

Fakultät Mathematik und Naturwissenschaften, Fachrichtung Physik, Institut für Festkörperphysik (IFP) & Center for Transport and Devices of Emergent Materials (CTD)

Spin Current Transport in YIG/Pt Heterostructures

Sebastian T. B. Goennenwein

21 September 2016

Outline

charge and spin currents

spin Hall effect(s)

SMR = Spin Hall Magnetoresistance

... a spin current-based magnetoresistance @ magnetic insulator / metal interfaces

MMR = Magnon-mediated MagnetoResistance

... electrical measurement of magnon diffusion length

From charge to spin currents

metallic conductor

From charge to spin currents

Mott's two spin current model:

charge currents from electrons with different spin are independent and simply add:

$$\begin{aligned} \mathbf{j}_{c\uparrow} &= \sigma_{\uparrow} \mathbf{E} \\ \mathbf{j}_{c\downarrow} &= \sigma_{\downarrow} \mathbf{E} \end{aligned} \right\} \quad \mathbf{j}_{c} &= \mathbf{j}_{c\uparrow} + \mathbf{j}_{c\downarrow} = (\sigma_{\uparrow} + \sigma_{\downarrow}) \mathbf{E} = \sigma \mathbf{E} \end{aligned}$$

R. C. O'Handley, *Modern Magnetic Materials* (John Wiley, New York, 2000).

From charge to spin currents

... charge AND spin transport !?

charge transport:

$$\mathbf{j}_{c} = \mathbf{j}_{c\uparrow} + \mathbf{j}_{c\downarrow} = (\sigma_{\uparrow} + \sigma_{\downarrow})\mathbf{E} = \sigma\mathbf{E}$$

(in "normal" metal: $\mathbf{j}_{c\uparrow} = \mathbf{j}_{c\downarrow}$)

spin transport:

$$\mathbf{j}_{\mathbf{s}} = \frac{+\hbar/2}{e} \, \mathbf{j}_{\mathbf{c}\uparrow} + \frac{-\hbar/2}{e} \, \mathbf{j}_{\mathbf{c}\downarrow} = \mathbf{0}$$

spin current

(for
$$j_{c\uparrow} = j_{c\downarrow} = j_c/2$$
)

Pure spin currents

interesting: pure spin current

$$\mathbf{j}_{s} = \frac{+\hbar/2}{e} \, \mathbf{j}_{c\uparrow} - \frac{-\hbar/2}{e} \, \mathbf{j}_{c\downarrow} = 2\frac{\hbar/2}{e} \, \mathbf{j}_{c\uparrow} \neq \mathbf{0}$$
$$(\mathbf{j}_{c} = \mathbf{j}_{c\uparrow} - \mathbf{j}_{c\downarrow} = \mathbf{0} \, !)$$

... but how can one make electrons move in opposite directions depending on their spin orientation?

spin transport:

$$\mathbf{j}_{\mathbf{s}} = \frac{+\hbar/2}{e} \, \mathbf{j}_{\mathbf{c}\uparrow} + \frac{-\hbar/2}{e} \, \mathbf{j}_{\mathbf{c}\downarrow} = \mathbf{0}$$

spin current

(for $j_{c\uparrow} = j_{c\downarrow} = j_c/2$)

Spin Hall effect

- electrically driven, transverse, pure spin currents

D'yakonov & Perel', JETP Lett. **13**, 467 (1971). Hirsch, PRL **83**, 1834 (1999).

The spin Hall effect (an experimental physicist's view)

scattering center

charge scattering usually is "symmetric" (no particular direction preferred)

Consider spin-dependent, asymmetric scattering (" $up \rightarrow left$, down $\rightarrow right$ "):

Inoue & Ohno, Science 309, 2004 (2005).

Spin-Skew Scattering

The spin Hall effect (SHE) : spin – charge current conversion

direct spin Hall effect (SHE)

Spin Hall effect

spin-orbit coupling: interaction between spin and charge motion spin Hall angle α_{SHE} parameterizes charge current \leftrightarrow spin current conversion efficiency

The spin Hall effect (SHE) : spin – charge current conversion

Direct spin Hall effect in GaAs

12

iSHE in Metallic F/N Nanostructures

detection of diffusive spin current via inverse spin Hall effect

Saitoh et al., APL 88, 182509 (2006).

