Dirac Fermions in the Antiferromagnetic Semimetals

Peizhe Tang, Quan Zhou, Gang Xu, Shou-Cheng Zhang Department of Physics,

Stanford University

Collaborator:

Prof. Shou-Cheng Zhang @Stanford Mr. Quan Zhou @Stanford Dr. Ga

Dr. Gang Xu @Stanford

Outline

- Introduction (Topological semimetal: Dirac, Weyl and Dirac Nodal line)
- Some simple math (Nonsymmorphic group)
- AFM Dirac semimetal ---- <u>CuMnAs && CuMnP</u>
 - Dirac Nodal line
 - Dirac Points
 - Coupled Dirac points
- Conclusion

Introduction

What is Weyl semimetal.

Hamiltonian of the Weyl Fermion in the momentum space:

$$H = \sum_{i} v_i (\widehat{n}_i \cdot p) \sigma_i \bullet 2 \times 2 \text{ matrix}$$

 $\kappa = sign[\widehat{\boldsymbol{n}}_1 \cdot (\widehat{\boldsymbol{n}}_2 \times \widehat{\boldsymbol{n}}_3)]$

- The total chiral charges should be zero in the solid. The Weyl fermions appear by pairs.
- The Weyl Fermions are robust, small perturbation can not open gap at the Weyl point.
- Chiral anomaly.
- T Breaking: J. Zhang, C. Chang, <u>P. Tang</u>, et. al., Science 339, 6127 (2013) Kurebayashi, et. al., JPSP 83, 063709 (2014), G. Xu., et. al., PRL 107, 186806 (2011), Wang., et. al., arXiv: 1603.00479 (2016)
- P Breaking: Huang., et. al., Nature Comm. 6, 7374 (2015); Weng., et. al., PRX 5, 011029 (2015); Xu., et. al., Science 349, 613 (2015); Yang, et. al., Nature Phys. 11, 728 (2015); Lv., et. al., PRX 5, 031013 (2015); Liu., et. al., Nature Mater. 15, 27 (2016).

Riemann Surface States on Weyl semimetal.

Wan, et. al., PRB 83, 205101 (2011)

Liu, et. al., Nature Mater. 15, 27 (2016)

What is Dirac semimetal

Hamiltonian of the Dirac Fermion in the momentum space:

$$H = \begin{pmatrix} \sum_{i} v_{i}(\widehat{n}_{i} \cdot p)\sigma_{i} & 0 \\ 0 & \sum_{i} -v_{i}(\widehat{n}_{i} \cdot p)\sigma_{i} \end{pmatrix} \rightarrow 4 \times 4 \text{ matrix}$$

- Dirac points could be regarded as the double of Weyl points. So the similar properties, such as Fermi arc and chiral anomaly, can also could be observed.
- At the crossing point, the states should be fourfold degenerate. Two Weyl points with opposite chirality touch together.
- Additional symmetries are needed to protect the degeneracy, such as rotation symmetries.

Riemann Surface States on Dirac semimetal.

Discovered Dirac SM : Na₃Bi

Discovered Dirac SM : Cd₃As₂

Results: General argument for AFM Dirac SM

If a system has PT symmetry but do not have P and T, PT symmetry is anti-unitary $((PT)^2 = -1)$, we have:

 $(\mathcal{PT})H(k)(\mathcal{PT})^{-1} = H(k).$

For a Bloch wave $|\psi(k)\rangle$ with energy E(k) and $H(k)|\psi(k)\rangle = E(k)|\psi(k)\rangle$:

 $|\sigma_{\rm z} = +1> =$

 $|\sigma_{2} = -1 > =$

 $H(k) |\phi(k)\rangle = H(k)(\mathcal{PT} |\psi(k)\rangle) = \mathcal{PT}(H(k |\psi(k)\rangle) = E(k)(\mathcal{PT} |\psi(k)\rangle) = E(k) |\phi(k)\rangle$

 $\langle \phi(k) \, | \, \psi(k)
angle = \langle \mathcal{PT}\psi(k) \, | \, \mathcal{PT}\phi(k)
angle = \langle \phi(k) \, | \, (\mathcal{PT})^2 \, | \psi(k)
angle = - \langle \phi(k) \, | \, \psi(k)
angle$

Nonsymmorphic group

Define translation vector:

$$\mathbf{t} = t_1 \boldsymbol{a_1} + t_2 \boldsymbol{a_2} + t_3 \boldsymbol{a_3}$$

Seitz operator $\{\alpha | \boldsymbol{\tau}\}$ on a spatial point x: $\{\alpha | \boldsymbol{\tau}\} x = \alpha x + \boldsymbol{\tau}$

 $au = \upsilon + t$

 υ is a vector within the primitive cell, it can be regarded as a "fractional" translation vector.

