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• Weyls fermions are described by massless Weyl 
equation with fixed chirality 

• We can also assign a chirality: 

• Stable in 3D: Perturbation can shift the position of the 
crossing point but it cannot remove it.
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Time-Reversal Breaking Weyls



• They act like magnetic monopoles in momentum 
space whose charge is given by the chirality

The Berry connection, is defined as

Can be consider as the magnetic field of momentum space

Then these Weyls points are just like magnetic monopoles in momentum space
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• Weyl nodes appear in multiples of 2, with time 
reversal symmetry this number raises to 4
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FIG. 2. Nodal rings and Weyl points distribution, as well as Z2 and MCN for mirror

planes. (a) 3D view of the nodal rings (in the absence of SOC) and Weyl points (with SOC) in

the BZ; (b) Side view from [100] and (c) top view from [001] directions for the nodal rings and

Weyl points. Once the SOC is turned on, the nodal rings are gapped and give rise to Weyl points

o↵ the mirror planes (see movie in Appendix); (d) top panel: Flow chart of the average position

of the Wannier centers obtained by Wilson loop calculation for bands with mirror eigenvalue i in

the mirror plane ZN�; bottom panel: The flow chart of the Wannier centers obtained by Wilson

loop calculation for bands in the glide mirror plane ZX�. There is no crossing along the reference

line (the dashed line) indicating the Z2 index is even.

location of each Weyl point, we divide the reduced BZ into a very dense k-point mesh and

compute the Berry curvature or the “magnetic field in momentum space” [31, 33] on that

mesh as shown in Fig.3. From this, we can easily identify the precise position of the Weyl

points by searching for the “source” and “drain” points of the “magnetic field”. The Weyl

points in TaAs are illustrated in Fig.2(a), where we find 12 pairs of Weyl points in the

vicinity of what used to be, in the SOC-free case, the nodal rings on two of the mirror

7

The TaAs family presents 
24 Weyl nodes, due to several 

others mirror symmetries

Rise complicated transport 
and spectroscopic properties

Motivation : Look for Time-Reversal breaking Weyls



• We propose candidates for Weyl metals that are XCo2Z 
(X=V,Zr,Ti,Nb,Hf; Z=Si,Ge,Sn), VCo2Al and VCo2Ga 

• They follow the Slater-Pauling rule:  

• Half metallic magnetism with 2 uB per formula unit 

• In the following we are gonna focus in ZrCo2Sn that has 
been synthesized experimentally

m = Nv � 24

Product of inversion  
eigenvalue

7

The temperature and field dependent magnetizations for
several single crystals were measured in a Quantum De-
sign MPMS system. Representative data are shown in
Figures 8 and 9.

FIG. 6. Representative ZrCo2Sn crystals grown by the Sn-self
flux method. The majority of the crystals have the morphol-
ogy of a cube-truncated octahedron.

FIG. 7. Top panel is the X-ray di↵raction pattern recorded
for a powder specimen of ZrCo2Sn; the green vertical lines
at the bottom of the pattern correspond to the ICSD data
for the Heusler phase of ZrCo2Sn. The bottom panel is the
di↵raction pattern recorded for the (111) crystal face of a
single crystal.

Appendix D: Inversion Symmetry Characterization

With broken time-reversal, when inversion symmetry
is present, a simple diagnostic can be applied to find out
if an odd number of pairs of Weyl nodes (2(2n+1) Weyl
Fermions) are present in a material [15]. Take the prod-
uct of the inversion eigenvalue ⇣n(Ki) of all bands n be-
low the Fermi level, over all bands n at all inversion sym-
metric points Ki (which are also time-reversal invariant
momenta):

Y

Ki=�Ki

Y

En(Ki)<Ef

⇣n(Ki) (D1)

If the product is �1 then an ODD number of pairs of
Weyls exists in the bulk, which means that Weyl nodes

FIG. 8. The temperature dependent magnetic susceptibility,
� = M/H at H = 10 Oe, for a crystal of ZrCo2Sn, showing
the ferromagnetic transition in an as-grown single crystal.

FIG. 9. M vs. H for a single crystal of ZrCo2Sn at 1.9 K.
[111] is the hard direction and [110] and [100] are the easy
directions.

must exist. If the product is +1 then it is not possi-
ble (with inversion symmetry only) to easily deduce if
a nonzero number of pairs or a zero number of pairs is
present in the system. For our system, we find the inver-
sion eigenvalues in Table III with product �1, and hence
an odd number of Weyl pairs needs to be present in our
system.

Appendix E: Symmetries of 2-band Hamiltonian
with [110] magnetization

We derive the little-group and the symmetries for po-
tential Weyl nodes when the ferromagnetic magnetiza-
tion if parallel to the [110] direction. In this case, the
following symmetry group remains: P ; C2110; C2z · T ;
C211̄0 · T . We now analyze the little group on di↵erentsg 225, C4 and I
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TABLE III. Parities at three independent time-reversal in-
variant momenta (TRIM). At each TRIM, the first row is for
the majority channel, while the second one is for the minority
channel.

� + + � � � + + + � � + + + ; +

� � � + + + + + + + + ; �
X � + � + � � + + + � � � � ; +

� + + � � + + � � � � ; +

L � � � + + � � � + + + � � ; �
� � � � � � + + + + + ; �

Product �
+

high-symmetry planes and axes to find out if Weyls can
appear generically on those planes.

1. Little group of the k-space Hamiltonian on the
[110] axis

The little group is C2110, and bands with di↵erent
eigenevalues under this symmetry can cross. Away from
this axis, the crossing splits and Weyl nodes can exist on
this axis.

2. Little group of the k-space Hamiltonian on the
100 (or equivalent) axis

The only element of the symmetry group that maps
kx, 0, 0 to itself is C2z · T with matrix representation
C2z ·T = i�xK withK complex conjugation. The Hamil-
tonian on this axis is H(kx, 0, 0) = di(kx, 0, 0)�i with the
constraint:

[H(kx, 0, 0), i�xK] = 0 (E1)

which gives:

dz(kx, 0, 0) = 0 (E2)

Hence

H(kx, 0, 0) = dx(kx, 0, 0)�x + dy(kx, 0, 0)�y (E3)

The Hamiltonian contains two parameters, one momen-
tum, (kx) giving rise generically to avoided crossings. No
Weyls are possible this line generically.

3. Little Group of the k-space Hamiltonian on the
xy plane

The little group of the kz = 0,⇡ planes is C2z · T , just
as in the previous subsection. Going through an identical
calculation, now the Hamiltonian is

H(kx, ky, 0) = dx(kx, ky, 0)�x + dy(kx, ky, 0)�y (E4)

The Hamiltonian contains two parameters, two mo-
menta, and Weyl nodes can generically live on this high
symmetry plane.

4. Little group of the k-space Hamiltonian on the
[[11̄0], [001] plane

The little group is C2110 · P . This is essentially the
mirror group with mirror plane [[11̄0], [001]], which is a
little group for momenta in that plane. From

[H(kx, ky, kz 2 plane 11̄0, 001), C2110 · P ] = 0 (E5)

we find dz = 0, dx = dy in this plane. Hence in this
plane i have only one independent coe�cient dx but 2
momenta, so this plane can support nodal lines.

Appendix F: Symmetries and Weyl points
with [001] magnetization

When the ferromagnetic magnetization parallel to the
[001] direction, the following symmetry group remains:
P ; C4z; C2z · P ; C2x · T ; and C2y · T . On the z-axis,
one kind of Weyl points (the position of P1 is given in
Table IV) is protected by the rotation C4z, which pos-
sesses Chern number +2. The nodal line in the xy-plane
remains with SOC due to the mirror symmetry C2z · P .
Deriving from the other nodal lines, another kind of WPs
(P2 in Table IV) is also found in the xz-plane (yz-plane),
which repects C2y ·T (C2x ·T ), allowing for the existence
of Weyl points in the plane [21].

TABLE IV. WPs of ZrCo2Sn. The Weyl nodes’ positions
(in reduced coordinates k

x

, k
y

, k
z

), Chern numbers, and the
energy relative to the EF. P1 exist on the z-axis, and P2-
Weyls are stable in the xz- and yz-plane. The coordinates of
the other Weyl points are related by C4

z

and P . The WPs
related by C4

z

possess the same chirality, while ones related
by P possess the opposite chirality.

Weyl points coordinates Chern number E � EF

(k
x

2⇡
a

, k

y

2⇡
a

, k

z

2⇡
a

) (eV)

P1 (0.0, 0.0, 0.58) +2 �0.60

P2 (0.30, 0.0, 0.36) �1 +0.55

Appendix G: Additional Remarks

Vesta[39], gnuplot[40], pyProcar[41] and Mayavi[42]
software packages were used to create some of the illus-
trations.

G. H. Fecher, H. C. Kandpal, S.Wurmehl, C. Felser, and G. Schoenhense, Journal of Applied Physics 99,08J106 (2006).
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could be removed by tuning SOC, we will focus on the
doublet Weyls W .

TABLE I. WPs of ZrCo2Sn. The Weyl nodes’ positions (in
reduced coordinates k

x

, k
y

, k
z

), Chern numbers, and the en-
ergy relative to the EF of the unalloyed compound. The WPs
in ZrCo2Sn are formed by two bands which in the absence
of SOC would form nodal lines. W and W1, are stable in
the xy plane, while the W2 are stable out of the plane. The
coordinates of the other Weyl points are related to the ones
listed by the symmetries, I, C2110 and T C2

z

.

Weyl points coordinates Chern number E � EF

(k
x

2⇡
a

, k

y

2⇡
a

, k

z

2⇡
a

) (eV)

W (0.334, 0.334, 0) �1 +0.6

W1 (0.58,�0.0005, 0) +1 �0.6

W2 (0.40, 0.001,±0.28) �1 +0.3

We now focus on the two W type Weyls (located at 0.6
eV over the Fermi level in the K�� (or [110]) direction.
Our goal now is to tune the energy of theWP to the Fermi
level. For this purpose we consider other compounds with
the same stoichiometry, more electrons and similar lat-
tice parameter.As we mentioned before, NbCo2Sn, which
have the same crystal structure [19], contains one more
electron per a unit cell than that of ZrCo2Sn. There-
fore, one can expect that alloying ZrCo2Sn with Nb in
the Zr site would shift down the WP energy while keep-
ing the main band topology unchanged. Using a first-
principles Green’s function method, we dope ZrCo2Sn
with Nb. Disorder e↵ects were taken into account within
a coherent potential approximation (CPA) [38]. Varying
Nb content, we search for a concentration, which brings
the W Weyls to the Fermi level. Fig. 3(b) shows the cal-
culated spectral function for Zr1�xNbxCo2Sn (with x =
0.275). By inversion I symmetry, there exist another
Weyl point separated in k-space by ⇠2⇡ with the same
energy. In the same line, the experimental existence of
VCo2Sn [19] also motivate us to dope the partner com-
pound Ti1�xVxCo2Sn as well, and our calculations sug-
gest x = 0.1.
Given that the Weyl nodes W , W1 and W2 all resulted

from the connected nodal lines in the absence of SOC, a
large residual Fermi surface has a projection on any sur-
face of the material. Hence the Fermi arcs emanating
from the W Weyl points are interrupted by the resid-
ual projection of bulk Fermi surfaces on the surface of
the material. However, the Fermi arc signatures of W -
Weyls are still clear as can be seen in Fig. 4 where we
plot the surface spectral function for the (001)-surface
of ZrCo2Sn. Since the bulk Fermi surface projections
where W1 and W2 are located, overlap the Fermi arcs
connections are not guaranteed at some certain energies.
Furthermore, a trivial square surface state is found as
well, due to the hanging bonding at the surface.
In conclusion we have predicted theoretically that a

new family of Co-based magnetic Heuslers realize Weyl
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FIG. 4. Bloch spectral function of the (001)-surface at 0.5
eV above the Fermi level for ZrCo2Sn. In the (001)-surface

Brillouin zone, the surface k-points are represented by x1
~

k1+
x2
~

k2. The surface lattice vectors (~k1 and ~

k2) are illustrated,
and the corresponding surface BZ is shown as green-colored
area in Fig. 2(d) (notice the ⇡/2 rotation of the surface BZ).
Only the bulk projections of W (yellow-colored) are separated
from the Fermi surfaces projections. The bulk projections of
W1 and W2 (black-colored) sit inside the projection of the
bulk Fermi surfaces. The Fermi arcs connecting to the bulk
projections of W are shown. The large, square surface states
is of a trivial nature. The color code represents log(⇢).

systems with several Weyl nodes whose position in en-
ergy can be tuned by alloying. We have performed ab

initio calculations of a representative ferromagnetic com-
pound ZrCo2Sn to determine the spontaneous magneti-
zation and found that the easy axis is in the [110] di-
rection, consistent with our experimental measurements
(see Supplemental Material). For the [110] magnetiza-
tion we find two Weyl points related by I symmetry sit-
uated on the [110] axis. By means of a first-principles
Green’s function method, we doped the ZrCo2Sn with
Nb and showed that these two Weyls can be shifted to
the Fermi level. This discovery provides a way to the re-
alizing the hydrogen atom of Weyl materials and opens
the gate for potential transport applications in Co-based
magnetic half-metals.
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FIG. 2. (a) Nodal line in the xy plane has a big dispersion.
(b) Three nodal lines in three planes in three-dimensional
(3D) k-space. (c) The SOC band sturcuture of ZrCo2Sn with
the [110] magnetism, opening a small gap in the �W direc-
tion in the inset. (d) Weyl points emerge with SOC. The
independent W , W1 and W2 points are clearly indicated in
the figure (top view) - the remaining ones can be obtained
by symmetry. W and W1 is in the xy plane, while the W2 is
out of the plane. The Chern numbers can be calculated with
the Wilson-loop method applied on a sphere (illustrated as
dashed circles) enclosing a Weyl point. The filled (unfilled)
symbels indicate Chern number +1 (�1). Furthermore, the

001-surface lattice vectors are also given as ~k1( 2⇡
a

,� 2⇡
a

) and
~

k2( 2⇡
a

,

2⇡
a

), and the corresponding surface BZ is painted in
green.

dramatically in the xy plane , as shown in Fig. 2(a). The
minimum of this dispersion is in the �X (or [100]) direc-
tion and the maximum is in the �K (or [110]) direction.
In addition to the nodal line in the xy-plane, two similar
nodal lines are also found in the xz-plane and yz-plane
related by a C4 rotation around the x, y coordinate axis.
As a result, the three nodal lines in di↵erent planes in-
tersect at six di↵erent points as depicted in Fig. 2(b).

Upon introducing SOC, with a magnetization along
the [110] direction, the mirror symmetries Mz, Mx and
My are all broken. In the absence of other symmetries,
these nodal lines in the mirror planes would become fully
gapped. However, along the magnetization [110] direc-
tion, a pair of Weyl points survive protected by the C2110
rotation. Namely, the bands with SOC can be labeled by
C2110 eigenvalues in the [110] direction and the crossing
bands belong to the two di↵erent rotational eigenvalues
±i. The coordinates of these WPs (W ), related by in-
version I, are given in Tab. I. Their location and Chern
numbers are illustrated in Fig.2(d). An inversion eigen-
value argument shows us that we must have 4k+2, k 2 Z,
number of Weyls in this system (see Supplementary Ma-
terial): the product of the inversion eigenvalues of the
occupied bands at the inversion symmetric points is �1,
signaling the presence of an odd number of pairs of Weyls
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FIG. 3. (a) The flow chart of the average position of Wan-
nier centers obtained by the Wilson-loop method applied on
spheres [21]. The average center shifts downwards, corre-
sponding to Chern mumber �1 for W and W2, while it shifts
upwards, suggesting the Chern mumber of W1 is +1. (b)

[15].