Mosendz et al., Phys. Rev. Lett. 104, 046601 (2010). Liu et al., Science 336, 555 (2012). Niimi et al., Phys. Rev. Lett. 109, 156602 (2012). ...and many more ...

 \rightarrow review: Hoffmann, IEEE-TM **49**, 5172 (2013). Sinova et al., RMP 87, 1213 (2015).

 $\alpha_{\rm SHE} = \frac{\sigma_{\rm SHE}}{\sigma_{\rm C}} \cong 1 \times 10^{-4}$ Aluminium:

Gold : Platinum : Bi, Bi/Ag, Ta : α_{SHF}=0.1 ... 0.3

 α_{SHE} =0.0016 α_{SHF}=0.013 ... **0.11** (0.16)

spin Hall effect

Nota bene: spin currents have a direction of propagation j_s AND a spin orientation s

spin Hall effect

Nota bene: spin currents have a direction of propagation \mathbf{j}_{s} AND a spin orientation \mathbf{s}

Charge vs. spin currents

Outline

pure spin currents spin Hall effect

Hoffmann, IEEE-TM **49**, 5172 (2013). Sinova *et al.*, RMP **87**, 1213 (2015). $g^{\uparrow\downarrow} \cong 10^{19} \text{m}^{-2}$ $\alpha_{\text{SHE,Pt}} = 0.1$ $\lambda_{\text{SD,Pt}} = 1.5 \text{nm}$

SMR = Spin Hall Magnetoresistance

... a spin current-based magnetoresistance @ magnetic insulator / metal interfaces

MMR = Magnon-mediated MagnetoResistance

SHE & iSHE in a single metallic nanostructure

SHE & iSHE in a single metallic nanostructure

SHE & iSHE in a Single Metallic Nanostructure

G. Mihajlovic et al., PRL **103**,166601 (2009). F. Czeschka, PhD Thesis, TUM (2011).

thermal excitation: spin Seebeck effect resonant excitation: **spin pumping**

measure resistance R of the metal ... as a function of the applied magnetic field **B** (via current-bias, 4-point voltage measurements)

spin Hall magnetoresistance

(a spin current MR @ FMI / N interfaces)

Nakayama *et al.*, PRL **110**, 206601 (2013). Chen *et al.*, PRB **87**, 144411 (2013). Hahn *et al.*, PRB **87**, 174417 (2013). Vlietstra *et al.*, PRB **87**, 184421 (2013). Althammer *et al.*, PRB **87**, 224401 (2013). Meyer *et al.*, APL **104**, 242411 (2014). Lotze *et al.*, PRB **90**, 174419 (2014).

review: Chen et al., J. Phys.: Condens. Matter 28, 103004 (2016).

YIG/Pt bilayer sample

 $YIG = Y_3Fe_5O_{12}$

here: ~10nm

Platinum

electrically insulating ferrimagnet ("magnetic insulator") with net magnetization M

here: $3\mu m$ thick YIG film

grown onto 500μ m of GGG = Gd₃Ga₅O₁₂ via liquid phase epitaxy (LPE)

enhanced dissipation in Pt ⇒ larger Pt resistance

if $\tau_{STT} \propto \mathbf{M} \times (\mathbf{M} \times \mathbf{s})$ is finite \Rightarrow outflow of J_s into YIG enhanced dissipation in Pt \Rightarrow larger Pt resistance

 $\tau_{\rm STT} \propto \mathbf{M} \times (\mathbf{M} \times \mathbf{s}) = 0$

 \Rightarrow open boundary conditions for J_s

reduced dissipation ⇒ smaller Pt resistance

Spin Hall MR (SMR): *R* smallest for M||s , larger otherwise

$$R = R_0 - R_1 (\mathbf{m} \cdot \mathbf{s})^2$$

= $R_0 - R_1 \cos^2(\alpha)$

PRL 110, 206601 (2013) 39

SMR fingerprint

Spin Hall MR (SMR): R smallest for M||s (viz. H||t), larger otherwise

Althammer et al., PRB 87, 224401 (2013).

SMR in YIG/NM/Pt hybrids

⇒ **spin current physics !** (NOT static proximity effect as in Huang *et al.*, PRL **109**, 107204 (2012).)

NFO thin film samples: A. Gupta, University of Alabama, and T. Kuschel, Universität Bielefeld

Extraction of spin Hall angle from SMR

Pt thickness dependence \rightarrow spin Hall angle and spin diffusion length in Pt

(open) issues ...

