Spin Superfluidity and Long Range Transport in Thin-Film Ferromagnets

<u>Arne Brataas</u>

 (\mathcal{A})

CB

Norwegian University of Science and Technology

Collaborators

Hans Skarsvåg

Cecilia Holmqvist

H. Skarsvåg, C. Holmqvist, and A. Brataas, PRL 115, 237201 (2015)

Question

So Can a thin-film ferromagnet behave like a superfluid ?

- >>> New phase-coherent spin-transport properties
- Spin transport without significant losses over long distances
- Low-dissipation
 - Interconnects
 - spin logic devices
 - nonvolatile magnetic memory devices.

NO

Question 2:

∞ Can we realize spin superfluidity in other geometries involving ferromagnets ?

YES

Outline

- ∞ Spin superfluidity
- ∞ Experimental suggestion
- nesults 🔊

Spin Superfluidity

- ∞ E. B. Sonin, Advanced in Physics 69:3, 181 (2010)
- ∞ Ferromagnetic insulator thin film
- ∞ Free energy

$$F = A(\nabla \boldsymbol{m})^2 + 2\pi M_S^2 (\boldsymbol{m} \cdot \hat{z})^2$$

Spin Superfluidity

∞ Free energy

$$F = A(\nabla \boldsymbol{m})^2 + 2\pi M_S^2 (\boldsymbol{m} \cdot \hat{z})^2$$

∞ Magnetization

$$\boldsymbol{m} = (\sqrt{1 - m_z^2} \cos(\varphi), \sqrt{1 - m_z^2} \sin(\varphi), m_z)$$

Spin Superfluidity

∞ Free energy

$$F = A(\nabla \boldsymbol{m})^2 + 2\pi M_S^2 (\boldsymbol{m} \cdot \hat{z})^2$$

∞ Magnetization

$$\boldsymbol{m} = (\sqrt{1 - m_z^2} \cos(\varphi), \sqrt{1 - m_z^2} \sin(\varphi), m_z)$$

∞ Hydrodynamic equations

Comparison

Spin superfluidity (SSF)	Conventional superfluidity
Out-of-plane component m_z , in-plane angle φ	Superfluid density n , order parameter φ
Hydrodynamic eqs. for m_z and $arphi$	Hydrodynamic eqs. for n and $arphi$
Spin current $J_s \propto \nabla \varphi$	Mass current $J \propto \nabla \varphi$
Linear soundlike spectrum	Linear spectrum of density waves: sound waves
Stability of current-carrying states: Landau criterion	Stability of current-carrying states: Landau criterion

E. B. Sonin, Advances in Physics 59:3, 181 (2010)

Spin Superfluidity in N-FM-N devices

- ∞ YIG with Pt leads
- Injection of z-polarized spins
- so Gilbert damping α

$$\dot{\varphi} = \frac{K}{s}m_z + \alpha \,\dot{m}_z;$$
$$\dot{m}_z = \frac{A}{s}\nabla^2 \varphi - \alpha \dot{\varphi}$$

S. Takei and Y. Tserkovnyak, PRL 112, 227201 (2014)

Precession frequency

$$\Omega = \frac{\mu_s}{\hbar} \frac{g_L^{\uparrow\downarrow}}{g_L^{\uparrow\downarrow} + g_R^{\uparrow\downarrow} + g_\alpha}$$

where $g_{\alpha} = 4\pi \alpha s L/\hbar$

Spin current

$$J_R^S = \frac{\mu_S}{4\pi} \frac{g_L^{\uparrow\downarrow} g_R^{\uparrow\downarrow}}{g_L^{\uparrow\downarrow} + g_R^{\uparrow\downarrow} + g_\alpha}$$

Spin Superfluidity in N-FI-N Systems

∞ Chen et al (PRB'14)

- Easy-plane and in-plane anisotropy
- Precession vs. Pinning

- ௺ Takei&Tserkovnyak
 - Non-local magnetoresistance PRL'15

Will it Work

NOT, REALLY

Why Not ?

