

Quantum Spintronics

Magnon supercurrents in a room temperature magnon condensate

Burkard Hillebrands

Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Germany Leibniz Institute for Solid State and Materials Research (IFW), Dresden, Germany

Post CMOS?

CMOS is coming to the end of Moore's law

- Waste energy production
- End of scaling

Beyond current CMOS:

- Faster computing, less energy consumption
- Same technology for logic and data
- Logic circuits with reduced footprint and/or 3D

Novel paradigm: wave computing

M. Mitchell, Nature 530, 144 (2016)

Proposal:

use waves /wave packets instead of particles (electrons) for bit representation

Burkard Hillebrands

Magnon computing

Why spin waves/magnons?

- wavelength down to nanometer, frequency up to several THz
- interference effects easily accessible
- efficient nonlinear effects
- room temperature
- no Joule heat, "insulatronics"
- wave-based computing: smaller footprint, all-wave logic
- good converters to CMOS
- → "magnon spintronics"

Achievements:

Andrii Chumak, Kaiserslautern

Burkard Hillebrands

Quantum Spintronics

Achievements:

Magnon transistor

Andrii Chumak, Kaiserslautern

Magnon computing

Why spin waves?

- wavelength down to nanometer, frequency up to several THz
- interference effects easily accessible
- efficient nonlinear effects
- room temperature
- no Joule heat, "insulatronics"
- wave-based computing: smaller footprint, all-wave logic
- good converters to CMOS
- → "magnon spintronics"

Concept of magnon spintronics

A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, *Magnon Spintronics*, Nature Phys. **11**, 453 (2015)

- Magnon packet computing: go to deep exchange regime → THz computing, small feature size
- Develop efficient converters
- Engineering of interactions

New materials

- low damping
- compatibility with CMOS
- compatibility with existing production equipment
- Macroscopic magnonic quantum states computing

L. Amarú, P.-E. Gaillardon, G. De Micheli (EPFL,Switzerland)

Majority based synthesis for nanotechnologies

A. Khitun (Univ. of California Riverside, USA)

Majority gate, holographic memory

Spin-wave device architectures

S. Dutta, A. Naeemi (Georgia Institute of Technology, USA) Non-volatile clocked spin wave nanomagnet pipelines ^{SW repeater 2} ^{repeater 3} ^{repeater 1} ^{c-S converter} ^{ground}