SMR in Cu₂OSeO₃ / Pt heterostructures

Aqeel et al., arXiv 1607:056301

SMR Outlook - Magnetic Garnets

SMR Outlook - Magnetic Garnets

SMR in compensated garnet/Pt hybrids

w/ B. A. Piot, Laboratoire National des Champs Magnetiques Intenses, Grenoble

SMR in compensated garnet/Pt hybrids

Ganzhorn *et al.*, PRB **94**, 094401 (2016).

Conclusions

pure spin currents spin Hall effect(s)

Hoffmann, IEEE-TM **49**, 5172 (2013). Sinova *et al.*, RMP **87**, 1213 (2015).

SMR = Spin Hall Magnetoresistance

... a spin current-based magnetoresistance @ magnetic insulator / metal interfaces

Nakayama *et al.*, PRL **110**, 206601 (2013). Chen *et al.*, PRB **87**, 144411 (2013). Hahn *et al.*, PRB **87**, 174417 (2013). Vlietstra *et al.*, PRB **87**, 184421 (2013). Althammer *et al.*, PRB **87**, 224401 (2013). Meyer *et al.*, APL **104**, 242411 (2014). Lotze *et al.*, PRB **90**, 174419 (2014).

review: Chen et al., J. Phys.: Condens. Matter 28, 103004 (2016).

Ganzhorn et al., PRB **94**, 094401 (2016). Aqeel *et al.*, PRB **92**, 224410 (2015) & arXiv 1607:056301

MMR = Magnon-mediated MagnetoResistance

... electrical measurement of magnon diffusion length

Magnon-Mediated Magnetoresistance (MMR)

a non-local, magnon-based MR @ FMI / N interfaces

SHE spin current in YIG/Pt revisited

SHE spin current in YIG/Pt revisited

SHE-induced magnon accumulation

53

SHE-induced magnon accumulation

54

MMR = magnon-mediated magnetoresistance

MMR = magnon-mediated magnetoresistance

MMR = magnon-mediated magnetoresistance

MMR = magnon-mediated magnetoresistance

Gap dependence

62

Incoherent Superposition of Magnons

Magnon Majority Gate

Conclusions

pure spin currents spin Hall effect(s)

Hoffmann, IEEE-TM **49**, 5172 (2013). Sinova *et al.*, RMP **87**, 1213 (2015).

SMR = Spin Hall Magnetoresistance

... a spin current-based magnetoresistance @ magnetic insulator / metal interfaces

Nakayama *et al.*, PRL **110**, 206601 (2013). Chen *et al.*, PRB **87**, 144411 (2013). Hahn *et al.*, PRB **87**, 174417 (2013). Vlietstra *et al.*, PRB **87**, 184421 (2013). Althammer *et al.*, PRB **87**, 224401 (2013). Meyer *et al.*, APL **104**, 242411 (2014). Lotze *et al.*, PRB **90**, 174419 (2014).

review: Chen et al., J. Phys.: Condens. Matter 28, 103004 (2016).

Ganzhorn et al., PRB **94**, 094401 (2016). Aqeel *et al*., PRB **92**, 224410 (2015) & arXiv 1607:056301

MMR = Magnon-mediated MagnetoResistance

... electrical measurement of magnon diffusion length

Zhang & Zhang, PRB **86**, 214424 (2012). Cornelissen *et al.*, Nature Phys. **11**, 1022 (2015). Goennenwein *et al.*, APL **107**, 172405 (2015). Ganzhorn *et al.*, APL **109**, 022405 (2016).

Acknowledgements

K. Ganzhorn, R. Schlitz, T. Wimmer, S. Meyer, S. Geprägs, H. Huebl, R. Gross, & WMI spintronics group Walther-Meißner-Institut

Y.-T. Chen, J. Barker, A. Kamra, G.E.W. Bauer & team Institute for Materials Research, Tohoku U, JPN Kavli Institute of NanoScience, TU Delft, NL

H. Nakayama, E. Saitoh & team Institute for Materials Research, Tohoku U, JPN Kavli Institute of NanoScience, TU Delft, NL

Financial support: Deutsche Forschungsgemeinschaft via SPP 1538 "SpinCAT" (GO 944/4) and Excellence Cluster NanoSystems Initiative Munich