The nodal line in the xy-plane breaks up into other
Weyl nodes under SOC. Other four Weyls are found
slightly away from the coordinate axis in the xy-plane.
The presence of Weyls in a high symmetry plane is al-
lowed by the antiunitary symmetry TC2z [21]. The
quadruplet Weyls (W1) are related to each other by I and
C2110. Their precise positions and topological charges
are presented in Tab. I. After carefully checking other
two nodal lines, we see that a third kind of Weyl points
(W2), di↵erent from the previous two kinds, does not pre-
fer any special direction, but distributes near the xz- and
yz-plane. As these Weyls are generic points without any
little-group symmetry, the octuplet Weyls W2 are related
by all the three generators of the magnetism group. As a
result, the position of the W2 changes considerably from
TiCo2Sn, to ZrCo2Sn to HfCo2Sn, following the nodal
lines without SOC. In principle, this kind of Weyls are
not stable (in contrast, the W -Weyls are protected by the
inversion symmetry configuration), as they can be moved
close in the z-axis and thereby annihilate with each other.
The average charge centers obtained by the Wilson-loop
method on the spheres (W , W1 and W2) are presented
in Fig. 3(a). All the Chern numbers of the three Weyls
are shown in Table I, and their positions are shown in
Fig.2(d). As the energy level of W1 is very low and W2

NSOC:Mx,My,Mz SOC

W:C2110 
W1:I and C2110 

W2:generic 
(no stable) 

Chern number 
of (1,-1,0) plane =3
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FIG. 3. Bulk band structure of NbCo2Sn along high sym-
metry lines without (w/o) SOC (left) and with SOC (right).
The color map indicates orbital localization of valence elec-
trons from s to d

the (11̄0)-plane (spanned by [11̄0] and the z-axis). With
the Wilson-loop method with kz-loops, the evolution of
the Wannier charge centers reveals the topological Chern
number, which turns out to be +3 in the (11̄0)-plane.
The flux from the two W Weyls and four W1 Weyls
provide a Chern number −1 on the (11̄0)-plane, leav-
ing a Chern-number deficiency of 4, corresponding to the
Berry flux of yet another 8-Weyls. Guided by this, we
see that a third kind of Weyl points (W2), different from
the previous two kinds, arise from the nodal lines upon
the introduction of the SOC. In contrast to the previous
two kinds, these Weyl points do not prefer any special
direction, but distribute near the xz- and yz-plane. As
these Weyls are generic points without any little-group
symmetry, the octuplet Weyls W2 are related by all the
three generators of the magnetism group. As a result, the
position of the W2 changes considerably from TiCo2Sn,
to ZrCo2Sn to HfCo2Sn, following the nodal lines with-
out SOC. In principle, this kind of Weyls are not stable
(in contrast, the W-Weyls are protected by the inversion
symmetry configuration), as they can be moved close in
the z-axis and thereby annihilate with each other. All
the Chern numbers of the three Weyls are shown in Ta-
ble I, and their Projections are shown in Fig.2(c). As the
energy level of W1 is very low and W2 could be removed
by tuning SOC, we will focus on the doublet Weyls W .
We now focus on the two W type Weyls (located at 0.6

eV over the Fermi level in the K−Γ direction). Our goal
now is to tune the energy of the WP to the Fermi level.
For this purpose we consider other compounds with the
same stoichiometry, more electrons and similar lattice
parameter. In this direction we found NbCo2Sn, which
has the same crystal structure and its lattice parameter
is a = 6.146 Å. Moreover from ab-initio calculations (see
Fig.3 where the bulk band structure is depicted), we find
1 Weyl point (W ) in the K−Γ direction below the Fermi
level around -0.8 eV and observe again that the inclusion
of SOC interaction does not change the structure of the
bands close to the Fermi level. Therefore, one can ex-
pect that alloying ZrCo2Sn with Nb in the Zr site would
shift down the WP energy while keeping the main band
topology unchanged.
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FIG. 4. Calculated Bloch spectral function of
Zr0.725Nb0.275Co2Sn along high symmetry lines. The zoomed
area shows the two W Weyl points along K −Γ− (−K) line.

TABLE I. WPs of ZrCo2Sn. The Weyl nodes’ positions (in
reduced coordinates kx, ky, kz), Chern numbers, and the en-
ergy relative to the EF of the unalloyed compound. The WPs
in ZrCo2Sn are formed by two bands which in the absence
of SOC would form nodal lines. W and W1, are stable in
the xy plane, while the W2 are stable out of the plane. The
coordinates of the other Weyl points are related to the ones
listed by the symmetries, I, C2110 and T C2z.

Weyl points coordinates Chern number E − EF

(kx 2π
a
, ky 2π

b
, kz 2π

c
) (eV)

W (0.334, 0.334, 0) −1 +0.6

W1 (0.58,−0.0005, 0) +1 −0.6

W2 (0.40, 0.001,±0.28) −1 +0.1

Using a first-principles Green’s function method, we
dope ZrCo2Sn with Nb. Disorder effects were taken
into account within a coherent potential approxima-
tion (CPA). Varying Nb content , we search for a con-
centration, which brings the W Weyls to the Fermi
level. Fig.4 shows the calculated spectral function for
Zr1−xNbxCo2Sn (with x =0.275). By inversion I sym-
metry, there exist another Weyl point separated in k-
space by ∼2π with the same energy (see insert in Fig.4).
In the same line we have doped the partner compound
TiCo2Sn with V, and found x=0.1 (see Supplementary
Material).
Given that the Weyl nodes W , W1 and W2 all resulted

from the connected nodal lines in the absence of SOC,
a large residual Fermi surface has a projection on any
surface of the material. Hence the Fermi arcs emanating
from the W Weyl points are interrupted by the residual
projection of bulk Fermi surfaces on the surface of the
material. However, the Fermi arc signatures are still clear
as can be seen in Fig.5 where we plot the surface spectral

Coherent Potential Approximation 
Based on scattering theory

Zr0.725Nb0.275Co2Sn

II. First-principles approach
Coherent potential approximation

Alloys and pseudo-alloys

doping/alloys vacancies magnetic impurities
Coherent potential approximation

Soven (1967), Györ�y (1972)

CPA equation for a binary alloy: cAGA+cBGB = GC

Nonlocal CPA: Charge and Spin-Fluctuations
D. A. Rowlands, A. Ernst, J. B. Staunton, B. L. Györ�y, PRB 73, 165122 (2006)

A. Ernst, MPI Halle Exchange interaction
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Figure 2.3. Schematic representation of the CPA condition for a binary alloy. The sites labeled "C" are
occupied by a coherent potential, while sites labeled "A" and "B" are occupied by impurity potentials.

This assumption constitutes the virtual crystal approximation (VCA). The Schrödinger equation
for a periodic system with this potential can be solved in standard manner. The virtual crystal
approximation is converged at the band edges and it is exact for small perturbations.

Average t-matrix approximation. In systems with localized electronic states the individual
atomic potentials become large and the VCA can not correctly describe the electronic structure of
the alloy. For small concentrations one can neglect inter-site scattering and permit only the scat-
tering of individual scattering centers. In this so-called average t-matrix approximation (ATA) the
scattering center is characterized by a single-scattering t-matrix which is averaged over individual
single-site scattering ti-matrices placed on every site of the effective ordered lattice, i.e.

tATA(E) =
X

i

citi(E). (2.22)

For very diluted alloys the ATA can provide relatively accurate results due to the small inter-
site correlations at low concentrations. With increasing concentration the inter-site scattering
becomes more and more important, and the accuracy of the ATA decreases even further. The
average t-matrix approximation is simply a non-self-consistent version of the coherent potential
approximation which is generally accepted as the best mean field theory available at the present
time for calculating the electronic properties of random substitutional alloys.

Conventional coherent potential approximation. The coherent potential approximation is also
built upon scattering theory. In this approximation impurities are embedded into a reference
medium which consists of a system with a coherent t-matrix, tC , on each scattering site. The CPA
condition for obtaining the coherent medium is that, on the average, the additional scattering
due to replacing a coherent t-matrix by impurity t-matrices, ti, should vanish (see Fig. 2.3). In
terms of the scattering matrix T (E) this condition can be written as

TC(E) =
X

i

ciTi(E). (2.23)

Here TC(E) describes scattering from the ordered array of coherent potentials, while Ti(E) de-
scribe the scattering from the systems in which the coherent potential is placed on every site
except of central one on which, respectively, the individual atom is located. From the equa-
tion (2.15) the CPA condition for ⌧ -matrices is given in the following way:

⌧nm
C (E) =

X

i

ci⌧
nm
i (E). (2.24)

In practice the above condition has to be satisfied only for n = m = 0, i.e.

⌧00
C (E) =

X

i

ci⌧
00
i (E). (2.25)



4

could be removed by tuning SOC, we will focus on the
doublet Weyls W .

TABLE I. WPs of ZrCo2Sn. The Weyl nodes’ positions (in
reduced coordinates k

x

, k
y

, k
z

), Chern numbers, and the en-
ergy relative to the EF of the unalloyed compound. The WPs
in ZrCo2Sn are formed by two bands which in the absence
of SOC would form nodal lines. W and W1, are stable in
the xy plane, while the W2 are stable out of the plane. The
coordinates of the other Weyl points are related to the ones
listed by the symmetries, I, C2110 and T C2

z

.

Weyl points coordinates Chern number E � EF

(k
x

2⇡
a

, k

y

2⇡
a

, k

z

2⇡
a

) (eV)

W (0.334, 0.334, 0) �1 +0.6

W1 (0.58,�0.0005, 0) +1 �0.6

W2 (0.40, 0.001,±0.28) �1 +0.3

We now focus on the two W type Weyls (located at 0.6
eV over the Fermi level in the K�� (or [110]) direction.
Our goal now is to tune the energy of theWP to the Fermi
level. For this purpose we consider other compounds with
the same stoichiometry, more electrons and similar lat-
tice parameter.As we mentioned before, NbCo2Sn, which
have the same crystal structure [19], contains one more
electron per a unit cell than that of ZrCo2Sn. There-
fore, one can expect that alloying ZrCo2Sn with Nb in
the Zr site would shift down the WP energy while keep-
ing the main band topology unchanged. Using a first-
principles Green’s function method, we dope ZrCo2Sn
with Nb. Disorder e↵ects were taken into account within
a coherent potential approximation (CPA) [38]. Varying
Nb content, we search for a concentration, which brings
the W Weyls to the Fermi level. Fig. 3(b) shows the cal-
culated spectral function for Zr1�xNbxCo2Sn (with x =
0.275). By inversion I symmetry, there exist another
Weyl point separated in k-space by ⇠2⇡ with the same
energy. In the same line, the experimental existence of
VCo2Sn [19] also motivate us to dope the partner com-
pound Ti1�xVxCo2Sn as well, and our calculations sug-
gest x = 0.1.

Given that the Weyl nodes W , W1 and W2 all resulted
from the connected nodal lines in the absence of SOC, a
large residual Fermi surface has a projection on any sur-
face of the material. Hence the Fermi arcs emanating
from the W Weyl points are interrupted by the resid-
ual projection of bulk Fermi surfaces on the surface of
the material. However, the Fermi arc signatures of W -
Weyls are still clear as can be seen in Fig. 4 where we
plot the surface spectral function for the (001)-surface
of ZrCo2Sn. Since the bulk Fermi surface projections
where W1 and W2 are located, overlap the Fermi arcs
connections are not guaranteed at some certain energies.
Furthermore, a trivial square surface state is found as
well, due to the hanging bonding at the surface.

In conclusion we have predicted theoretically that a
new family of Co-based magnetic Heuslers realize Weyl
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FIG. 4. Bloch spectral function of the (001)-surface at 0.5
eV above the Fermi level for ZrCo2Sn. In the (001)-surface

Brillouin zone, the surface k-points are represented by x1
~

k1+
x2
~

k2. The surface lattice vectors (~k1 and ~

k2) are illustrated,
and the corresponding surface BZ is shown as green-colored
area in Fig. 2(d) (notice the ⇡/2 rotation of the surface BZ).
Only the bulk projections of W (yellow-colored) are separated
from the Fermi surfaces projections. The bulk projections of
W1 and W2 (black-colored) sit inside the projection of the
bulk Fermi surfaces. The Fermi arcs connecting to the bulk
projections of W are shown. The large, square surface states
is of a trivial nature. The color code represents log(⇢).

systems with several Weyl nodes whose position in en-
ergy can be tuned by alloying. We have performed ab

initio calculations of a representative ferromagnetic com-
pound ZrCo2Sn to determine the spontaneous magneti-
zation and found that the easy axis is in the [110] di-
rection, consistent with our experimental measurements
(see Supplemental Material). For the [110] magnetiza-
tion we find two Weyl points related by I symmetry sit-
uated on the [110] axis. By means of a first-principles
Green’s function method, we doped the ZrCo2Sn with
Nb and showed that these two Weyls can be shifted to
the Fermi level. This discovery provides a way to the re-
alizing the hydrogen atom of Weyl materials and opens
the gate for potential transport applications in Co-based
magnetic half-metals.
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Conclusions
• We have predicted theoretically that a new family of Co-

base Heuslers realize Weyls systems 

• By means of ab initio calculations we have determined the 
easy axis of ZrCo2Sn to be [110] 

• Symmetry analysis shows there are 2 Weyls separated in 
momentum space of the order of 2 

• We doped the compound to shift the Weyls to Fermi level 

• We have also obtained the Fermi arc structure of this 
materials

arXiv:1603.00479v1 
see also Chandra Shekhar et al. arXiv:1604.01641 

⇡



Non-symmorphically 
protected fermions

1. The existence of 3fold and higher degeneracies has 
been known from band theory 

The Mathematical Theory of Symmetry in Solids 
 Irreducible representations in space groups 

2. The topological classification of these degeneracies is 
still missing 

3. We will look for irreducible representations  at high 
symmetry points, being the dimension of these irreps the 
number of bands that meet at high symmetry-point. 
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synthesizing new fermions.

Space groups with new fermions The guiding princi-
ple of our classification is to find irreducible representa-
tions (irreps) of the (little) group of lattice symmetries
at high-symmetry points in the BZ for each of the 230
space groups (SGs); the dimension of these representa-
tions corresponds to the number of bands that meet at
the high-symmetry point, and is one of the characteristics
of the fermion type. Since we are interested in fermions
with spin-orbit coupling, we consider only the double-
valued representations; TR symmetry is an antiunitary
that squares to �1. Table I summarizes the results of
our search. All the space groups include non-symmorphic
generators, and all representations are projective; these
are in fact necessary ingredients for the 3-, 6- and 8-d ir-
reps, as elaborated upon in the Supplementary Material.

