_{\rm occ}^{+,0}(k) + n_{\rm occ}^{+,\pi}(k)} e^{i\partial R} = e^{i\mathcal{P}(k)}$$

Bulk-boundary correspondence:

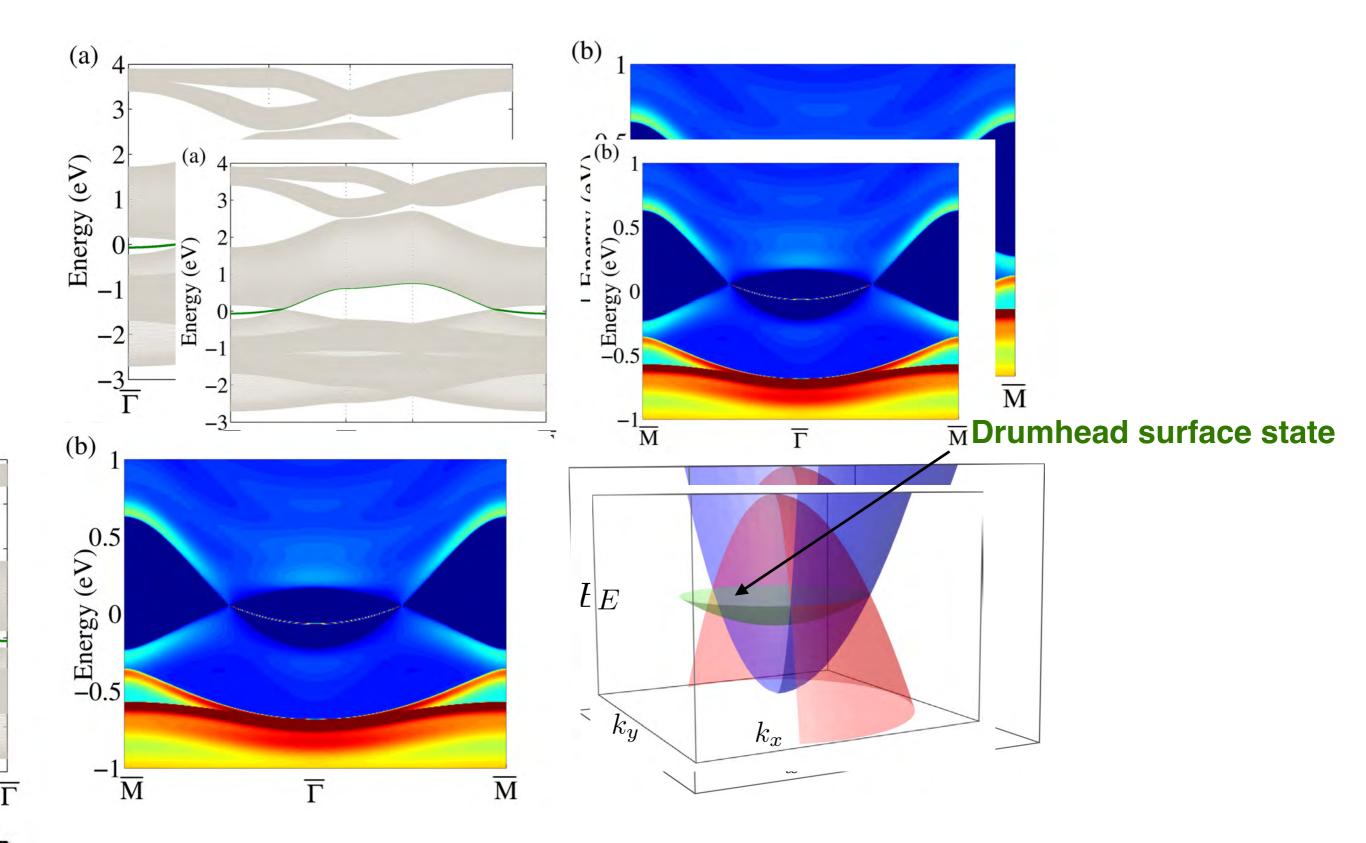
- surface charge:
$$\sigma_{surf} = \frac{e}{2\pi} \mathcal{P} \mod e$$



