

Mathias Kläui Mainz, 19.8.2016						
2. Generation and detection of the SSE signal						
Longit	Colorcode	Material	Thickness			
	Non.ferro. metal	Pt (Platinum)	8-11nm			
$\vec{\nabla}T$	Ferrimag. film	YIG (Yttrium Iron Garnet)	20-300nm			
	Substrate	GGG (Gadolinium Gallium Garnet)	500µm			
	Isolation & Thermal Connection	Al ₂ O ₃ & thermal conduction tape	~800µm			
Zt State and a	Heat bath	Copper				
	tion of j _s using th udinal → no par	e inverse Spin Ha asitic temperature	all Effect e gradient			
K. Uchida et al. APL 97 , 262504 (2010)						
YIG						
¹ A. Kehlberger et al., J. Appl. Phys. 115 , 17C731 (2014); M.	Onbasli et al., APL Mate	erials 2, 106102 (2014).				

Mathi	ias Kläui		Mainz, 19.8.2016			
7. Interface effect in GIG (Gd Iron Garnet)/NM						
		SSE in Gd	IG (41 nm) / Pt bilayer			
	45 K 3 (41 nm) 73 K 3 (41 nm) 100 Tempe	"Untreated" Interface 153 K "Etched" Interface 153 K 200 30 arature (K)	 Unaltered interface vs. in-situ oxygen etching Reduced amplitude T_{sign1} remains unchanged T_{sign2} shifted to higher temperatures Identical bulk system → shift of T_{sign2} due to changed interface exchange coupling Possible explanation Increased damping/ reduced transmissivity of β mode Less effective coupling of 3d Fe spins to Pt conduction electrons at etched interface 			
Correlation between interface structure and transmissivity of particular magnon modes						

Mathias Kläui	Mainz, 19.8.2016	
Summary:		
 Spin Seebeck Effect: The origin of the measured signals are thermal magnonic spin currents generated by the longitudinal SSE in the bulk ferrimagnet. 	to Anime	
 Both the bulk properties (film thickness) and the interface (ISHE detector) govern the temperature dependence. SSE in GdIG is found to exhibit 2 sign changes: at the magnetization compensation point and at lower temperature. Different interfaces transmit the different magnon modes differently. Spin transport by magnons occurs in ferro- and antiferromagnets with an amplification at T_{Néel} 	ferromagnetic insulator normal metal ferromagnetic insulator normal metal ferromagnetic insulator ferromagnetic insula	
References: Phys. Rev. Lett. 115, 096602 (2015); Phys. Rev. X (Nature Commun. 7, 10452 (2016); Nature Photon. 1	5, 031012 (2016); 0, 483 (2016)	