We find that space groups 199, 214, and 220 may host a
three-dimensional representation at the P point in the BZ
(the high-symmetry points are defined in the Supplemen-
tary Material). These space groups have a body-centered
cubic Bravais lattice, and the P point is a TR non-
invariant point at a corner of the BZ (that is, P 6= �P ).
All three of these systems host a complementary 3-fold
degeneracy at �P due to TR symmetry; Kramers’s theo-
rem requires this to be the case. SG 214 is unique in that
the 3-fold degeneracy at �P persists even if time reversal
symmetry is broken, as the P and �P points are related
by a two-fold screw rotation in the full symmetry group.

In the presence of TR symmetry, six space groups can
host 6-fold degeneracies. In all cases, these arise as 3-
fold degeneracies which are doubled by the presence of
TR symmetry. Four of these – SGs 198, 205, 212, and 213
– correspond to simple-cubic Bravais lattice, and the 6-
fold degeneracy occurs at the TR invariant R point at the
corner of the BZ. The other two 6-fold degeneracies occur
in SGs 206 and 230 at the P point. Although this point
is not TR invariant, these SGs are inversion symmetric,
and hence all degeneracies are doubled.

Finally, we find, in agreement with previous work[28],
that seven SGs may host 8-fold degeneracies. However,
as shown below, the resulting fermions fall into distinct
classes. Two of these, SGs 130 and 135 have a tetragonal
Bravais lattice; these are special in that they require 8-
fold degeneracies at the time-reversal invariant A point.
In addition, SGs 222, 223 and 230 may host 8-fold degen-
eracies. SGs 222 and 223 are simple-cubic, and an 8-fold
fermion can occur at the R point in the BZ; for SG 230,
it occurs at the time-reversal invariant H point.

There are two more SGs that can host 8-fold degenera-
cies, SG 218 and SG 220. These di↵er from the others in
that they lack inversion symmetry. Energy bands away
from high symmetry points need no longer come in pairs.
SG 218 has a simple cubic Bravais lattice, and an 8-fold
degeneracy may occur at the R point. In SG 220 the
degeneracy may occur at the H point.

SG La k d Generators

198 cP R 6 {C�
3,111|010}, {C2x| 12

3
20}, {C2y|0 3

2
1
2}

199 cB P 3 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

205 cP R 6 {C�
3,111|010}, {C2x| 12

3
20}, {C2y|0 3

2
1
2}, {I|000}

206 cB P 6 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

212 cP R 6 {C2x| 12
1
20},{C2y|0 1

2
1
2},{C

�
3,111|000},{C2,11̄0| 14

1
4

1
4}

213 cP R 6 {C2x| 12
1
20},{C2y|0 1

2
1
2},{C

�
3,111|000},{C2,11̄0| 34

3
4

3
4}

214 cB P 3 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

220 cB P 3 {C3,1̄1̄1|0 1
2

1
2},{C2y|0 1

2
1
2},{C2x| 32

3
20},{IC

�
4x| 1211}

230 cB P 6 {C3,1̄1̄1|0 1
2

1
2},{C2y|0 1

2
1
2},{C2x| 32

3
20},{IC

�
4x| 1211}

130 tP A 8 {C4z|000}, {�x̄y

|00 1
2}, {I|

1
2

1
2

1
2}

135 tP A 8 {C4z| 12
1
2

1
2}, {�x̄y

|00 1
2}, {I|000}

218 cP R 8 {C2x|001}, {C2y|000}, {C�
3,111|001}, {�x̄y

| 12
1
2

1
2}

220 cB H 8 {C2x| 12
1
20}, {C2y|0 1

2
3
2}, {C

�
3,111|001}, {�x̄y

| 12
1
2

1
2}

222 cP R 8 {C�
4z|000}, {C2x|000}, {C�

3,111|010}, {I| 12
1
2

1
2}

223 cP R 8 {C�
4z| 12

1
2

1
2}, {C2x|000}, {C�

3,111|010}, {I|000}
230 cB H 8 {C4z|0 1

20}, {C2y|1 1
2

1
2}, {C3,111|111}, {I|000}

TABLE I. Summary of all new fermion types in solid state
systems. La indicates the type of lattice (cP is cubic primitive,
cB is cubic body-centered, and tP is tetragonal primitive), d
indicates the maximum degeneracy at the relevant k point in
the presence of time reversal symmetry. Group generators are
defined in the Supplementary Material.

Low energy e↵ective models For each of the band
crossings in Table I, we compute a low-energy expan-
sion of the most general Hamiltonian consistent with the
symmetries of the little group near the degeneracy point,
k0, in terms of �k ⌘ k� k0. Full details of the construc-
tions are in the Supplementary Material. Representative
plots of the band dispersion along high symmetry lines
are shown in Figs. 1–3, where inessential higher-order
terms have been added for the sake of clarity.

We begin by analyzing the threefold degeneracy points.
The linearized k·p Hamiltonian for SGs 199 and 214 take
the form

H199(�, �k) =

0

B@
0 ei��kx e�i��ky

e�i��kx 0 ei��kz
ei��ky e�i��kz 0

1

CA , (1)

where � is a real parameter; without loss of generality
we set the zero of energy at zero throughout and omit an
overall energy scale. The bands are non-degenerate away
from �k = 0, unless � = n⇡/3 for integer n, in which
case bands become degenerate along the lines |�kx| =
|�ky| = |�kz|. While the locations of these degeneracies
in (�k,�) change in the presence of higher order terms,
they identify two topologically distinct phases. First, for
⇡/3 < � < 2⇡/3, the �k 6= 0 Hamiltonian is adiabatically
connected to the one with � = ⇡/2 for su�ciently small
|�k| > 0. At this value of �, the Hamiltonian takes the
form

H199(⇡/2, �k) = �k · S, (2)

cP: cubic primitive 
cB: cubic body-centered 
tP: tetragonal primitive
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I. SYMMETRY ANALYSIS OF 3D AND 6D IRREPS

A. Notation

A Bravais lattice in three dimensions has three basis vectors, indicated by ti, i = 1, 2, 3. Reciprocal space lattice
vectors are indicated by gi, where gi · tj = 2⇡�ij . The new fermions described in the main text occur only in the
primitive cubic, body-centered cubic, and primitive tetragonal lattices; their lattice and reciprocal lattice vectors are
shown in Table I. Diagrams of the first Brillouin zone for each of these Bravais lattices are shown in Figure S1, with
high symmetry points labelled.
We indicate non-symmorphic symmetry operations using Seitz notation, i.e., a point group operation O followed

by a translation v = viti is indicated by {O|v} or, component-wise, {O|v1v2v3}. The rules for combining operations
is as follows:

{O2|v2}{O1|v1} = {O2O1|v2 +R2v1}. (S1)

We thus have the following useful relations:

{O|v}�1 = {O�1|�O�1v}, (S2)

{O|v} = {E|v}{O|0} = {O|0}{E|O�1v}. (S3)

We will always use E for the identity operator and I for inversion. We frequently use R to indicate a 2⇡ rotation; since
we are interested in spin-1/2 particles, this operator is always represented by �I. We use C2x, C2y, C2z to indicate
2-fold rotations about the x-, y- or z- hat axes; otherwise, we use Cn,nxnynz to indicate an n-fold rotation about the
nxx̂+ny ŷ+nz ẑ axis. Similarly, �x,�y,�z indicate mirror operations through the planes perpendicular to the indicated
axis and �nxnynz indicates a mirror operation through the plane perpendicular to the nxx̂+ ny ŷ+ nz ẑ direction. We
also encounter four-fold roto-inversions; we define S4x ⌘ IC�1

4x and similarly for y and z. Pure translations are
indicated by {E|t}. Irreducible representation (irrep) of the group of translations are labeled by reciprocal space
vectors; in the irrep labeled by k, an integer translation t ⌘ niti is represented by the phase e�ik·t.
The little group Gk0 of a point k0 in reciprocal space is the set of all space group operations {O|v} such that

Ok0 = k0 + nigi, i.e., the set of all space group operations whose ‘symmorphic part’ leaves k invariant up to an
integer reciprocal lattice vector; later we will consider the e↵ect of including time reversal in this definition. If a d-
dimensional irrep exists, a generic Hamiltonian which respects the space group symmetries can display a d-dimensional
degeneracy at k0. However, if multiple irreps with dimensions d1, d2, ... exist, not all will necessarily be realized in
a given material. Furthremore, notice that two-fold degeneracies (Weyl fermions) can exist without protection by a
space group symmetry.
If a d-band crossing exists, and if the Fermi level is near the crossing, then these bands constitute the low-energy

dispersion relation of a fermion with d components. Here we are exploring fermions beyond the Weyl and Dirac

Bravais lattice Lattice vectors Reciprocal lattice vectors

Primitive cubic (a, 0, 0), (0, a, 0), (0, 0, a) 2⇡
a

(1, 0, 0), 2⇡
a

(0, 1, 0), 2⇡
a

(0, 0, 1)

Body-centered cubic a

2 (�1, 1, 1), a

2 (1,�1, 1), a

2 (1, 1,�1) 2⇡
a

(0, 1, 1), 2⇡
a

(1, 0, 1), 2⇡
a

(1, 1, 0)

Primitive tetragonal (a, 0, 0), (0, a, 0), (0, 0, c) 2⇡
a

(1, 0, 0), 2⇡
a

(0, 1, 0), 2⇡
c

(0, 0, 1)

TABLE I. Lattice and reciprocal lattice vectors
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synthesizing new fermions.

Space groups with new fermions The guiding princi-
ple of our classification is to find irreducible representa-
tions (irreps) of the (little) group of lattice symmetries
at high-symmetry points in the BZ for each of the 230
space groups (SGs); the dimension of these representa-
tions corresponds to the number of bands that meet at
the high-symmetry point, and is one of the characteristics
of the fermion type. Since we are interested in fermions
with spin-orbit coupling, we consider only the double-
valued representations; TR symmetry is an antiunitary
that squares to �1. Table I summarizes the results of
our search. All the space groups include non-symmorphic
generators, and all representations are projective; these
are in fact necessary ingredients for the 3-, 6- and 8-d ir-
reps, as elaborated upon in the Supplementary Material.

We find that space groups 199, 214, and 220 may host a
three-dimensional representation at the P point in the BZ
(the high-symmetry points are defined in the Supplemen-
tary Material). These space groups have a body-centered
cubic Bravais lattice, and the P point is a TR non-
invariant point at a corner of the BZ (that is, P 6= �P ).
All three of these systems host a complementary 3-fold
degeneracy at �P due to TR symmetry; Kramers’s theo-
rem requires this to be the case. SG 214 is unique in that
the 3-fold degeneracy at �P persists even if time reversal
symmetry is broken, as the P and �P points are related
by a two-fold screw rotation in the full symmetry group.

In the presence of TR symmetry, six space groups can
host 6-fold degeneracies. In all cases, these arise as 3-
fold degeneracies which are doubled by the presence of
TR symmetry. Four of these – SGs 198, 205, 212, and 213
– correspond to simple-cubic Bravais lattice, and the 6-
fold degeneracy occurs at the TR invariant R point at the
corner of the BZ. The other two 6-fold degeneracies occur
in SGs 206 and 230 at the P point. Although this point
is not TR invariant, these SGs are inversion symmetric,
and hence all degeneracies are doubled.

Finally, we find, in agreement with previous work[28],
that seven SGs may host 8-fold degeneracies. However,
as shown below, the resulting fermions fall into distinct
classes. Two of these, SGs 130 and 135 have a tetragonal
Bravais lattice; these are special in that they require 8-
fold degeneracies at the time-reversal invariant A point.
In addition, SGs 222, 223 and 230 may host 8-fold degen-
eracies. SGs 222 and 223 are simple-cubic, and an 8-fold
fermion can occur at the R point in the BZ; for SG 230,
it occurs at the time-reversal invariant H point.

There are two more SGs that can host 8-fold degenera-
cies, SG 218 and SG 220. These di↵er from the others in
that they lack inversion symmetry. Energy bands away
from high symmetry points need no longer come in pairs.
SG 218 has a simple cubic Bravais lattice, and an 8-fold
degeneracy may occur at the R point. In SG 220 the
degeneracy may occur at the H point.

SG La k d Generators

198 cP R 6 {C�
3,111|010}, {C2x| 12

3
20}, {C2y|0 3

2
1
2}

199 cB P 3 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

205 cP R 6 {C�
3,111|010}, {C2x| 12

3
20}, {C2y|0 3

2
1
2}, {I|000}

206 cB P 6 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

212 cP R 6 {C2x| 12
1
20},{C2y|0 1

2
1
2},{C

�
3,111|000},{C2,11̄0| 14

1
4

1
4}

213 cP R 6 {C2x| 12
1
20},{C2y|0 1

2
1
2},{C

�
3,111|000},{C2,11̄0| 34

3
4

3
4}

214 cB P 3 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

220 cB P 3 {C3,1̄1̄1|0 1
2

1
2},{C2y|0 1

2
1
2},{C2x| 32

3
20},{IC

�
4x| 1211}

230 cB P 6 {C3,1̄1̄1|0 1
2

1
2},{C2y|0 1

2
1
2},{C2x| 32

3
20},{IC

�
4x| 1211}

130 tP A 8 {C4z|000}, {�x̄y

|00 1
2}, {I|

1
2

1
2

1
2}

135 tP A 8 {C4z| 12
1
2

1
2}, {�x̄y

|00 1
2}, {I|000}

218 cP R 8 {C2x|001}, {C2y|000}, {C�
3,111|001}, {�x̄y

| 12
1
2

1
2}

220 cB H 8 {C2x| 12
1
20}, {C2y|0 1

2
3
2}, {C

�
3,111|001}, {�x̄y

| 12
1
2

1
2}

222 cP R 8 {C�
4z|000}, {C2x|000}, {C�

3,111|010}, {I| 12
1
2

1
2}

223 cP R 8 {C�
4z| 12

1
2

1
2}, {C2x|000}, {C�

3,111|010}, {I|000}
230 cB H 8 {C4z|0 1

20}, {C2y|1 1
2

1
2}, {C3,111|111}, {I|000}

TABLE I. Summary of all new fermion types in solid state
systems. La indicates the type of lattice (cP is cubic primitive,
cB is cubic body-centered, and tP is tetragonal primitive), d
indicates the maximum degeneracy at the relevant k point in
the presence of time reversal symmetry. Group generators are
defined in the Supplementary Material.

Low energy e↵ective models For each of the band
crossings in Table I, we compute a low-energy expan-
sion of the most general Hamiltonian consistent with the
symmetries of the little group near the degeneracy point,
k0, in terms of �k ⌘ k� k0. Full details of the construc-
tions are in the Supplementary Material. Representative
plots of the band dispersion along high symmetry lines
are shown in Figs. 1–3, where inessential higher-order
terms have been added for the sake of clarity.