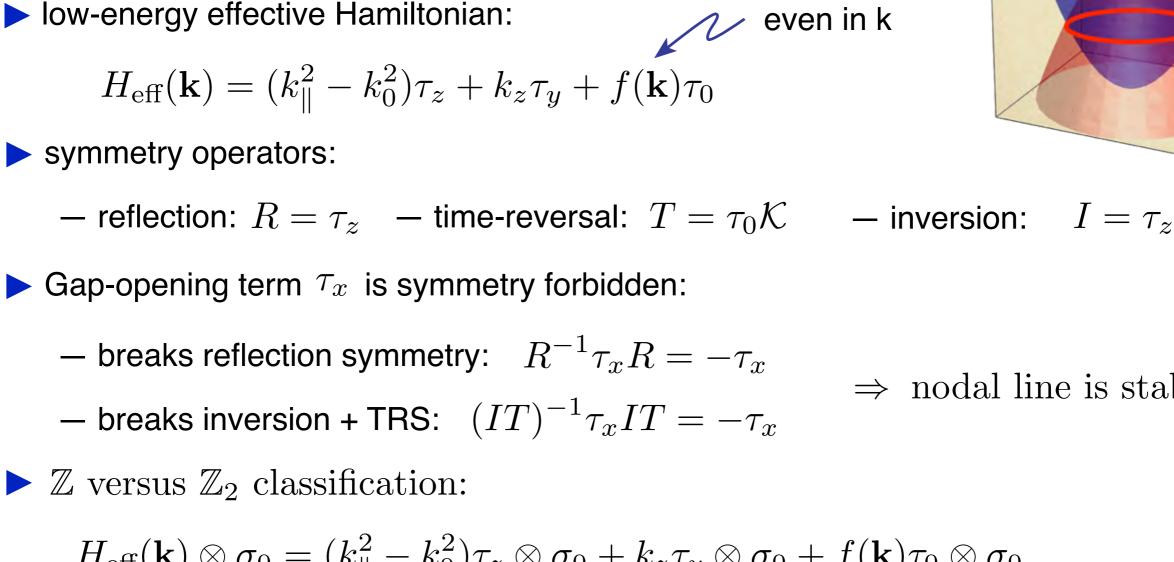
Chan, Chiu, Chou, Schnyder, Phys. $k_{a} = \frac{1}{2} \frac{a}{2}$ 93, 205132 (2016)

Drumhead surface state and Berry phase

Nearly flat surface states connecting Dirac ring



Low-energy effective theory for Ca₃P₂



 \Rightarrow nodal line is stable

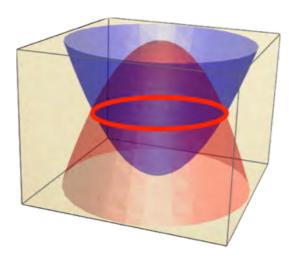
 $H_{\text{eff}}(\mathbf{k}) \otimes \sigma_0 = (k_{\parallel}^2 - k_0^2)\tau_z \otimes \sigma_0 + k_z\tau_y \otimes \sigma_0 + f(\mathbf{k})\tau_0 \otimes \sigma_0$

- consider gap opening term $\hat{m} = \tau_x \otimes \sigma_y$:
 - (*IT*)-symmetric:

 $(\tau_z \otimes \sigma_0 \mathcal{K})^{-1} \hat{m} (\tau_z \otimes \sigma_0 \mathcal{K}) = \hat{m} \implies \mathbb{Z}_2$ classification

• but breaks R:

 $(\tau_z \otimes \sigma_0)^{-1} \hat{m} (\tau_z \otimes \sigma_0) \neq \hat{m} \qquad \Rightarrow \mathbb{Z}$ classification



3. Nodal non-centrosymmetric superconductors

R. Queiroz (MPI-FKF)

C. Timm (TU Dresden)

CePt₃Si

P. Brydon (U Otago)

Nodal non-centrosymmetric superconductors

[E. Bauer et al. PRL '04]

• Lack of inversion causes anti-symmetric SO coupling:

Normal state:
$$\mathcal{H} = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} \left(\varepsilon_{\mathbf{k}} \sigma_{0} + |\mathbf{g}_{\mathbf{k}}| \sigma_{3} \right) \Psi_{\mathbf{k}}$$

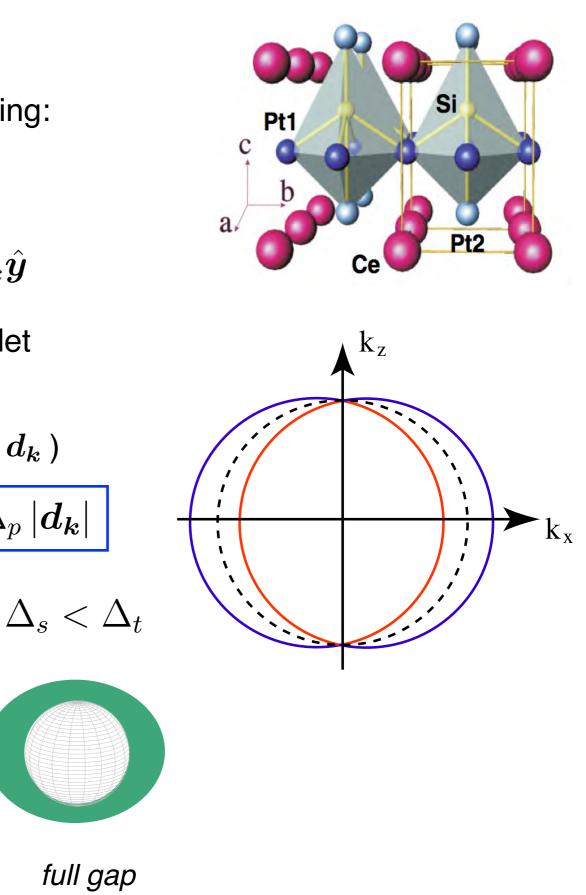
SO coupling for C_{4v} point group: $\mathbf{q}_{\mathbf{k}} = k_{u} \hat{\mathbf{x}} - k_{x} \hat{\mathbf{u}}$