F. Ciubotaru, C. Adelmann (Imec, Leuven, Belgium)

Magnetoacoustic nanoresonators

(a) ME cell schematic

D. E. Nikonov, I. A. Young (Intel Corp. Hillsboro, Oregon, USA)

Benchmarking, clocked spin-wave circuits

A. Chumak (TU Kaiserlautern, Germany)

Magnon transistor, integrated magnonic circuits

Burkard Hillebrands

Quantum Spintronics

Benchmarking

Hybrid CMOS-Spin Wave Device Circuits Compared to 10nm CMOS

Name	Area (μm^2)				Energy (fJ)	Delay (ns)		Power (μW)		ADPP*		
	SWD core	CMOS SA	SWD Total	10nm Ref.	SWD Total	SWD	10nm Ref.	SWD	10nm Ref.	SWD	10nm Ref.	Impr. (x)
BKA264	36.48	3.12	39.60	118.55	175.50	5.07	0.21	34.62	133.92	$6.95 \cdot 10^{3}$	$3.33 \cdot 10^{3}$	0.48
HCA464	82.71	3.17	85.88	262.63	178.20	8.01	0.29	22.25	594.28	$1.53 \cdot 10^4$	$4.53 \cdot 10^4$	2.96
CSA464	78.42	3.17	81.59	240.26	178.20	7.59	1.78	23.48	663.17	$1.45 \cdot 10^4$	$2.84 \cdot 10^5$	19.51
DTM32	326.31	3.07	329.38	1183.64	172.80	14.73	0.52	11.73	3667.50	$5.69 \cdot 10^4$	$2.26 \cdot 10^{6}$	39.66
WTM32	264.96	3.07	268.04	1163.37	172.80	20.61	0.58	8.38	3571.90	$4.63 \cdot 10^4$	$2.41 \cdot 10^{6}$	52.04
DTM64	1192.69	6.14	1198.83	3459.32	345.60	18.09	0.63	19.10	12793.10	$4.14 \cdot 10^{5}$	$2.79 \cdot 10^{7}$	67.29
GFMUL	44.09	0.82	44.91	162.98	45.90	7.17	0.16	6.40	433.92	$2.06 \cdot 10^3$	$1.13 \cdot 10^4$	5.49
MAC32	295.25	3.12	298.37	1372.83	175.50	24.39	0.66	7.20	3872.10	$5.24 \cdot 10^4$	$3.51 \cdot 10^{6}$	67.00
DIV32	899.04	6.14	905.18	3347.73	345.60	117.21	14.00	2.95	5346.10	$3.13 \cdot 10^5$	$2.51 \cdot 10^8$	800.94
CRC32	27.61	1.54	29.14	95.88	86.40	5.07	0.22	17.04	304.30	$2.52 \cdot 10^{3}$	$6.42 \cdot 10^3$	2.55
Averages	324.76	3.34	328.09	1140.72	187.65	22.79	1.91	15.31	3138.03	$9.24 \cdot 10^4$	$2.87 \cdot 10^{7}$	105.79

TABLE IV. SUMMARY OF BENCHMARKING RESULTS

The list includes adders, multipliers, a divider, and a cyclic redundancy check module

* Area-Delay-Power-Product (ADPP)

Zografos, et al., Proceedings of the 15th IEEE International Conference on Nanotechnology July 27-30, 2015, Rome, Italy

Quantum Spintronics

Benchmarking

Hybrid CMOS-Spin Wave Device Circuits Compared to 10nm CMOS

Burkard Hillebrands

Quantum Spintronics

Novel magnon states

Main idea:

find novel magnon states useful for information transfer and processing

Here:

- macroscopic magnonic quantum states for information transfer and processing

A. Serga upcoming talk:

- magnon-phonon states at minimum energy and with large group velocity

Macroscopic magnonic quantum states:

- analogous to superconductivity (Josephson currents) and to superfluidity in ³He and ⁴He
- free of dissipation (apart from magnon-phonon and magnon-electron coupling)
- prominent example: magnonic Bose Einstein condensate

Magnon spectrum of in-plane magnetized ferrimagnetic YIG film

Burkard Hillebrands

Quantum Spintronics

Magnon distribution

Magnons are bosons (*s*=1) and thus, as any quasi-particles, described by a Bose-Einstein distribution with zero chemical potential

Control of magnon gas density by parametric pumping

 $\vec{H}_{H_{c}}$

Burkard Hillebrands

Quantum Spintronics

Control of magnon gas density by parametric pumping

Quantum Spintronics

 $\boldsymbol{\mu} {:} chemical potential$

Burkard Hillebrands

Quantum Spintronics

Wavenumber q (×10⁵ rad/cm)

Brillouin light scattering (BLS) spectroscopy

Inelastic scattering of photons from spin waves: $f_{\text{scattered L}} = f_{\text{L}} \pm f_{\text{sw}}$

 $\vec{q}_{\text{scattered L}} = \vec{q}_{\text{L}} \pm \vec{q}_{\text{sw}}$

 Intensity of the scattered light is proportional to magnon density

scattered photon $f_{\rm L} \pm f_{\rm sw}$ $\vec{q}_{\rm L} \pm \vec{q}_{\rm sw}$ magnons $f_{\rm sw}, \vec{q}_{\rm sw}$ incident photon $f_{\rm L}, \vec{q}_{\rm L}$

Time- and wavevector-resolved Brillouin light scattering spectroscopy

Burkard Hillebrands

Quantum Spintronics

Time- and wavenumber-resolved BLS measurements of magnon BEC

A. A. Serga *et al.*, Nat. Commun. **5**, 4452 (2014)

Time- and wavenumber-resolved BLS measurements of magnon BEC

Burkard Hillebrands

Quantum Spintronics

Time-resolved measurements of parametric magnons, gaseous phase, and magnon BEC

Parametric magnons, gaseous phase, and magnon BEC

A. A. Serga et al., Nat. Commun. 5, 4452 (2014)

Burkard Hillebrands

Influence of power of probing laser beam

Parametrically injected magnons

 No influence from laser power on temporal dynamics !