- ∞ Missing physics
 - The total dipole-dipole interaction
- 🔊 Scaling
 - Exchange interaction

$$F \sim k^2 \sim 1/r^2$$

• Dipole-dipole interaction

$$F \sim k \sim 1/r$$

Dipole-dipole interaction dominates long-range physics

Dipole-Dipole Interaction

50 The dipole-dipole interaction is important for spin superfluidity

$$H_{\rm dip} = H_{\rm dip}^{\rm (stat)} + H_{\rm dip}^{\rm (dyn)}$$

Static demagnetization field dynamical dipole field

So The static demagnetization field (easy-plane anisotropy)

$$H_{\rm dip} = -4\pi M_s m_z \hat{z}$$

- 50 The dynamical dipole field
 - Qualitatively changes the low-energy dispersion relation
 - Kalinikos and A. N. Slavin, J. Phys. C: Solid State Phys. 19, 7013 (1986)
- The dynamical dipole field equally important for spin superfluidity

Spin-wave in Thin-Film Ferromagnets

- ∞ Low-energy spin-waves
 - Dominated by dipole-dipole interaction
 - Anisotropic dispersion relation
- 5 FVMSW
 - Forward Volume MagnetoStatic Spin-Waves
- BVMSW
 - Backward Volume MagnetoStatic
 Spin-Waves
- ∞ MSSW
 - Magnetostatic Surface Spin-Waves

Long Range Spin Transport: Two Challenges

- ∞ 1: Decay of spin signal due to Gilbert damping
- ∞ 2: Strong dipole-dipole interaction

Solving Challenge 1: Proposed Setup

- Apply out-of-plane polarized spin accumulation to thin film (left)
- ∞ Induce 2π magnetization rotations in-plane
- Measure spin current via spin-pumping (right)

Length Dependence of Spin Signal

 \wp Output signal μ_R depends on $A_{in(out)/}V$

- By scaling injector/detector area with distance
 - No length dependence of spin signal
- So Extremely long-range spin transport without any losses

Challenge 2: Dipole-Dipole Interaction

∞ LLGS equation

$$\dot{\mathbf{m}} = -\gamma \mathbf{m} \times \mathbf{H}_{eff} + \alpha \mathbf{m} \times \dot{\mathbf{m}} + \boldsymbol{\tau}_{STT}$$

∞ Effective magnetic field

$$\mathbf{H}_{\text{eff}} = \mathbf{H}_{\text{ext}} + \mathbf{H}_{\text{dip}} = (2A / M_s) \nabla^2 m - 4\pi M_s m_z \mathbf{z} + \mathbf{H}_{\text{dip}}^{(\text{dyn})}$$

∞ Spin-transfer torque

$$\mathbf{\tau}_{\rm STT} = -(\alpha \,!/\,\hbar)\mathbf{m} \times \mathbf{m} \times \mathbf{\mu}$$

p> Damping

$$\alpha = \alpha_0 + \alpha'$$

Intrinsic Gilbert damping

Numerical Approach

 Solve the spatiotemporal LLG using RK4 and MuMax3
 Calculate

$$\boldsymbol{\mu}_{R} \sim \hbar \left\langle \mathbf{m} \times \dot{\mathbf{m}} \right\rangle_{z}$$

as a function of

and

L

Example of Numerical Results

Without dipole field

With dipole field

length L=300 nm; thickness d=5 nm; # of points N^2 =4225

Results – Square Sample

Shape anisotropy - pinning

Threshold, μ_L^{thr}

H. Chen, A. D. Kent, A. H. MacDonald and I. Sodemann, PRB 90, 220401 (2014)

$$g_{L/R}^{\perp} = 5 \cdot 10^{14} \text{cm}^{-2} \text{e}^{-2}/\text{h}$$

$$\alpha_0 = 1 \cdot 10^{-3} \qquad \qquad 4\pi M_S = 1750 \text{ G}$$

$$A = 3.7 \cdot 10^{-7} \text{ erg/cm} \qquad \qquad d_{YIG} = 5 \text{ nm}$$

Results – Square Sample

Ideal behavior:

- Linear increase as function of μ_L
- Constant as function of *L*

Results – Square Sample

Saturation, μ_L^{sat} Squeezing:

- $\begin{array}{ll} \text{SSF for} & \mu_L^{thr} < \mu_L < \mu_L^{sat} \\ \text{no SSF for} & \mu_L^{sat} < \mu_L^{thr} \end{array}$

Can We Do Better

Results - Disk

Constant spin accumulation Constant size μ_L [µeV] D [nm] Ideals • 5.0 • 500 $\langle \mu_{\rm R}^{\rm z} \rangle [\mu eV]$ $\langle \mu_{\rm R}^{\rm z} \rangle$ [µeV] .3.5 1000 • 2.0 - SSF • 1.0 0 5 2 3 4 500 1000 1500 2000 1 6 0 μ_L [µeV] D [nm] No pinning, $\mu_L^{th} = 0$ Still squeezing effect ٠ Long-range transport, but with lower efficiency than SSF: ~80% drop over interval D=100 nm - 2

 μm

Can We Do Better?