For the nonsymmorphic group, we have: $\{\alpha | \tau_1\}\{\beta | \tau_2\} = \{\alpha\beta | \alpha\tau_2 + \tau_1\}$ so $\{g | \tau\}\{g | \tau\} = \{g^2 | g\tau + \tau\}$. If we have $g\tau = \tau = T/2$

 $\{g|\tau\}^2\psi(\mathbf{k}) = \{g^2|T\}\psi(\mathbf{k}) = e^{i\mathbf{k}T}g^2\psi(\mathbf{k}) = e^{i\mathbf{k}T}\lambda^2\psi(\mathbf{k}) \qquad \{g|\tau\}|u_k^{\pm}\rangle = \pm\lambda e^{ik\tau}u_k^{\pm}\rangle$

$\{g|\tau\}:$

(a) Diad screw axis

¹⁴th June 2016, @ Mainz Germany

Results: Structure

Lattice structure for orthorhombic CuMnAs(P):

$$\begin{array}{l} (x,y,z) \xrightarrow{\mathcal{PT}} (-x,-y,-z), \\ (s_x,s_y,s_z) \xrightarrow{\mathcal{PT}} (-s_x,-s_y,-s_z), \\ (k_x,k_y,k_z) \xrightarrow{\mathcal{PT}} (k_x,k_y,k_z), \\ (x,y,z) \xrightarrow{S_{2z}} (-x+\frac{1}{2},-y,z+\frac{1}{2}), \\ (s_x,s_y,s_z) \xrightarrow{S_{2z}} (-x+\frac{1}{2},-y,z+\frac{1}{2}), \\ (s_x,s_y,s_z) \xrightarrow{S_{2z}} (-s_x,-s_y,s_z), \\ (k_x,k_y,k_z) \xrightarrow{S_{2z}} (-k_x,-k_y,k_z). \end{array}$$

3D BZ and projected 2D for orthorhombic CuMnAs(P):

Symmetry for CuMnAs(P): d

Symmetry operation	w/o SOC	m //(001)	<i>ൺ</i> //other directions
T			
Р			
PT	\checkmark	V	\checkmark
$S_{2z} = \{C_{2z} (0.5, 0, 0.5)\}$	\checkmark	\checkmark	
$R_y = \{m_y (0, 0.5, 0)\}$	V		possible

$$S_{2z}^{2} = -T(0, 0, 1) = -e^{-ik_{z}}$$

$$S_{2z} \cdot (PT) = T(0, 1, 0) (PT) \cdot S_{2z}$$

$$= e^{-ik_{x}} e^{-ik_{z}} (PT) \cdot S_{2z}$$

For $k_{y}=\pi$, $k_{z}=0$; $[S_{2z},(PT)]=0$

14th June 2016, @ Mainz Germany

 $(x,y,z) \xrightarrow{\mathcal{PT}} (-x,-y,-z) \xrightarrow{S_{2z}} (x+\frac{1}{2},y,-z+\frac{1}{2}),$

 $(s_x,s_y,s_z) \xrightarrow{\mathcal{PT}} (-s_x,-s_y,-s_z) \xrightarrow{S_{2z}} (s_x,s_y,-s_z),$

 $(s_x, s_y, s_z) \xrightarrow{S_{2z}} (-s_x, -s_y, s_z) \xrightarrow{\mathcal{PT}} (s_x, s_y, -s_z),$

Results: No SOC and No symmetry breaking

Results: No SOC and No symmetry breaking

Results: No SOC and with R_v breaking

Results: No SOC and with R_v breaking

Results: With SOC and m//(001)

3D Fermi surface without SOC

(a)

Spin flop Effect in AFM CuMnAs

Results: With SOC and m//(001)

Spin-flip process: SOC

When SOC is considered, the crossing points protected by S_z symmetry are not a Dirac Fermion. They are "*coupled Weyl fermions*".

Results: With SOC and m//(111)

3D electronic structures:

R_y symmetry is broken. S_z symmetry is also broken.

Magnetic anisotropy in AFM CuMnAs

m along *z* direction;

m along *x* direction;

Magnetic easy axis favors along *z* direction with MAE of 7.1 meV per Mn atom.

Exchange anisotropy to stabilize m along z direction.

Results: Electronic structure with interactions

Results: Electronic structure with interactions

Summary:

- Develop a general argument for AFM Dirac semi-metal.
- Predict that orthorhombic AFM CuMnAs(P) are topological semi-metal.
 - Dirac Nodal line --- Drum-like surface states (without SOC && Keep R_v)
 - Dirac semi-metal --- Fermi arc (without SOC && Keep S_z)
 - \circ Coupled Weyl Fermions (with SOC && Keep S_z)
 - Semi-metal without band crossing (without SOC && Break S_z)

¹⁴th June 2016, @ Mainz Germany

Thank you very much