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

 Laser heating decreases magnetization and thus might shift down the magnon dispersion curves

Bose-Einstein condensate

- Increasing laser power results in significant decrease of the BEC's lifetime and amplitude !
- Only weak frequency shift of BEC due to temperature change

Burkard Hillebrands

Quantum Spintronics

Magnon BEC dynamics for uniform temperatures

Magnon BEC dynamics for uniform temperatures

Decrease in the steady-state magnon density due to higher magnon damping and lower efficiency of the parametric pumping

Burkard Hillebrands

Quantum Spintronics

Magnon BEC dynamics for uniform temperatures

Burkard Hillebrands

Quantum Spintronics

Magnon BEC dynamics for uniform temperatures

Burkard Hillebrands

Quantum Spintronics

Dynamics of condensed magnons in thermal gradient

Burkard Hillebrands

Quantum Spintronics

Dynamics of condensed magnons in thermal gradient

Burkard Hillebrands

Quantum Spintronics

Magnonic supercurrents

Dynamics of condensed magnons in thermal gradient - theory

Dynamics of condensed magnons $N_{\rm c}(t)$, magnons in gaseous states $N_{\rm g}(t)$ and gaseous magnons at the bottom of SW spectrum $N_{\rm b}(t)$ was described using balance equations

$$\begin{aligned} \frac{\partial N_{g}}{\partial t} &= -\Gamma_{g} N_{g} + \Gamma_{g} N_{p} e^{-\Gamma_{0} t} - A_{gb} N_{g}^{3} + A_{bg} N_{b}^{3} \\ \frac{\partial N_{b}}{\partial t} &= -\Gamma_{b} N_{b} + A_{gb} N_{g}^{3} - A_{bg} N_{b}^{3} - A_{bc} (N_{b}^{3} - N_{cr}^{3}) \Theta(N_{b} - N_{cr}) \\ \frac{\partial N_{c}}{\partial t} &= -\Gamma_{c} N_{c} + A_{bc} (N_{b}^{3} - N_{cr}^{3}) \Theta(N_{b} - N_{cr}) \end{aligned}$$

 $N_{\rm cr}$ – a critical number of magnons at which the chemical potential μ of the magnon gas reaches $\varpi_{\rm min}$

V. L'vov, A. Pomyalov

Quantum Spintronics

Mainz, September 21, 2016

Burkard Hillebrands

Dynamics of condensed magnons in thermal gradient - theory

Dynamics of condensed magnons $N_{\rm c}(t)$, magnons in gaseous states $N_{\rm g}(t)$ and gaseous magnons at the bottom of SW spectrum $N_{\rm b}(t)$ was described using balance equations

With thermal
gradient
$$\begin{aligned}
\frac{\partial N_g}{\partial t} &= -\Gamma_g N_g + \Gamma_g N_p e^{-\Gamma_0 t} - A_{gb} N_g^3 + A_{bg} N_b^3 \\
\frac{\partial N_b}{\partial t} &= -\Gamma_b N_b + A_{gb} N_g^3 - A_{bg} N_b^3 - A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\end{aligned}$$
BEC density: $N_c = |\psi|^2$
BEC phase: $\varphi = \arg(\psi)$
Magnon $m = \hbar / \frac{\partial^2 \omega(q)}{\partial q^2}$
Complex BEC $wave function$: $\psi(\vec{r}, t)$
Burkard Hillebrands
$$\begin{aligned}
\frac{\partial N_g}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_b^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_b^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_b^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b^3 - N_b^3) \Theta(N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial \vec{r}} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial t} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b - N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial t} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial t} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial t} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b - N_{cr}) - \frac{\partial J(\vec{r}, t)}{\partial t} \\
\frac{\partial N_c}{\partial t} &= -\Gamma_c N_c + A_{bc} (N_b$$