We begin by analyzing the threefold degeneracy points.
The linearized k·p Hamiltonian for SGs 199 and 214 take
the form

H199(�, �k) =

0

B@
0 ei��kx e�i��ky

e�i��kx 0 ei��kz
ei��ky e�i��kz 0

1

CA , (1)

where � is a real parameter; without loss of generality
we set the zero of energy at zero throughout and omit an
overall energy scale. The bands are non-degenerate away
from �k = 0, unless � = n⇡/3 for integer n, in which
case bands become degenerate along the lines |�kx| =
|�ky| = |�kz|. While the locations of these degeneracies
in (�k,�) change in the presence of higher order terms,
they identify two topologically distinct phases. First, for
⇡/3 < � < 2⇡/3, the �k 6= 0 Hamiltonian is adiabatically
connected to the one with � = ⇡/2 for su�ciently small
|�k| > 0. At this value of �, the Hamiltonian takes the
form

H199(⇡/2, �k) = �k · S, (2)

cP: cubic primitive 
cB: cubic body-centered 
tP: tetragonal primitive
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I. SYMMETRY ANALYSIS OF 3D AND 6D IRREPS

A. Notation

A Bravais lattice in three dimensions has three basis vectors, indicated by ti, i = 1, 2, 3. Reciprocal space lattice
vectors are indicated by gi, where gi · tj = 2⇡�ij . The new fermions described in the main text occur only in the
primitive cubic, body-centered cubic, and primitive tetragonal lattices; their lattice and reciprocal lattice vectors are
shown in Table I. Diagrams of the first Brillouin zone for each of these Bravais lattices are shown in Figure S1, with
high symmetry points labelled.
We indicate non-symmorphic symmetry operations using Seitz notation, i.e., a point group operation O followed

by a translation v = viti is indicated by {O|v} or, component-wise, {O|v1v2v3}. The rules for combining operations
is as follows:

{O2|v2}{O1|v1} = {O2O1|v2 +R2v1}. (S1)

We thus have the following useful relations:

{O|v}�1 = {O�1|�O�1v}, (S2)

{O|v} = {E|v}{O|0} = {O|0}{E|O�1v}. (S3)

We will always use E for the identity operator and I for inversion. We frequently use R to indicate a 2⇡ rotation; since
we are interested in spin-1/2 particles, this operator is always represented by �I. We use C2x, C2y, C2z to indicate
2-fold rotations about the x-, y- or z- hat axes; otherwise, we use Cn,nxnynz to indicate an n-fold rotation about the
nxx̂+ny ŷ+nz ẑ axis. Similarly, �x,�y,�z indicate mirror operations through the planes perpendicular to the indicated
axis and �nxnynz indicates a mirror operation through the plane perpendicular to the nxx̂+ ny ŷ+ nz ẑ direction. We
also encounter four-fold roto-inversions; we define S4x ⌘ IC�1

4x and similarly for y and z. Pure translations are
indicated by {E|t}. Irreducible representation (irrep) of the group of translations are labeled by reciprocal space
vectors; in the irrep labeled by k, an integer translation t ⌘ niti is represented by the phase e�ik·t.
The little group Gk0 of a point k0 in reciprocal space is the set of all space group operations {O|v} such that

Ok0 = k0 + nigi, i.e., the set of all space group operations whose ‘symmorphic part’ leaves k invariant up to an
integer reciprocal lattice vector; later we will consider the e↵ect of including time reversal in this definition. If a d-
dimensional irrep exists, a generic Hamiltonian which respects the space group symmetries can display a d-dimensional
degeneracy at k0. However, if multiple irreps with dimensions d1, d2, ... exist, not all will necessarily be realized in
a given material. Furthremore, notice that two-fold degeneracies (Weyl fermions) can exist without protection by a
space group symmetry.
If a d-band crossing exists, and if the Fermi level is near the crossing, then these bands constitute the low-energy

dispersion relation of a fermion with d components. Here we are exploring fermions beyond the Weyl and Dirac

Bravais lattice Lattice vectors Reciprocal lattice vectors

Primitive cubic (a, 0, 0), (0, a, 0), (0, 0, a) 2⇡
a

(1, 0, 0), 2⇡
a

(0, 1, 0), 2⇡
a

(0, 0, 1)

Body-centered cubic a

2 (�1, 1, 1), a

2 (1,�1, 1), a

2 (1, 1,�1) 2⇡
a

(0, 1, 1), 2⇡
a

(1, 0, 1), 2⇡
a

(1, 1, 0)

Primitive tetragonal (a, 0, 0), (0, a, 0), (0, 0, c) 2⇡
a

(1, 0, 0), 2⇡
a

(0, 1, 0), 2⇡
c

(0, 0, 1)

TABLE I. Lattice and reciprocal lattice vectors
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paradigm. These new fermions consist of 3-, 6- and 8-band crossings in the presence of time reversal symmetry; the
6- and 8-band crossings emerge from 3- and 4-band crossings without time reversal symmetry. In addition, we show
that the degeneracy of the band crossing does not fully characterize the behavior of the fermion. Degeneracies on
high-symmetry lines and planes provide a further, finer grading, which completes our fermion classification.

In the main text, we discussed the particular space groups that can support 3-, 6-, or 8-band crossings at prescribed
points in the Brillouin zone. In the appendices, we will address each space group mentioned in the main text and show
that the little group at the prescribed point has an irrep of the correct degeneracy to support the band crossings1–5.
In particular, we will first find the little group without time reversal symmetry, where it will display either a 3- or
4-band crossings, and then show that the irrep either remains 3-dimensional or doubles in size to 6- or 8-dimensional
(since we are interested in 3-, 6-, and 8-band crossings, we do not include in our search 4d irreps that remain the
same size in the presence of time reversal.)

B. Space groups with 3d irreps

In this appendix, we prove a su�cient condition for the existence of a 3d irrep given three group generators. We
show that it is satisfied by the generators of the little group at the point k0 = (⇡,⇡,⇡) for the space groups 198,
199, 205, 206, 212, 213, 214, 220 and 230. These are all cubic lattices1; hence, symmetry operators that leave the
(⇡,⇡,⇡) point invariant (up to a reciprocal lattice vector) include a 3-fold rotation about the x̂+ ŷ + ẑ axis, a 2-fold
rotation about the x̂ or ŷ axes, or any combination of these elements. These operators, potentially combined with
non-symmorphic translations, generate the little group at the (⇡,⇡,⇡) point. In some cases, additional generators,
which do not change the size of the 3d irrep, are also present.

We then consider the presence of time reversal symmetry. We show that in the presence of time reversal symmetry,
space groups 198, 205, 206, 212, 213 and 230 can host 6-fold degeneracies at the (⇡,⇡,⇡) point, while space groups
199, 214 and 220 can host 3-fold degeneracies at this point.

C. Su�cient condition for a 3d irrep

Consider the case when the little group at a particular high-symmetry point has three generators, G1,G2, and G3,
with matrix representations G1, G2, and G3, perhaps up to an overall phase (i.e, the representation of Gi is ei✓iGi).
Then if the matrices satisfy

G2
1 = G2

2 = G3
3 = 1, [G1, G2] = 0, G1G3 = G3G2, G2G3 = G3G1G2, (S4)

there exists a 3d irrep. Before proving this, we comment that Eq. (S4) places tight constraints on the operators:
clearly G3 is a three-fold rotation or screw and G1 and G2 are either two-fold rotations or screws (they could also be
mirrors or glides without any change to the logic). The defining axes of G1 and G2 must be perpendicular, otherwise

kx

ky

kz

�

Z

RA

M
�

�

�

�

�

�
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T

S
U

(a)

kx ky

kz

�
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M

�

�
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S
�

Z

(b)
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ky

kz

F

�

�

(c)

FIG. S1. (a) The Brillouin zone of a tetragonal Bravais lattice. (b) The Brillouin zone of a simple cubic Bravais lattice. (c)
The Brillouin zone of a body-centered cubic Bravais lattice. In cases (a) and (b) all of the labelled high-symmetry points are
time-reversal invariant. In case (c) only the P point is not time-reversal invariant. (A particular point, k, is (not) time-reversal
invariant if 2k is (not) an integer reciprocal lattice vector.)
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synthesizing new fermions.

Space groups with new fermions The guiding princi-
ple of our classification is to find irreducible representa-
tions (irreps) of the (little) group of lattice symmetries
at high-symmetry points in the BZ for each of the 230
space groups (SGs); the dimension of these representa-
tions corresponds to the number of bands that meet at
the high-symmetry point, and is one of the characteristics
of the fermion type. Since we are interested in fermions
with spin-orbit coupling, we consider only the double-
valued representations; TR symmetry is an antiunitary
that squares to �1. Table I summarizes the results of
our search. All the space groups include non-symmorphic
generators, and all representations are projective; these
are in fact necessary ingredients for the 3-, 6- and 8-d ir-
reps, as elaborated upon in the Supplementary Material.

We find that space groups 199, 214, and 220 may host a
three-dimensional representation at the P point in the BZ
(the high-symmetry points are defined in the Supplemen-
tary Material). These space groups have a body-centered
cubic Bravais lattice, and the P point is a TR non-
invariant point at a corner of the BZ (that is, P 6= �P ).
All three of these systems host a complementary 3-fold
degeneracy at �P due to TR symmetry; Kramers’s theo-
rem requires this to be the case. SG 214 is unique in that
the 3-fold degeneracy at �P persists even if time reversal
symmetry is broken, as the P and �P points are related
by a two-fold screw rotation in the full symmetry group.

In the presence of TR symmetry, six space groups can
host 6-fold degeneracies. In all cases, these arise as 3-
fold degeneracies which are doubled by the presence of
TR symmetry. Four of these – SGs 198, 205, 212, and 213
– correspond to simple-cubic Bravais lattice, and the 6-
fold degeneracy occurs at the TR invariant R point at the
corner of the BZ. The other two 6-fold degeneracies occur
in SGs 206 and 230 at the P point. Although this point
is not TR invariant, these SGs are inversion symmetric,
and hence all degeneracies are doubled.

Finally, we find, in agreement with previous work[28],
that seven SGs may host 8-fold degeneracies. However,
as shown below, the resulting fermions fall into distinct
classes. Two of these, SGs 130 and 135 have a tetragonal
Bravais lattice; these are special in that they require 8-
fold degeneracies at the time-reversal invariant A point.
In addition, SGs 222, 223 and 230 may host 8-fold degen-
eracies. SGs 222 and 223 are simple-cubic, and an 8-fold
fermion can occur at the R point in the BZ; for SG 230,
it occurs at the time-reversal invariant H point.

There are two more SGs that can host 8-fold degenera-
cies, SG 218 and SG 220. These di↵er from the others in
that they lack inversion symmetry. Energy bands away
from high symmetry points need no longer come in pairs.
SG 218 has a simple cubic Bravais lattice, and an 8-fold
degeneracy may occur at the R point. In SG 220 the
degeneracy may occur at the H point.

SG La k d Generators

198 cP R 6 {C�
3,111|010}, {C2x| 12

3
20}, {C2y|0 3

2
1
2}

199 cB P 3 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

205 cP R 6 {C�
3,111|010}, {C2x| 12

3
20}, {C2y|0 3

2
1
2}, {I|000}

206 cB P 6 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

212 cP R 6 {C2x| 12
1
20},{C2y|0 1

2
1
2},{C

�
3,111|000},{C2,11̄0| 14

1
4

1
4}

213 cP R 6 {C2x| 12
1
20},{C2y|0 1

2
1
2},{C

�
3,111|000},{C2,11̄0| 34

3
4

3
4}

214 cB P 3 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

220 cB P 3 {C3,1̄1̄1|0 1
2

1
2},{C2y|0 1

2
1
2},{C2x| 32

3
20},{IC

�
4x| 1211}

230 cB P 6 {C3,1̄1̄1|0 1
2

1
2},{C2y|0 1

2
1
2},{C2x| 32

3
20},{IC

�
4x| 1211}

130 tP A 8 {C4z|000}, {�x̄y

|00 1
2}, {I|

1
2

1
2

1
2}

135 tP A 8 {C4z| 12
1
2

1
2}, {�x̄y

|00 1
2}, {I|000}

218 cP R 8 {C2x|001}, {C2y|000}, {C�
3,111|001}, {�x̄y

| 12
1
2

1
2}

220 cB H 8 {C2x| 12
1
20}, {C2y|0 1

2
3
2}, {C

�
3,111|001}, {�x̄y

| 12
1
2

1
2}

222 cP R 8 {C�
4z|000}, {C2x|000}, {C�

3,111|010}, {I| 12
1
2

1
2}

223 cP R 8 {C�
4z| 12

1
2

1
2}, {C2x|000}, {C�

3,111|010}, {I|000}
230 cB H 8 {C4z|0 1

20}, {C2y|1 1
2

1
2}, {C3,111|111}, {I|000}

TABLE I. Summary of all new fermion types in solid state
systems. La indicates the type of lattice (cP is cubic primitive,
cB is cubic body-centered, and tP is tetragonal primitive), d
indicates the maximum degeneracy at the relevant k point in
the presence of time reversal symmetry. Group generators are
defined in the Supplementary Material.

Low energy e↵ective models For each of the band
crossings in Table I, we compute a low-energy expan-
sion of the most general Hamiltonian consistent with the
symmetries of the little group near the degeneracy point,
k0, in terms of �k ⌘ k� k0. Full details of the construc-
tions are in the Supplementary Material. Representative
plots of the band dispersion along high symmetry lines
are shown in Figs. 1–3, where inessential higher-order
terms have been added for the sake of clarity.