Problem

Solution

3. Dipole field: $\mathbf{h} = 4\pi M_s \int \hat{G}(\mathbf{r} - \mathbf{r}') \mathbf{m}(\mathbf{r}')$

Ideal SSF in this configuration:

 $\begin{array}{ll} \text{Magnetizations:} \quad \boldsymbol{m}_{1/2} = \left(\pm \sqrt{1 - m_{1/2,z}^2} \cos \varphi_{1/2}, \pm \sqrt{1 - m_{1/2,z}^2} \sin \varphi_{1/2}, m_{1/2,z}} \right) \\ \text{Layer coupling:} \quad \boldsymbol{\omega}_{E,1(2)} = \gamma J/d_{2(1)} M_{s,2(1)} \\ \text{Hydrodynamic eqs.:} \quad \dot{\boldsymbol{m}}_{1,z} = \frac{2\gamma A}{M_{s,1}} \nabla^2 \varphi_1 - \alpha_1 \, \dot{\varphi}_1; \quad \dot{\varphi}_1 = \left[4\pi M_{s,1} \gamma + \boldsymbol{\omega}_{E,1} \right] m_{1,z} + \boldsymbol{\omega}_{E,1} m_{2,z} + \alpha_1 \, \dot{\boldsymbol{m}}_{1,z} \\ \text{Out signal:} \quad < \mu_R^z > = -\hbar \Omega; \\ m_z = -\Omega/(2\boldsymbol{\omega}_E + 4\pi M_{s,1}\gamma) \quad \text{with } \boldsymbol{\omega}_{E,1} = \boldsymbol{\omega}_{E,2} = \boldsymbol{\omega}_E \\ (\varphi_1 - \varphi_2) \sim \alpha_2 \Omega/\boldsymbol{\omega}_E \end{array}$

Results – Trilayer Disk

- 🔊 No pinning
- ∞ Weaker saturation effect
- ${\scriptstyle \wp}$ Spin superfluidity for larger $\,\mu_{\it L}$ and L
- ☞ Gradual transition to long-range transport

Conclusions

- A single thin-film ferromagnet does not exhibit long-range superfluid spin transport
- The inclusion of the dipole interaction qualitatively changes spin transport
- So Long-range superfluid transport in trilayer FI-NM-FI systems

	Square	Disk	Tri-layer disk
	(□)	(◯)	(◯)
Pinning	Yes	No	No
SSF	L < 300 nm	D < 500 nm	$D < 1 \mu \mathrm{m}$
	$\mu_L = 1 - 2 \ \mu \text{eV}$	$\mu_L = 1 - 2 \mu\text{eV}$	$\mu_L = 1 \mu \mathrm{eV}$
Long-range spin transport	No	Up to D~1 μm	Longer than $D \sim 4 \ \mu m$

H. Skarsvåg, CH, A. Brataas, PRL 115, 237201 (2015)

Acknowledgements

EU FP7 FET InSpin

ERC AdG Insulatronics

Dipole-Dipole Interaction

∞ Spin superfluidity occurs in the long wavelength limit

The dipole-dipole interaction is important for spin superfluidity
 Maxwell's equations

$$\nabla \times \mathbf{H}_{dip} = 0, \quad \nabla \cdot \left(\mathbf{H}_{dip} + 4\pi M_s \mathbf{m} \right) = 0$$

∞ Solution

$$\mathbf{H}_{dip}(\mathbf{r}t) = 4\pi M_s \int d\mathbf{r}' \int dt' G(\mathbf{r}t, \mathbf{r}'t') m(\mathbf{r}'t')$$
$$= -4\pi M m_z \mathbf{z} + H_{dip}^{(dyn)}(\mathbf{r}t)$$

Static demagnetization field

dynamical dipole field