• Lack of inversion allows for admixture of spin-singlet and spin-triplet pairing components

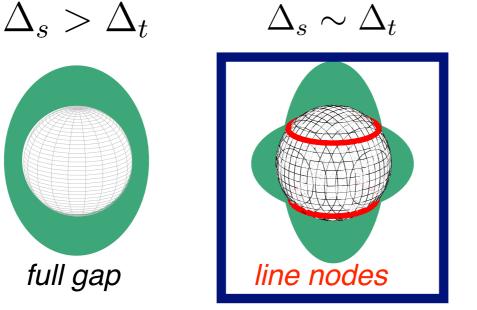
$$\Delta_{\mathbf{k}} = (\Delta_{\mathbf{s}}\sigma_0 + \Delta_{\mathbf{t}}\,\mathbf{d}_{\mathbf{k}}\cdot\vec{\sigma})\,i\sigma_y \qquad (\boldsymbol{g}_{\boldsymbol{k}} \parallel \boldsymbol{d}_{\boldsymbol{k}})$$

Gaps on the two Fermi surfaces:

full gap



negative helicity FS



 $\Delta_{\mathbf{k}}^{\pm} = \Delta_s \pm \Delta_p \left| \mathbf{d}_{\mathbf{k}} \right|$

Nodal non-centrosymmetric superconductors

• Symmetries: Time-reversal and particle-hole:

$$\begin{array}{l} T = \sigma_0 \otimes i\sigma_2 & T^2 = -1 \\ C = \sigma_1 \otimes \sigma_0 & C^2 = +1 \end{array} \right\} \text{ class DIII}$$

1D contour *in general not* centrosymmetric:

TRS \nearrow PHS \swarrow S=TRS x PHS \checkmark \implies class AIII

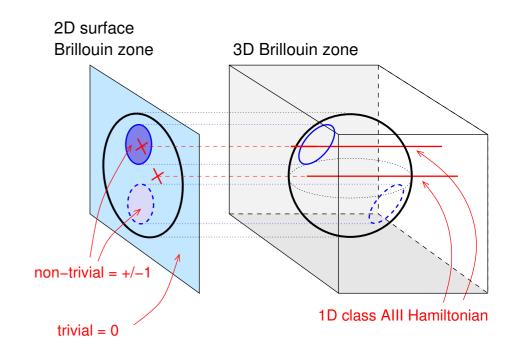
• Winding number:

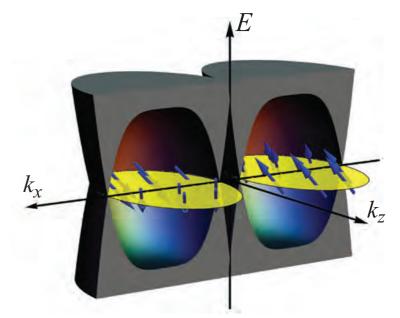
$$W_C = \frac{1}{2\pi} \oint_{\mathcal{C}} dk_l \,\partial_{k_l} \left[\arg(\xi_{\mathbf{k}}^- + i\Delta_{\mathbf{k}}^-) \right]$$

$$\xi_{\mathbf{k}}^{\pm} = \varepsilon_{\mathbf{k}} \pm |\mathbf{g}_{\mathbf{k}}| \qquad \Delta_{\mathbf{k}}^{\pm} = \Delta_{\mathrm{s}} \pm \Delta_{\mathrm{t}} |\mathbf{d}_{\mathbf{k}}|$$

- Bulk-boundary correspondence:
 surface flat bands
- Surface flat bands have Majorana character:

$$\gamma_k \sim \phi_{1,k}(r_{\perp}) \left(c_{k,\uparrow} - i \operatorname{sgn}(k) c_{-k,\downarrow}^{\dagger} \right) + \phi_{2,k}(r_{\perp}) \left(c_{k,\downarrow} + i \operatorname{sgn}(k) c_{-k,\uparrow}^{\dagger} \right)$$





Schnyder, Ryu, PRB (2012) Schnyder et al. PRL (2013) Queiroz, Schnyder, PRB (2014) Brydon et al. NJP (2015) Queiroz, Schnyder, PRB (2015)

Conclusions and Outlook

- Ca₃PbO is a topological insulator with reflection symmetry
 - Two Dirac surface states, type-II Dirac states arXiv:1606.03456
- Topological nodal line semi-metal Ca₃P₂
 - Drumhead surface states
 - Phys. Rev. B 93, 205132 (2016)
- Nodal non-centrosymmetric superconductor CePt₃Si
 - Majorana flat band surface states
- Topological classification schemes:
 - (i) bring order to the growing zoo of topological materials
 - (ii) give guidance for the search and design of new topological states
 - (iii) link the properties of the surface states to the bulk wave function topology

Review articles: arXiv:1505.03535; J. Phys.: Condens. Matter 27, 243201 (2015)