We begin by analyzing the threefold degeneracy points.
The linearized k·p Hamiltonian for SGs 199 and 214 take
the form

H199(�, �k) =

0

B@
0 ei��kx e�i��ky

e�i��kx 0 ei��kz
ei��ky e�i��kz 0

1

CA , (1)

where � is a real parameter; without loss of generality
we set the zero of energy at zero throughout and omit an
overall energy scale. The bands are non-degenerate away
from �k = 0, unless � = n⇡/3 for integer n, in which
case bands become degenerate along the lines |�kx| =
|�ky| = |�kz|. While the locations of these degeneracies
in (�k,�) change in the presence of higher order terms,
they identify two topologically distinct phases. First, for
⇡/3 < � < 2⇡/3, the �k 6= 0 Hamiltonian is adiabatically
connected to the one with � = ⇡/2 for su�ciently small
|�k| > 0. At this value of �, the Hamiltonian takes the
form

H199(⇡/2, �k) = �k · S, (2)

cP: cubic primitive 
cB: cubic body-centered 
tP: tetragonal primitive
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I. SYMMETRY ANALYSIS OF 3D AND 6D IRREPS

A. Notation

A Bravais lattice in three dimensions has three basis vectors, indicated by ti, i = 1, 2, 3. Reciprocal space lattice
vectors are indicated by gi, where gi · tj = 2⇡�ij . The new fermions described in the main text occur only in the
primitive cubic, body-centered cubic, and primitive tetragonal lattices; their lattice and reciprocal lattice vectors are
shown in Table I. Diagrams of the first Brillouin zone for each of these Bravais lattices are shown in Figure S1, with
high symmetry points labelled.
We indicate non-symmorphic symmetry operations using Seitz notation, i.e., a point group operation O followed

by a translation v = viti is indicated by {O|v} or, component-wise, {O|v1v2v3}. The rules for combining operations
is as follows:

{O2|v2}{O1|v1} = {O2O1|v2 +R2v1}. (S1)

We thus have the following useful relations:

{O|v}�1 = {O�1|�O�1v}, (S2)

{O|v} = {E|v}{O|0} = {O|0}{E|O�1v}. (S3)

We will always use E for the identity operator and I for inversion. We frequently use R to indicate a 2⇡ rotation; since
we are interested in spin-1/2 particles, this operator is always represented by �I. We use C2x, C2y, C2z to indicate
2-fold rotations about the x-, y- or z- hat axes; otherwise, we use Cn,nxnynz to indicate an n-fold rotation about the
nxx̂+ny ŷ+nz ẑ axis. Similarly, �x,�y,�z indicate mirror operations through the planes perpendicular to the indicated
axis and �nxnynz indicates a mirror operation through the plane perpendicular to the nxx̂+ ny ŷ+ nz ẑ direction. We
also encounter four-fold roto-inversions; we define S4x ⌘ IC�1

4x and similarly for y and z. Pure translations are
indicated by {E|t}. Irreducible representation (irrep) of the group of translations are labeled by reciprocal space
vectors; in the irrep labeled by k, an integer translation t ⌘ niti is represented by the phase e�ik·t.
The little group Gk0 of a point k0 in reciprocal space is the set of all space group operations {O|v} such that

Ok0 = k0 + nigi, i.e., the set of all space group operations whose ‘symmorphic part’ leaves k invariant up to an
integer reciprocal lattice vector; later we will consider the e↵ect of including time reversal in this definition. If a d-
dimensional irrep exists, a generic Hamiltonian which respects the space group symmetries can display a d-dimensional
degeneracy at k0. However, if multiple irreps with dimensions d1, d2, ... exist, not all will necessarily be realized in
a given material. Furthremore, notice that two-fold degeneracies (Weyl fermions) can exist without protection by a
space group symmetry.
If a d-band crossing exists, and if the Fermi level is near the crossing, then these bands constitute the low-energy

dispersion relation of a fermion with d components. Here we are exploring fermions beyond the Weyl and Dirac

Bravais lattice Lattice vectors Reciprocal lattice vectors

Primitive cubic (a, 0, 0), (0, a, 0), (0, 0, a) 2⇡
a

(1, 0, 0), 2⇡
a

(0, 1, 0), 2⇡
a

(0, 0, 1)

Body-centered cubic a

2 (�1, 1, 1), a

2 (1,�1, 1), a

2 (1, 1,�1) 2⇡
a

(0, 1, 1), 2⇡
a

(1, 0, 1), 2⇡
a

(1, 1, 0)

Primitive tetragonal (a, 0, 0), (0, a, 0), (0, 0, c) 2⇡
a

(1, 0, 0), 2⇡
a

(0, 1, 0), 2⇡
c

(0, 0, 1)

TABLE I. Lattice and reciprocal lattice vectors
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paradigm. These new fermions consist of 3-, 6- and 8-band crossings in the presence of time reversal symmetry; the
6- and 8-band crossings emerge from 3- and 4-band crossings without time reversal symmetry. In addition, we show
that the degeneracy of the band crossing does not fully characterize the behavior of the fermion. Degeneracies on
high-symmetry lines and planes provide a further, finer grading, which completes our fermion classification.

In the main text, we discussed the particular space groups that can support 3-, 6-, or 8-band crossings at prescribed
points in the Brillouin zone. In the appendices, we will address each space group mentioned in the main text and show
that the little group at the prescribed point has an irrep of the correct degeneracy to support the band crossings1–5.
In particular, we will first find the little group without time reversal symmetry, where it will display either a 3- or
4-band crossings, and then show that the irrep either remains 3-dimensional or doubles in size to 6- or 8-dimensional
(since we are interested in 3-, 6-, and 8-band crossings, we do not include in our search 4d irreps that remain the
same size in the presence of time reversal.)

B. Space groups with 3d irreps

In this appendix, we prove a su�cient condition for the existence of a 3d irrep given three group generators. We
show that it is satisfied by the generators of the little group at the point k0 = (⇡,⇡,⇡) for the space groups 198,
199, 205, 206, 212, 213, 214, 220 and 230. These are all cubic lattices1; hence, symmetry operators that leave the
(⇡,⇡,⇡) point invariant (up to a reciprocal lattice vector) include a 3-fold rotation about the x̂+ ŷ + ẑ axis, a 2-fold
rotation about the x̂ or ŷ axes, or any combination of these elements. These operators, potentially combined with
non-symmorphic translations, generate the little group at the (⇡,⇡,⇡) point. In some cases, additional generators,
which do not change the size of the 3d irrep, are also present.

We then consider the presence of time reversal symmetry. We show that in the presence of time reversal symmetry,
space groups 198, 205, 206, 212, 213 and 230 can host 6-fold degeneracies at the (⇡,⇡,⇡) point, while space groups
199, 214 and 220 can host 3-fold degeneracies at this point.

C. Su�cient condition for a 3d irrep

Consider the case when the little group at a particular high-symmetry point has three generators, G1,G2, and G3,
with matrix representations G1, G2, and G3, perhaps up to an overall phase (i.e, the representation of Gi is ei✓iGi).
Then if the matrices satisfy

G2
1 = G2

2 = G3
3 = 1, [G1, G2] = 0, G1G3 = G3G2, G2G3 = G3G1G2, (S4)

there exists a 3d irrep. Before proving this, we comment that Eq. (S4) places tight constraints on the operators:
clearly G3 is a three-fold rotation or screw and G1 and G2 are either two-fold rotations or screws (they could also be
mirrors or glides without any change to the logic). The defining axes of G1 and G2 must be perpendicular, otherwise
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that the degeneracy of the band crossing does not fully characterize the behavior of the fermion. Degeneracies on
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(since we are interested in 3-, 6-, and 8-band crossings, we do not include in our search 4d irreps that remain the
same size in the presence of time reversal.)
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In this appendix, we prove a su�cient condition for the existence of a 3d irrep given three group generators. We
show that it is satisfied by the generators of the little group at the point k0 = (⇡,⇡,⇡) for the space groups 198,
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(⇡,⇡,⇡) point invariant (up to a reciprocal lattice vector) include a 3-fold rotation about the x̂+ ŷ + ẑ axis, a 2-fold
rotation about the x̂ or ŷ axes, or any combination of these elements. These operators, potentially combined with
non-symmorphic translations, generate the little group at the (⇡,⇡,⇡) point. In some cases, additional generators,
which do not change the size of the 3d irrep, are also present.
We then consider the presence of time reversal symmetry. We show that in the presence of time reversal symmetry,

space groups 198, 205, 206, 212, 213 and 230 can host 6-fold degeneracies at the (⇡,⇡,⇡) point, while space groups
199, 214 and 220 can host 3-fold degeneracies at this point.

C. Su�cient condition for a 3d irrep

Consider the case when the little group at a particular high-symmetry point has three generators, G1,G2, and G3,
with matrix representations G1, G2, and G3, perhaps up to an overall phase (i.e, the representation of Gi is ei✓iGi).
Then if the matrices satisfy

G2
1 = G2

2 = G3
3 = 1, [G1, G2] = 0, G1G3 = G3G2, G2G3 = G3G1G2, (S4)

there exists a 3d irrep. Before proving this, we comment that Eq. (S4) places tight constraints on the operators:
clearly G3 is a three-fold rotation or screw and G1 and G2 are either two-fold rotations or screws (they could also be
mirrors or glides without any change to the logic). The defining axes of G1 and G2 must be perpendicular, otherwise
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synthesizing new fermions.

Space groups with new fermions The guiding princi-
ple of our classification is to find irreducible representa-
tions (irreps) of the (little) group of lattice symmetries
at high-symmetry points in the BZ for each of the 230
space groups (SGs); the dimension of these representa-
tions corresponds to the number of bands that meet at
the high-symmetry point, and is one of the characteristics
of the fermion type. Since we are interested in fermions
with spin-orbit coupling, we consider only the double-
valued representations; TR symmetry is an antiunitary
that squares to �1. Table I summarizes the results of
our search. All the space groups include non-symmorphic
generators, and all representations are projective; these
are in fact necessary ingredients for the 3-, 6- and 8-d ir-
reps, as elaborated upon in the Supplementary Material.

We find that space groups 199, 214, and 220 may host a
three-dimensional representation at the P point in the BZ
(the high-symmetry points are defined in the Supplemen-
tary Material). These space groups have a body-centered
cubic Bravais lattice, and the P point is a TR non-
invariant point at a corner of the BZ (that is, P 6= �P ).
All three of these systems host a complementary 3-fold
degeneracy at �P due to TR symmetry; Kramers’s theo-
rem requires this to be the case. SG 214 is unique in that
the 3-fold degeneracy at �P persists even if time reversal
symmetry is broken, as the P and �P points are related
by a two-fold screw rotation in the full symmetry group.

In the presence of TR symmetry, six space groups can
host 6-fold degeneracies. In all cases, these arise as 3-
fold degeneracies which are doubled by the presence of
TR symmetry. Four of these – SGs 198, 205, 212, and 213
– correspond to simple-cubic Bravais lattice, and the 6-
fold degeneracy occurs at the TR invariant R point at the
corner of the BZ. The other two 6-fold degeneracies occur
in SGs 206 and 230 at the P point. Although this point
is not TR invariant, these SGs are inversion symmetric,
and hence all degeneracies are doubled.

Finally, we find, in agreement with previous work[28],
that seven SGs may host 8-fold degeneracies. However,
as shown below, the resulting fermions fall into distinct
classes. Two of these, SGs 130 and 135 have a tetragonal
Bravais lattice; these are special in that they require 8-
fold degeneracies at the time-reversal invariant A point.
In addition, SGs 222, 223 and 230 may host 8-fold degen-
eracies. SGs 222 and 223 are simple-cubic, and an 8-fold
fermion can occur at the R point in the BZ; for SG 230,
it occurs at the time-reversal invariant H point.

There are two more SGs that can host 8-fold degenera-
cies, SG 218 and SG 220. These di↵er from the others in
that they lack inversion symmetry. Energy bands away
from high symmetry points need no longer come in pairs.
SG 218 has a simple cubic Bravais lattice, and an 8-fold
degeneracy may occur at the R point. In SG 220 the
degeneracy may occur at the H point.

SG La k d Generators

198 cP R 6 {C�
3,111|010}, {C2x| 12

3
20}, {C2y|0 3

2
1
2}

199 cB P 3 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

205 cP R 6 {C�
3,111|010}, {C2x| 12

3
20}, {C2y|0 3

2
1
2}, {I|000}

206 cB P 6 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

212 cP R 6 {C2x| 12
1
20},{C2y|0 1

2
1
2},{C

�
3,111|000},{C2,11̄0| 14

1
4

1
4}

213 cP R 6 {C2x| 12
1
20},{C2y|0 1

2
1
2},{C

�
3,111|000},{C2,11̄0| 34

3
4

3
4}

214 cB P 3 {C�
3,111|101}, {C2x| 1̄2

1
20}, {C2y|0 1

2
1̄
2}

220 cB P 3 {C3,1̄1̄1|0 1
2

1
2},{C2y|0 1

2
1
2},{C2x| 32

3
20},{IC

�
4x| 1211}

230 cB P 6 {C3,1̄1̄1|0 1
2

1
2},{C2y|0 1

2
1
2},{C2x| 32

3
20},{IC

�
4x| 1211}

130 tP A 8 {C4z|000}, {�x̄y

|00 1
2}, {I|

1
2

1
2

1
2}

135 tP A 8 {C4z| 12
1
2

1
2}, {�x̄y

|00 1
2}, {I|000}

218 cP R 8 {C2x|001}, {C2y|000}, {C�
3,111|001}, {�x̄y

| 12
1
2

1
2}

220 cB H 8 {C2x| 12
1
20}, {C2y|0 1

2
3
2}, {C

�
3,111|001}, {�x̄y

| 12
1
2

1
2}

222 cP R 8 {C�
4z|000}, {C2x|000}, {C�

3,111|010}, {I| 12
1
2

1
2}

223 cP R 8 {C�
4z| 12

1
2

1
2}, {C2x|000}, {C�

3,111|010}, {I|000}
230 cB H 8 {C4z|0 1

20}, {C2y|1 1
2

1
2}, {C3,111|111}, {I|000}

TABLE I. Summary of all new fermion types in solid state
systems. La indicates the type of lattice (cP is cubic primitive,
cB is cubic body-centered, and tP is tetragonal primitive), d
indicates the maximum degeneracy at the relevant k point in
the presence of time reversal symmetry. Group generators are
defined in the Supplementary Material.

Low energy e↵ective models For each of the band
crossings in Table I, we compute a low-energy expan-
sion of the most general Hamiltonian consistent with the
symmetries of the little group near the degeneracy point,
k0, in terms of �k ⌘ k� k0. Full details of the construc-
tions are in the Supplementary Material. Representative
plots of the band dispersion along high symmetry lines
are shown in Figs. 1–3, where inessential higher-order
terms have been added for the sake of clarity.

We begin by analyzing the threefold degeneracy points.
The linearized k·p Hamiltonian for SGs 199 and 214 take
the form

H199(�, �k) =

0

B@
0 ei��kx e�i��ky

e�i��kx 0 ei��kz
ei��ky e�i��kz 0

1

CA , (1)

where � is a real parameter; without loss of generality
we set the zero of energy at zero throughout and omit an
overall energy scale. The bands are non-degenerate away
from �k = 0, unless � = n⇡/3 for integer n, in which
case bands become degenerate along the lines |�kx| =
|�ky| = |�kz|. While the locations of these degeneracies
in (�k,�) change in the presence of higher order terms,
they identify two topologically distinct phases. First, for
⇡/3 < � < 2⇡/3, the �k 6= 0 Hamiltonian is adiabatically
connected to the one with � = ⇡/2 for su�ciently small
|�k| > 0. At this value of �, the Hamiltonian takes the
form

H199(⇡/2, �k) = �k · S, (2)

cP: cubic primitive 
cB: cubic body-centered 
tP: tetragonal primitive
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I. SYMMETRY ANALYSIS OF 3D AND 6D IRREPS

A. Notation

A Bravais lattice in three dimensions has three basis vectors, indicated by ti, i = 1, 2, 3. Reciprocal space lattice
vectors are indicated by gi, where gi · tj = 2⇡�ij . The new fermions described in the main text occur only in the
primitive cubic, body-centered cubic, and primitive tetragonal lattices; their lattice and reciprocal lattice vectors are
shown in Table I. Diagrams of the first Brillouin zone for each of these Bravais lattices are shown in Figure S1, with
high symmetry points labelled.
We indicate non-symmorphic symmetry operations using Seitz notation, i.e., a point group operation O followed

by a translation v = viti is indicated by {O|v} or, component-wise, {O|v1v2v3}. The rules for combining operations
is as follows:

{O2|v2}{O1|v1} = {O2O1|v2 +R2v1}. (S1)

We thus have the following useful relations:

{O|v}�1 = {O�1|�O�1v}, (S2)

{O|v} = {E|v}{O|0} = {O|0}{E|O�1v}. (S3)

We will always use E for the identity operator and I for inversion. We frequently use R to indicate a 2⇡ rotation; since
we are interested in spin-1/2 particles, this operator is always represented by �I. We use C2x, C2y, C2z to indicate
2-fold rotations about the x-, y- or z- hat axes; otherwise, we use Cn,nxnynz to indicate an n-fold rotation about the
nxx̂+ny ŷ+nz ẑ axis. Similarly, �x,�y,�z indicate mirror operations through the planes perpendicular to the indicated
axis and �nxnynz indicates a mirror operation through the plane perpendicular to the nxx̂+ ny ŷ+ nz ẑ direction. We
also encounter four-fold roto-inversions; we define S4x ⌘ IC�1

4x and similarly for y and z. Pure translations are
indicated by {E|t}. Irreducible representation (irrep) of the group of translations are labeled by reciprocal space
vectors; in the irrep labeled by k, an integer translation t ⌘ niti is represented by the phase e�ik·t.
The little group Gk0 of a point k0 in reciprocal space is the set of all space group operations {O|v} such that

Ok0 = k0 + nigi, i.e., the set of all space group operations whose ‘symmorphic part’ leaves k invariant up to an
integer reciprocal lattice vector; later we will consider the e↵ect of including time reversal in this definition. If a d-
dimensional irrep exists, a generic Hamiltonian which respects the space group symmetries can display a d-dimensional
degeneracy at k0. However, if multiple irreps with dimensions d1, d2, ... exist, not all will necessarily be realized in
a given material. Furthremore, notice that two-fold degeneracies (Weyl fermions) can exist without protection by a
space group symmetry.
If a d-band crossing exists, and if the Fermi level is near the crossing, then these bands constitute the low-energy

dispersion relation of a fermion with d components. Here we are exploring fermions beyond the Weyl and Dirac

Bravais lattice Lattice vectors Reciprocal lattice vectors

Primitive cubic (a, 0, 0), (0, a, 0), (0, 0, a) 2⇡
a

(1, 0, 0), 2⇡
a

(0, 1, 0), 2⇡
a

(0, 0, 1)

Body-centered cubic a

2 (�1, 1, 1), a

2 (1,�1, 1), a

2 (1, 1,�1) 2⇡
a

(0, 1, 1), 2⇡
a

(1, 0, 1), 2⇡
a

(1, 1, 0)

Primitive tetragonal (a, 0, 0), (0, a, 0), (0, 0, c) 2⇡
a

(1, 0, 0), 2⇡
a

(0, 1, 0), 2⇡
c

(0, 0, 1)

TABLE I. Lattice and reciprocal lattice vectors
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paradigm. These new fermions consist of 3-, 6- and 8-band crossings in the presence of time reversal symmetry; the
6- and 8-band crossings emerge from 3- and 4-band crossings without time reversal symmetry. In addition, we show
that the degeneracy of the band crossing does not fully characterize the behavior of the fermion. Degeneracies on
high-symmetry lines and planes provide a further, finer grading, which completes our fermion classification.

In the main text, we discussed the particular space groups that can support 3-, 6-, or 8-band crossings at prescribed
points in the Brillouin zone. In the appendices, we will address each space group mentioned in the main text and show
that the little group at the prescribed point has an irrep of the correct degeneracy to support the band crossings1–5.
In particular, we will first find the little group without time reversal symmetry, where it will display either a 3- or
4-band crossings, and then show that the irrep either remains 3-dimensional or doubles in size to 6- or 8-dimensional
(since we are interested in 3-, 6-, and 8-band crossings, we do not include in our search 4d irreps that remain the
same size in the presence of time reversal.)

B. Space groups with 3d irreps

In this appendix, we prove a su�cient condition for the existence of a 3d irrep given three group generators. We
show that it is satisfied by the generators of the little group at the point k0 = (⇡,⇡,⇡) for the space groups 198,
199, 205, 206, 212, 213, 214, 220 and 230. These are all cubic lattices1; hence, symmetry operators that leave the
(⇡,⇡,⇡) point invariant (up to a reciprocal lattice vector) include a 3-fold rotation about the x̂+ ŷ + ẑ axis, a 2-fold
rotation about the x̂ or ŷ axes, or any combination of these elements. These operators, potentially combined with
non-symmorphic translations, generate the little group at the (⇡,⇡,⇡) point. In some cases, additional generators,
which do not change the size of the 3d irrep, are also present.

We then consider the presence of time reversal symmetry. We show that in the presence of time reversal symmetry,
space groups 198, 205, 206, 212, 213 and 230 can host 6-fold degeneracies at the (⇡,⇡,⇡) point, while space groups
199, 214 and 220 can host 3-fold degeneracies at this point.

C. Su�cient condition for a 3d irrep

Consider the case when the little group at a particular high-symmetry point has three generators, G1,G2, and G3,
with matrix representations G1, G2, and G3, perhaps up to an overall phase (i.e, the representation of Gi is ei✓iGi).
Then if the matrices satisfy

G2
1 = G2

2 = G3
3 = 1, [G1, G2] = 0, G1G3 = G3G2, G2G3 = G3G1G2, (S4)

there exists a 3d irrep. Before proving this, we comment that Eq. (S4) places tight constraints on the operators:
clearly G3 is a three-fold rotation or screw and G1 and G2 are either two-fold rotations or screws (they could also be
mirrors or glides without any change to the logic). The defining axes of G1 and G2 must be perpendicular, otherwise
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FIG. S1. (a) The Brillouin zone of a tetragonal Bravais lattice. (b) The Brillouin zone of a simple cubic Bravais lattice. (c)
The Brillouin zone of a body-centered cubic Bravais lattice. In cases (a) and (b) all of the labelled high-symmetry points are
time-reversal invariant. In case (c) only the P point is not time-reversal invariant. (A particular point, k, is (not) time-reversal
invariant if 2k is (not) an integer reciprocal lattice vector.)
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paradigm. These new fermions consist of 3-, 6- and 8-band crossings in the presence of time reversal symmetry; the
6- and 8-band crossings emerge from 3- and 4-band crossings without time reversal symmetry. In addition, we show
that the degeneracy of the band crossing does not fully characterize the behavior of the fermion. Degeneracies on
high-symmetry lines and planes provide a further, finer grading, which completes our fermion classification.
In the main text, we discussed the particular space groups that can support 3-, 6-, or 8-band crossings at prescribed

points in the Brillouin zone. In the appendices, we will address each space group mentioned in the main text and show
that the little group at the prescribed point has an irrep of the correct degeneracy to support the band crossings1–5.
In particular, we will first find the little group without time reversal symmetry, where it will display either a 3- or
4-band crossings, and then show that the irrep either remains 3-dimensional or doubles in size to 6- or 8-dimensional
(since we are interested in 3-, 6-, and 8-band crossings, we do not include in our search 4d irreps that remain the
same size in the presence of time reversal.)

B. Space groups with 3d irreps

In this appendix, we prove a su�cient condition for the existence of a 3d irrep given three group generators. We
show that it is satisfied by the generators of the little group at the point k0 = (⇡,⇡,⇡) for the space groups 198,
199, 205, 206, 212, 213, 214, 220 and 230. These are all cubic lattices1; hence, symmetry operators that leave the
(⇡,⇡,⇡) point invariant (up to a reciprocal lattice vector) include a 3-fold rotation about the x̂+ ŷ + ẑ axis, a 2-fold
rotation about the x̂ or ŷ axes, or any combination of these elements. These operators, potentially combined with
non-symmorphic translations, generate the little group at the (⇡,⇡,⇡) point. In some cases, additional generators,
which do not change the size of the 3d irrep, are also present.
We then consider the presence of time reversal symmetry. We show that in the presence of time reversal symmetry,

space groups 198, 205, 206, 212, 213 and 230 can host 6-fold degeneracies at the (⇡,⇡,⇡) point, while space groups
199, 214 and 220 can host 3-fold degeneracies at this point.

C. Su�cient condition for a 3d irrep

Consider the case when the little group at a particular high-symmetry point has three generators, G1,G2, and G3,
with matrix representations G1, G2, and G3, perhaps up to an overall phase (i.e, the representation of Gi is ei✓iGi).
Then if the matrices satisfy

G2
1 = G2

2 = G3
3 = 1, [G1, G2] = 0, G1G3 = G3G2, G2G3 = G3G1G2, (S4)

there exists a 3d irrep. Before proving this, we comment that Eq. (S4) places tight constraints on the operators:
clearly G3 is a three-fold rotation or screw and G1 and G2 are either two-fold rotations or screws (they could also be
mirrors or glides without any change to the logic). The defining axes of G1 and G2 must be perpendicular, otherwise
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points in the Brillouin zone. In the appendices, we will address each space group mentioned in the main text and show
that the little group at the prescribed point has an irrep of the correct degeneracy to support the band crossings1–5.
In particular, we will first find the little group without time reversal symmetry, where it will display either a 3- or
4-band crossings, and then show that the irrep either remains 3-dimensional or doubles in size to 6- or 8-dimensional
(since we are interested in 3-, 6-, and 8-band crossings, we do not include in our search 4d irreps that remain the
same size in the presence of time reversal.)

B. Space groups with 3d irreps

In this appendix, we prove a su�cient condition for the existence of a 3d irrep given three group generators. We
show that it is satisfied by the generators of the little group at the point k0 = (⇡,⇡,⇡) for the space groups 198,
199, 205, 206, 212, 213, 214, 220 and 230. These are all cubic lattices1; hence, symmetry operators that leave the
(⇡,⇡,⇡) point invariant (up to a reciprocal lattice vector) include a 3-fold rotation about the x̂+ ŷ + ẑ axis, a 2-fold
rotation about the x̂ or ŷ axes, or any combination of these elements. These operators, potentially combined with
non-symmorphic translations, generate the little group at the (⇡,⇡,⇡) point. In some cases, additional generators,
which do not change the size of the 3d irrep, are also present.
We then consider the presence of time reversal symmetry. We show that in the presence of time reversal symmetry,

space groups 198, 205, 206, 212, 213 and 230 can host 6-fold degeneracies at the (⇡,⇡,⇡) point, while space groups
199, 214 and 220 can host 3-fold degeneracies at this point.

C. Su�cient condition for a 3d irrep

Consider the case when the little group at a particular high-symmetry point has three generators, G1,G2, and G3,
with matrix representations G1, G2, and G3, perhaps up to an overall phase (i.e, the representation of Gi is ei✓iGi).
Then if the matrices satisfy

G2
1 = G2

2 = G3
3 = 1, [G1, G2] = 0, G1G3 = G3G2, G2G3 = G3G1G2, (S4)

there exists a 3d irrep. Before proving this, we comment that Eq. (S4) places tight constraints on the operators:
clearly G3 is a three-fold rotation or screw and G1 and G2 are either two-fold rotations or screws (they could also be
mirrors or glides without any change to the logic). The defining axes of G1 and G2 must be perpendicular, otherwise
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(a) SGs 199 and 214 (b) SG 220

FIG. 1. Energy dispersion near a three-fold degeneracy at the P point in (a) SGs 199 and 214 and (b) SG 220. In the latter
case, pairs of bands remain degenerate in energy along the high-symmetry lines |�k

x

| = |�k
y

| = |�k
z

|.

holonomy around any loop encircling the line nodes is
given by w = �1.

Next, we consider the 6-fold band degeneracies. We
start with SGs 205, 206 and 230, in which TR symme-
try, T , times inversion, I, forces all bands to be two-fold
degenerate, as shown in Figs 2a and 2b. In SGs 206 and
230, the k · p Hamiltonian can be written as

H206 = H199 �H⇤
199 (3)

Due to T I, there is no U(1) topological number (Berry
flux) associated with these degeneracies. On the other
hand, the eigenvalues of SU(2) Wilson loop operators
come in complex conjugate pairs, which wind twice (in
opposite directions) as the Wilson loop is moved from the
top to the bottom of a sphere encircling the degeneracy
point.
Unlike the previous cases, SG 205 contains inversion

symmetry in the little group of the R point. This forces
the e↵ective Hamiltonian to be quadratic in �k. However,
it is still related to H199 by,

H205(�k) = H199(�k
0)�H⇤

199(�k
0) + F (�k)� F (�k),

(4)

where F (�k) is a diagonal matrix whose entries are
E1�k

2
x + E2�k

2
y + E3�k

2
z , and all cyclic permutations.

Due to its quadratic coordinate dependence, H205(�k)
has only bands of zero net Berry flux, and Wilson loop
eigenvalues do not wind.
We conclude our analysis of the 3- and 6-fold fermions,

with SGs 198, 212, and 213. Unlike the other 6-band
systems, these lack inversion symmetry, and so host six
bands with distinct energies. The linearized k ·p Hamil-
tonians may be written as,

H198(�k) =

 
H199(�, �k) bH199(0, �k)

b⇤H199(0, �k) �H⇤
199(�, �k)

!
, (5)

H212,213(�k) =

 
H199(⇡/2, �k0) bH199(0, �k0)

b⇤H199(0, �k0) �H⇤
199(⇡/2, �k

0)

!
,

where �k0 = (�kz, �kx,��ky) and b is an arbitrary param-
eter. The six eigenstates of these Hamiltonians have dis-
tinct energies except along the faces of the BZ, where the

spectrum degenerates into pairs related by the composi-
tion of a non-symmorphic C2 rotation and time reversal;
this degeneracy is shown in Fig. 2c. Since this symmetry
is antiunitary and squares to �1, these degeneracies are
stable to higher order terms in k · p.
Next, we examine the 8-fold fermions. In SGs 130 and

135, T I symmetry mandates doubly degenerate bands.
Close to the A point, the linearized k · p Hamiltonian
reads

H130 = H135 = �kz(a�2�3�3 + b�2�3�2 + c�2�3�1) (6)

+ �kx(�d�1�3�0 + e�1�2�3 + f�1�2�2 + g�1�2�1)

+ �ky(d�3�3�0 + e�3�2�3 + f�3�2�2 + g�3�2�1)

where a, b, . . . , g are real-valued parameters. This Hamil-
tonian has fourfold degenerate line nodes along lines
�ki = �kj = 0 with i 6= j; i, j 2 {x, y, z} which follow
the BZ edges, as shown in Fig. 3a. This is seen by noting
that the matrices multiplying any given �ki are part of a
Cli↵ord algebra. These lines are generally protected by
composites of time reversal and non-symmorphic mirror
symmetry. Due to T I symmetry, the U(1) holonomy of
these line nodes vanishes. However, they can be charac-
terized by the two (�1) eigenvalues of the SU(2) Wilson
loop encircling them.
A similar story holds for SGs 222, 223 and 230, with

H222 = H223 = �kz(a�3�1�3 + b�1�1�1 + c�1�1�2)

� �kx(
a

2
�1�1�3 +

a
p
3

2
�1�2�0 + b�3�1�1 + c�3�1�2)

+ �ky(
a

2
�2�1�0 �

a
p
3

2
�2�2�3 + b�0�1�2 � c�0�1�1),

(7)

and a similar expression for H230 after a permutation of
the �k’s. Besides the T I double degeneracy of all bands,
there are no additional degeneracies, as shown in Fig. 3b.
Finally, we examine the 8-fold degeneracy in SGs 218

and 220. Because both of these cases lack T I, they
have eight non-degenerate bands away from the high-
symmetry point. However, there is a degeneracy along
high-symmetry lines emanating from it. Along lines

C=2

C=-2

C=0

A special case: 3-fold Degeneracy (in several symmetry groups) 

In SPG-214 not needed to stabilize the fermion: New Chiral Anomaly and anomalous transport 
5

FIG. 4. Tight binding surface states for SG 214, showing
the surface density of states for a surface in the 1̄11 direction.
The x and y axes correspond to multiples of the reciprocal lat-
tice vectors g2 = 2⇡(1, 0, 1) and g3 = 2⇡(1, 1, 0) respectively.
There are Fermi arcs emanating from the points ±(0.25, 0.25)
which correspond to the surface projection of the P and �P

points. Inset shows the atoms in 9 unit cells of our tight-
binding model, with lines to indicate the nonzero hopping
amplitudes. Only p orbitals with intersite spin-orbit coupling
are included.

in the family of Ni3(BiS)2[38]. Fig. 5a shows the band
crossing is only .1eV above the Fermi level; its position
could be further tuned by doping. The analogous crossing
in SG 214 can be found in the family of La3PbI3[39];
Fig. 5b shows that the Fermi level is almost exactly at
the band crossing.

Space groups 220 and 230 can host 3-band and 8-band
crossings at the P and H points, respectively. In space
group 220, we find both of these fermions near the Fermi
energy in the systems A4Pn3 and R4Pn3 for A = Ca,
Sr, Ba, Eu; R = rare-earth element (i.g. La, Ce); Pn
(pnictogen) = As, Sb, Bi. Fig. 6 shows these crossings
in Ba4Bi3[40] and La4Bi3[41]. In space group 230, we
can see both of these fermions above the Fermi level in
SiO2[42], also shown in Fig. 6c.

The 6-band fermions in SG 198 can be found in the
families of PdAsS[43] and K3BiTe3[44], as shown in
Figs 7a and 7b. These band crossings are further from
the Fermi level, but can be moved closer by doping. Sim-
ilar fermions can be found closer to the Fermi level in the
compounds Li2Pd3B[45] (SG 212) and Re2W3C[46] (SG
213), shown in Figs 7c and 7d.

The quadratic 6-band fermions in SGs 205 can be
found in PdSb2[47], as shown in Fig. 7e, as well as in
the similar compounds FeS2 and PtP2. In SG 206, we
see a 6-band crossing in the family of KBiF6, as shown
in Fig. 7f, although it is .5 eV above the Fermi level.

The 8-band fermions required to exist in SG 130 are

exhibited in PdBi2O4[48] and WO3[49], above and below
the Fermi level, respectively, as shown in Figs 8a and 8b
respectively. The fourfold Dirac line nodes can clearly be
seen on the line joining the A and M points.

The 8-band fermions predicted to occur in SG 218 exist
in CsSn[50] and CsSi[51]; the band structure of CsSn
shows its unique splitting into four two-fold degenerate
bands in the kx = kz direction away from the R point
(Figs 8c and 8d). There is a similar 8-band fermion at
the H point in SG 220, which is shown in Fig. 6 for
Ba4Bi3[40] and La4Bi3[41].

The 8-band fermions predicted to occur in SG 223 are
exhibited in the candidates X3Y, where X is either Nb or
Ta and Y is any group A-IV or A-V element in the beta-
tungsten structure A15, as well as in the family MPd3S4,
where M is any rare-earth metal. The band structures
for Ta3Sb[52] and LaPd3S4[53] show the 8-band crossing
near the Fermi level, as shown in Figs 8e and 8f.

Outlook In this letter we have analyzed all possible
exotic fermion types that can occur in spin-orbit coupled
crystals with time reversal symmetry, going beyond the
Majorana-Weyl-Dirac classification. By virtue of their
band topology, these fermions can play host to novel
surface states, magnetotransport properties, and ARPES
signatures. Growth of many of the material candidates
mentioned above, including AsPdS, La3PbI3, La4Bi3,
LaPd3S4 and Ta3Sb is currently underway, and should
yield fruitful results.

On the theoretical side, there are several directions
which deserve future attention. First, gapping these de-
generacies by breaking the symmetries that protect them
can lead to novel symmetry-protected topological phases,
with new classes of 2d gapless surface modes. Further-
more, our symmetry analysis can be extended to crys-
tals with magnetic order. This requires an investigation
of representations of the 1191 remaining magnetic space
groups, which we are currently undertaking[54].
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FIG. 1. Energy dispersion near a three-fold degeneracy at the P point in (a) SGs 199 and 214 and (b) SG 220. In the latter
case, pairs of bands remain degenerate in energy along the high-symmetry lines |�k

x

| = |�k
y

| = |�k
z

|.

holonomy around any loop encircling the line nodes is
given by w = �1.

Next, we consider the 6-fold band degeneracies. We
start with SGs 205, 206 and 230, in which TR symme-
try, T , times inversion, I, forces all bands to be two-fold
degenerate, as shown in Figs 2a and 2b. In SGs 206 and
230, the k · p Hamiltonian can be written as

H206 = H199 �H⇤
199 (3)

Due to T I, there is no U(1) topological number (Berry
flux) associated with these degeneracies. On the other
hand, the eigenvalues of SU(2) Wilson loop operators
come in complex conjugate pairs, which wind twice (in
opposite directions) as the Wilson loop is moved from the
top to the bottom of a sphere encircling the degeneracy
point.

Unlike the previous cases, SG 205 contains inversion
symmetry in the little group of the R point. This forces
the e↵ective Hamiltonian to be quadratic in �k. However,
it is still related to H199 by,

H205(�k) = H199(�k
0)�H⇤

199(�k
0) + F (�k)� F (�k),

(4)

where F (�k) is a diagonal matrix whose entries are
E1�k

2
x + E2�k

2
y + E3�k

2
z , and all cyclic permutations.

Due to its quadratic coordinate dependence, H205(�k)
has only bands of zero net Berry flux, and Wilson loop
eigenvalues do not wind.

We conclude our analysis of the 3- and 6-fold fermions,
with SGs 198, 212, and 213. Unlike the other 6-band
systems, these lack inversion symmetry, and so host six
bands with distinct energies. The linearized k ·p Hamil-
tonians may be written as,

H198(�k) =

 
H199(�, �k) bH199(0, �k)

b⇤H199(0, �k) �H⇤
199(�, �k)

!
, (5)

H212,213(�k) =

 
H199(⇡/2, �k0) bH199(0, �k0)

b⇤H199(0, �k0) �H⇤
199(⇡/2, �k

0)

!
,

where �k0 = (�kz, �kx,��ky) and b is an arbitrary param-
eter. The six eigenstates of these Hamiltonians have dis-
tinct energies except along the faces of the BZ, where the

spectrum degenerates into pairs related by the composi-
tion of a non-symmorphic C2 rotation and time reversal;
this degeneracy is shown in Fig. 2c. Since this symmetry
is antiunitary and squares to �1, these degeneracies are
stable to higher order terms in k · p.

Next, we examine the 8-fold fermions. In SGs 130 and
135, T I symmetry mandates doubly degenerate bands.
Close to the A point, the linearized k · p Hamiltonian
reads

H130 = H135 = �kz(a�2�3�3 + b�2�3�2 + c�2�3�1) (6)

+ �kx(�d�1�3�0 + e�1�2�3 + f�1�2�2 + g�1�2�1)

+ �ky(d�3�3�0 + e�3�2�3 + f�3�2�2 + g�3�2�1)

where a, b, . . . , g are real-valued parameters. This Hamil-
tonian has fourfold degenerate line nodes along lines
�ki = �kj = 0 with i 6= j; i, j 2 {x, y, z} which follow
the BZ edges, as shown in Fig. 3a. This is seen by noting
that the matrices multiplying any given �ki are part of a
Cli↵ord algebra. These lines are generally protected by
composites of time reversal and non-symmorphic mirror
symmetry. Due to T I symmetry, the U(1) holonomy of
these line nodes vanishes. However, they can be charac-
terized by the two (�1) eigenvalues of the SU(2) Wilson
loop encircling them.

A similar story holds for SGs 222, 223 and 230, with

H222 = H223 = �kz(a�3�1�3 + b�1�1�1 + c�1�1�2)

� �kx(
a

2
�1�1�3 +

a
p
3

2
�1�2�0 + b�3�1�1 + c�3�1�2)

+ �ky(
a

2
�2�1�0 �

a
p
3

2
�2�2�3 + b�0�1�2 � c�0�1�1),

(7)

and a similar expression for H230 after a permutation of
the �k’s. Besides the T I double degeneracy of all bands,
there are no additional degeneracies, as shown in Fig. 3b.

Finally, we examine the 8-fold degeneracy in SGs 218
and 220. Because both of these cases lack T I, they
have eight non-degenerate bands away from the high-
symmetry point. However, there is a degeneracy along
high-symmetry lines emanating from it. Along lines
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(a) SG 205 (b) SGs 206 and 230 (c) SGs 198, 212 and 213

FIG. 2. Energy dispersion near a six-fold degeneracy in (a) SG 205, (b) SG 206 and 230, and (c) SGs 198, 212, and 213. In
SGs 198, 212, and 213 bands become degenerate in pairs along the faces �k

i

= 0 of the BZ. In SGs 205, 206 and 230, all bands
are two-fold degenerate due to inversion symmetry.

(a) SGs 130 and 135 (b) SGs 222, 223 and 230 (c) SGs 218 and 220

FIG. 3. Energy dispersion near an eight-fold degeneracy in (a) SGs 130 and 135, (b) SGs 222 and 223, and (c) SGs 218 and
220. (a) and (b) show pairwise degeneracy due to inversion symmetry. In addition, in (a), two degenerate bands form four-fold
degenerate line nodes along the edges of the BZ. In (c) the eight-fold degeneracy splits into four non-degenerate and two doubly
degenerate pairs of bands along the high symmetry |�k

x

| = |�k
y

| = |�k
z

| lines.

|�kx| = |�ky| = |�kz|, the 8-fold degeneracy splits into
four singly degenerate bands and two pairs of doubly de-
generate bands. In addition, along lines where two of the
�ki are zero, and along lines where �ki = �kj , �kk = 0,
there are four pairs of doubly degenerate bands. Unlike
SGs 198, 212 and 213 above, however, there are no ad-
ditional degeneracies along high-symmetry planes. The
spectrum is shown in Fig. 3c. The k · p Hamiltonian is
unenlightening, but is given in the Supp. Mat.

Experimental signatures The new fermions exhibit
novel experimental signatures. First, we focus on the
3�fold degeneracy in SGs 199 and 214. Because the de-
generacy at the P point carries net Berry flux |⌫| = 2,
we expect that on a surface, two Fermi arcs emerge from
the surface projection of the P point. Furthermore, in
the presence of TR, a corresponding 3�fold degeneracy
exists at the �P point, whose surface projection will be
the origin for two more Fermi arcs. These four Fermi arcs
must terminate on the surface projection of four Weyl
points (or two double Weyl points), which we predict
must exist elsewhere in the BZ. To verify this, we con-
structed a toy tight-binding model for SG 214, with 4
atoms per unit cell, and three p orbitals from each atom
(inset Fig. 4). Fig. 4 shows the surface density of states
for a surface in the 1̄11 direction in the first surface BZ.
Two pairs of Fermi arcs are clearly visible, emanating
from the surface projections of the P and �P points.
Breaking time-reversal symmetry can split the degener-

acy between the Fermi arcs at the P and �P point in
SG 199, but not in SG 214, where a C2 rotation relates
these points.

In addition to Fermi arc surface states, the threefold
fermions will also exhibit anomalous negative magne-
toresistance and a new chiral anomaly due to the Berry
curvature of the bands. While a full analysis is forth-
coming, semiclassical considerations[35] suggest that the
magnetoresistance in SGs 199 and 214 match that of a
double Weyl point, although the density of states corre-
sponds to a linear dispersion. Due to the nonvanishing
Berry curvature, the 3-fold fermions cannot be gapped
by small crystal-symmetry breaking perturbations, but
can be split into a pair of single Weyl points.

Since the rest of our new fermions do not host net
Berry curvature, there is no guarantee of topologically
protected surface states. The line node in SGs 130, 135,
and 220 may host Fermi drum surface state[34], although
this will not be robust to breaking of the crystal symme-
try. The new fermions are detectable via ARPES and
through quantum oscillation experiments.

Material realizations We propose candidate
materials[36, 37] which realize each of the new types of
fermions. We have computed the band structure of each
candidate – shown in Figs 5–8 – to confirm that the
desired band crossings exist and are relatively close to
the Fermi level.

The exotic 3-band fermions in SG 199 can be found

3-fold, 6-fold, 8-fold Crossings: All Different Fermions
For 8-fold see also Benjamin J. Wieder, Youngkuk Kim, A. M. Rappe, C. L. Kane, arXiv:1512.00074 
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FIG. 1. Energy dispersion near a three-fold degeneracy at the P point in (a) SGs 199 and 214 and (b) SG 220. In the latter
case, pairs of bands remain degenerate in energy along the high-symmetry lines |�k
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holonomy around any loop encircling the line nodes is
given by w = �1.

Next, we consider the 6-fold band degeneracies. We
start with SGs 205, 206 and 230, in which TR symme-
try, T , times inversion, I, forces all bands to be two-fold
degenerate, as shown in Figs 2a and 2b. In SGs 206 and
230, the k · p Hamiltonian can be written as

H206 = H199 �H⇤
199 (3)

Due to T I, there is no U(1) topological number (Berry
flux) associated with these degeneracies. On the other
hand, the eigenvalues of SU(2) Wilson loop operators
come in complex conjugate pairs, which wind twice (in
opposite directions) as the Wilson loop is moved from the
top to the bottom of a sphere encircling the degeneracy
point.
Unlike the previous cases, SG 205 contains inversion

symmetry in the little group of the R point. This forces
the e↵ective Hamiltonian to be quadratic in �k. However,
it is still related to H199 by,

H205(�k) = H199(�k
0)�H⇤

199(�k
0) + F (�k)� F (�k),

(4)

where F (�k) is a diagonal matrix whose entries are
E1�k

2
x + E2�k

2
y + E3�k

2
z , and all cyclic permutations.

Due to its quadratic coordinate dependence, H205(�k)
has only bands of zero net Berry flux, and Wilson loop
eigenvalues do not wind.
We conclude our analysis of the 3- and 6-fold fermions,

with SGs 198, 212, and 213. Unlike the other 6-band
systems, these lack inversion symmetry, and so host six
bands with distinct energies. The linearized k ·p Hamil-
tonians may be written as,

H198(�k) =

 
H199(�, �k) bH199(0, �k)

b⇤H199(0, �k) �H⇤
199(�, �k)

!
, (5)

H212,213(�k) =

 
H199(⇡/2, �k0) bH199(0, �k0)

b⇤H199(0, �k0) �H⇤
199(⇡/2, �k

0)

!
,

where �k0 = (�kz, �kx,��ky) and b is an arbitrary param-
eter. The six eigenstates of these Hamiltonians have dis-
tinct energies except along the faces of the BZ, where the

spectrum degenerates into pairs related by the composi-
tion of a non-symmorphic C2 rotation and time reversal;
this degeneracy is shown in Fig. 2c. Since this symmetry
is antiunitary and squares to �1, these degeneracies are
stable to higher order terms in k · p.
Next, we examine the 8-fold fermions. In SGs 130 and

135, T I symmetry mandates doubly degenerate bands.
Close to the A point, the linearized k · p Hamiltonian
reads

H130 = H135 = �kz(a�2�3�3 + b�2�3�2 + c�2�3�1) (6)

+ �kx(�d�1�3�0 + e�1�2�3 + f�1�2�2 + g�1�2�1)

+ �ky(d�3�3�0 + e�3�2�3 + f�3�2�2 + g�3�2�1)

where a, b, . . . , g are real-valued parameters. This Hamil-
tonian has fourfold degenerate line nodes along lines
�ki = �kj = 0 with i 6= j; i, j 2 {x, y, z} which follow
the BZ edges, as shown in Fig. 3a. This is seen by noting
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|�kx| = |�ky| = |�kz|, the 8-fold degeneracy splits into
four singly degenerate bands and two pairs of doubly de-
generate bands. In addition, along lines where two of the
�ki are zero, and along lines where �ki = �kj , �kk = 0,
there are four pairs of doubly degenerate bands. Unlike
SGs 198, 212 and 213 above, however, there are no ad-
ditional degeneracies along high-symmetry planes. The
spectrum is shown in Fig. 3c. The k · p Hamiltonian is
unenlightening, but is given in the Supp. Mat.

Experimental signatures The new fermions exhibit
novel experimental signatures. First, we focus on the
3�fold degeneracy in SGs 199 and 214. Because the de-
generacy at the P point carries net Berry flux |⌫| = 2,
we expect that on a surface, two Fermi arcs emerge from
the surface projection of the P point. Furthermore, in
the presence of TR, a corresponding 3�fold degeneracy
exists at the �P point, whose surface projection will be
the origin for two more Fermi arcs. These four Fermi arcs
must terminate on the surface projection of four Weyl
points (or two double Weyl points), which we predict
must exist elsewhere in the BZ. To verify this, we con-
structed a toy tight-binding model for SG 214, with 4
atoms per unit cell, and three p orbitals from each atom
(inset Fig. 4). Fig. 4 shows the surface density of states
for a surface in the 1̄11 direction in the first surface BZ.
Two pairs of Fermi arcs are clearly visible, emanating
from the surface projections of the P and �P points.
Breaking time-reversal symmetry can split the degener-

acy between the Fermi arcs at the P and �P point in
SG 199, but not in SG 214, where a C2 rotation relates
these points.

In addition to Fermi arc surface states, the threefold
fermions will also exhibit anomalous negative magne-
toresistance and a new chiral anomaly due to the Berry
curvature of the bands. While a full analysis is forth-
coming, semiclassical considerations[35] suggest that the
magnetoresistance in SGs 199 and 214 match that of a
double Weyl point, although the density of states corre-
sponds to a linear dispersion. Due to the nonvanishing
Berry curvature, the 3-fold fermions cannot be gapped
by small crystal-symmetry breaking perturbations, but
can be split into a pair of single Weyl points.

Since the rest of our new fermions do not host net
Berry curvature, there is no guarantee of topologically
protected surface states. The line node in SGs 130, 135,
and 220 may host Fermi drum surface state[34], although
this will not be robust to breaking of the crystal symme-
try. The new fermions are detectable via ARPES and
through quantum oscillation experiments.

Material realizations We propose candidate
materials[36, 37] which realize each of the new types of
fermions. We have computed the band structure of each
candidate – shown in Figs 5–8 – to confirm that the
desired band crossings exist and are relatively close to
the Fermi level.

The exotic 3-band fermions in SG 199 can be found
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3-fold or 6-fold fermions in SGs 198-214

SG 198

This space group has a simple cubic Bravais lattice without inversion, and a 6-fold fermion can occur at the R point
in Fig. 1(b). The antiunitary operator of the special little group can be TC̄2y, where C̄2y is followed by a fractional
translation ~t(0, 1/2, 1/2). This kind of 6-fold fermions can be found in the family of AsPdS and K3BiTe3, shown in
Fig. 2.
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FIG. 2. A 6-fold fermion can occur at the R point in the dashed circle. (a) The SOC band structure of AsPdS shows a 6-fold
fermion occurs below E
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. (b) The 6-fold fermion occurs about E
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in the SOC band structure of K3BiTe3, which can be tuned
by electron-doping.
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This space group has a body-centered cubic Bravais lattice without inversion, and a 3-fold fermion can occur at the
P point in Fig. 1(c). There is no any antiunitary symmetry in the P -point little group even considering time-reveal
symmetry in the system. This 3-fold fermion can be found in the family of Ni
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in Fig. 1(b). The antiunitary operator of the special little group can be TC̄2y, where C̄2y is followed by a fractional
translation ~t(0, 1/2, 1/2). This kind of 6-fold fermions can be found in the family of AsPdS and K3BiTe3, shown in
Fig. 2.
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FIG. 2. A 6-fold fermion can occur at the R point in the dashed circle. (a) The SOC band structure of AsPdS shows a 6-fold
fermion occurs below E

F

. (b) The 6-fold fermion occurs about E
F

in the SOC band structure of K3BiTe3, which can be tuned
by electron-doping.

SG 199

This space group has a body-centered cubic Bravais lattice without inversion, and a 3-fold fermion can occur at the
P point in Fig. 1(c). There is no any antiunitary symmetry in the P -point little group even considering time-reveal
symmetry in the system. This 3-fold fermion can be found in the family of Ni
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X
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::::
Pb,
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(A
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=

::
K,

::::
Rb;
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B
:::
=

:::
Ge,

::::
Sn,

::::
Pb) [? ], shown in Fig. 3.
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FIG. 3. A 3-fold fermion can occur at the P point.
:::
(a)

::::
The

::::
SOC

:::::
band

::::::::
structure

::
of

::::::::
Ni3(BiS)2::

is
::::::::
computed,

::::
with

:::
the

::::::
fermion

:
just

being slightly above E
F

.
::
(b)

:
The SOC band structure of Ni3(BiS):K2::::::

Pb2O3 is computed
::::::::
presented,

:::::::
hosting

:::
the

:::::
3-fold

:::::::
fermion

::
in

:::
the

::::::
valence

::::::
energy.

AsPdS, 
K3BiTe3
M3(XS)2 where M= Ni,Pd, X= Pb, Bi
A2 B2 O3 (A=K, Rb, B= Ge, Sn, Pb) 
PdSb2

3

SG 205

This space group has a simple cubic Bravais lattice with inversion, and a 6-fold fermion can occur at the R point
in Fig. 1(b). The antiunitary operator of the special little group can be TI. This 6-fold fermion can be found in the
family of PdSb2 ( FeS2, PtP2), shown in Fig. 4.
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FIG. 4. A 6-fold fermion occur below E
F

at the R point in the SOC band structure of PdSb2.

SG 206

This space group has a body-centered cubic Bravais lattice with inversion, and a 6-fold fermion can occur at the P
point in Fig. 1(c). The antiunitary operator of the special little group can be TI. This 6-fold fermion can be found
in the family of KBiF6, shown in Fig. 5.
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FIG. 5. A 6-fold fermion occur above E
F

at the P point in the SOC band structure of KBiF6, which indicates that the
electron-doping is necessary to approach the fermion.
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SGs 212 and 213

These space groups have a simple cubic Bravais lattice with
:::::::
without inversion, and a 6-fold fermion can occur at

the R point in Fig. 1(b).
::::
The

::::::::::
antiunitary

::::::::
operator

::
of

::::
the

::::::
special

:::::
little

:::::
group

::::
can

:::
be

:::::
TC̄2y,::::::

where
::::
C̄2y::

is
::::::::
followed

::
by

::
a

::::::::
fractional

::::::::::
translation

:::::::::::::
~t(0, 1/2, 1/2).

::::
The

::::::::
fermions

::::::
could

:::
are

::
in

::::
the

:::::::
systems

:::::::::::::
Li2(Pd/Pt)3B:

[? ]
:::
and

::::::::::::::
Re2(W/Mo)3C [?

],
::::::
shown

:::
in

::::
Fig.

::
6.

:
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FIG. 6.
::
A

:::::
6-fold

:::::::
fermion

:::
can

:::::
occur

::
at

:::
the

::
R

::::::
point.

:::
(a)

::
is

:::
the

::::
SOC

:::::
band

::::::::
structure

::
of

::::::::
Li2Pd3B.:::

(b)
::
is

:::
the

::::
SOC

:::::
band

::::::::
structure

:
of
:::::::::
Re2W3C.

SG 214

This space group has a body-centered cubic Bravais lattice without inversion, and a 3-fold fermion can occur at the
P point in Fig. 1(c) even with an antiunitary generator TC4z. This unique 3-fold fermion can be found in the family
of La3PbI3, shown in Fig. 7.
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FIG. 7. An unique 3-fold fermion can occur at the P point The SOC band structure of La3PbI3, being right at the E
F

.
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3-fold or 6-fold fermions in SGs 198-214
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This space group has a simple cubic Bravais lattice without inversion, and a 6-fold fermion can occur at the R point
in Fig. 1(b). The antiunitary operator of the special little group can be TC̄2y, where C̄2y is followed by a fractional
translation ~t(0, 1/2, 1/2). This kind of 6-fold fermions can be found in the family of AsPdS and K3BiTe3, shown in
Fig. 2.
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FIG. 2. A 6-fold fermion can occur at the R point in the dashed circle. (a) The SOC band structure of AsPdS shows a 6-fold
fermion occurs below E

F

. (b) The 6-fold fermion occurs about E
F

in the SOC band structure of K3BiTe3, which can be tuned
by electron-doping.

SG 199

This space group has a body-centered cubic Bravais lattice without inversion, and a 3-fold fermion can occur at the
P point in Fig. 1(c). There is no any antiunitary symmetry in the P -point little group even considering time-reveal
symmetry in the system. This 3-fold fermion can be found in the family of Ni

::
M3(BiS:::

XS)2 :::
(M

::
=
::::
Ni,

::::
Pd;

::
X

::
=

::::
Pb,

:::
Bi) [? ]

::::
and

:::::::
A2B2O3:::

(A
:::
=

::
K,

::::
Rb;

::
B
:::
=

:::
Ge,

::::
Sn,

::::
Pb) [? ], shown in Fig. 3.
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FIG. 3. A 3-fold fermion can occur at the P point.
:::
(a)

::::
The

::::
SOC

:::::
band

::::::::
structure

::
of

::::::::
Ni3(BiS)2::

is
::::::::
computed,

::::
with

:::
the

::::::
fermion

:
just

being slightly above E
F

.
::
(b)

:
The SOC band structure of Ni3(BiS):K2::::::

Pb2O3 is computed
::::::::
presented,

:::::::
hosting

:::
the

:::::
3-fold

:::::::
fermion

::
in

:::
the

::::::
valence

::::::
energy.
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FIG. 7. An unique 3-fold fermion can occur at the P point The SOC band structure of La3PbI3, being right at the E
F

.
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The Different Classes of New Fermions: 3,6, 8 Fold

5

8-fold fermions in SGs

SGs 130 and 135

These two space groups have a tetragonal Bravais lattice with inversion, and must have 8-fold degeneracies at the
time-reversal invariant A point in Fig. 1(a).

:::
The

::::::
8-fold

:::::::
fermion

:::
can

:::
be

::::::
found

::
in

:::
the

:::::::
system

::::::::
PdBi2O4:[? ],

:::::::::
AuBi2O5 [?

]
::::
and

:::::
WO3 [? ],

::::::
shown

::
in
:::::
Fig.

::
8.

:

Γ      X  M Γ      Z  A  M-0.5

0

0.5

1

1.5

En
er

gy
(e

V
)

PdBi2O4

EF

Γ      X  M Γ      Z  A  M-1.5

-1

-0.5

0

0.5

En
er

gy
(e

V
)

WO3

EF

FIG. 8.
:::
An

:::::
8-fold

::::::
fermion

::::
can

:::::
occur

::
at

:::
the

::
A

:::::
point.

:::
(a)

::
is

:::
the

::::
SOC

:::::
band

::::::::
structure

::
of

::::::::
PdBi2O4.:::

(b)
::
is
:::
the

:::::
SOC

::::
band

::::::::
structure

:
of
::::::
WO3.:

SGs 218

This space group has a simple cubic Bravais lattice without inversion, and an 8-fold fermion can occur at the R
point in Fig. 1(b), which can be found below EF in the family of CsSn (CsSi), shown in Fig. 9.
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FIG. 9. An 8-fold fermion can occur at the R point in the SOC band structure of CsSn.

SGs 222 and 223

These two space groups have a simple cubic Bravais lattice with inversion, and an 8-fold fermion can occur at the
R point in Fig. 1(c). There are lots of candidates (X3Y for X = Nb, Ta and Y = A-IV, A-V) in the beta-tungsten
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A4Pn3 where A= Ca, Sr, Ba, Eu and R= La, Ce and 
Pn = pnictogen (As, Sb, Bi)
MPd3S4 where M= rare earth (see La very close to 
the Fermi level) 
X3Y where X=Nb,Ta and Y= A-IV; A-V (Sb for ex)
Th3P4, PdBi2O4, AuBi2O5, WO3, CsSn, CsSi
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FIG. 9. 8-fold fermions at the A point in (a) CuBi2O4, (b) PdBi2O4, and (c) PdS, and at the R point in (d) CsSn.
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(a) Ta3Sb (SG 223)
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FIG. 10. 8-fold fermions at the R point in (a) Ta3Sb, (b) LaPd3S4 and (c) Nb3Bi.

degenerate bands in the kx = kz direction away from the
R point in Fig. 9d. There is a similar 8-band fermion
at the H point in SG 220, which is shown in Fig. 7 for
Ba4Bi3[51] and La4Bi3[65].

The 8-band fermions predicted to occur in SG 223 are
exhibited in the candidates X3Y, where X is either Nb or
Ta and Y is any group A-IV or A-V element in the beta-
tungsten structure A15, as well as in the family MPd3S4,
where M is any rare-earth metal. The band structures
for Ta3Sb (powder)[66] and LaPd3S4[67] show the 8-band
crossing within nearly .1eV of Fermi level, as shown in
Figs 10a and 10b. Fig. 10c shows Nb3Bi (powder)[68],
which has two 8-fold fermions within .1eV of the Fermi
level. An exhaustive database search is currently under-
way for all filling-enforced semimetals with new fermions

close to the Fermi level.

Outlook In this letter we have analyzed all possible
exotic fermion types that can occur in spin-orbit coupled
crystals with time reversal symmetry going beyond the
Majorana-Weyl-Dirac classification. By virtue of their
band topology, these fermions can play host to novel
surface states, magnetotransport properties, and ARPES
signatures. Growth of many of the material candidates
mentioned above, including AsPdS, La3PbI3, La4Bi3,
LaPd3S4 and Ta3Sb is currently underway, and should
yield fruitful results in ARPES and magnetotransport
experiments.

As we have emphasized throughout, non-symmorphic
crystal symmetries were essential for stabilizing these
fermions – it is the presence of half-lattice translations



Conclusions
• We have given al possible non-symmorphic space 

groups where 3fold, 6fold and 8 fold degeneracies 
can occur  

• We have also given some possible experimental 
signatures 

• A list of potential candidates displaying these 
properties has been reported.
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