Dynamics of condensed magnons in thermal gradient - theory

Dynamics of condensed magnons $N_{\rm c}(t)$, magnons in gaseous states $N_{\rm g}(t)$ and gaseous magnons at the bottom of SW spectrum $N_{\rm b}(t)$ was described using balance equations

With thermal gradient

2D supercurrent

$$J_{x} = N_{c}D_{x}\frac{\partial\varphi}{\partial x}$$
$$J_{y} = N_{c}D_{y}\frac{\partial\varphi}{\partial y}$$

$$\frac{\partial N_{g}}{\partial t} = -\Gamma_{g} N_{g} + \Gamma_{g} N_{p} e^{-\Gamma_{0}t} - A_{gb} N_{g}^{3} + A_{bg} N_{b}^{3}$$
$$\frac{\partial N_{b}}{\partial t} = -\Gamma_{b} N_{b} + A_{gb} N_{g}^{3} - A_{bg} N_{b}^{3} - A_{bc} (N_{b}^{3} - N_{cr}^{3}) \Theta(N_{b} - N_{cr})$$
$$\frac{\partial N_{c}}{\partial t} = -\Gamma_{c} N_{c} + A_{bc} (N_{b}^{3} - N_{cr}^{3}) \Theta(N_{b} - N_{cr}) - \frac{\partial J_{x}}{\partial x} - \frac{\partial J_{y}}{\partial y}$$

Additional decrease of population of condensed magnons $N_{c}(t)$ due to magnon supercurrent $\vec{J}(x, y, t)$

Burkard Hillebrands

Quantum Spintronics

Dynamics of condensed magnons in thermal gradient - theory

Dynamics of condensed magnons $N_{\rm c}(t)$, magnons in gaseous states $N_{\rm g}(t)$ and gaseous magnons at the bottom of SW spectrum $N_{\rm b}(t)$ was described using balance equations

With thermal
gradient
$$\frac{\partial N_g}{\partial t} = -\Gamma_g N_g + \Gamma_g N_p e^{-\Gamma_0 t} - A_{gb} N_g^3 + A_{bg} N_b^3$$
1D thermally driven
supercurrent
$$J_T = N_c D_x \frac{\partial \varphi}{\partial x}$$

$$\frac{\partial N_b}{\partial t} = -\Gamma_b N_b + A_{gb} N_g^3 - A_{bg} N_b^3 - A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr})$$

$$\frac{\partial N_c}{\partial t} = -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J_T}{\partial x}$$
Additional decrease of population of condensed
magnons $N_c(t)$ due to magnon supercurrent $J_T(x, t)$

weak frequency shift of the magnon BEC due to temperature change

Quantum Spintronics

Dynamics of condensed magnons in thermal gradient - theory

Dynamics of condensed magnons $N_{\rm c}(t)$, magnons in gaseous states $N_{\rm g}(t)$ and gaseous magnons at the bottom of SW spectrum $N_{\rm b}(t)$ was described using balance equations

With thermal
gradient
$$\frac{\partial N_g}{\partial t} = -\Gamma_g N_g + \Gamma_g N_p e^{-\Gamma_0 t} - A_{gb} N_g^3 + A_{bg} N_b^3$$
1D thermally driven
supercurrent

$$J_T = N_c D_x \frac{\partial \varphi}{\partial x}$$

$$\frac{\partial N_b}{\partial t} = -\Gamma_b N_b + A_{gb} N_g^3 - A_{bg} N_b^3 - A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr})$$

$$\frac{\partial N_c}{\partial t} = -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J_T}{\partial x} + \frac{\partial J_{dis}}{\partial x}$$
Additional decrease of population of condensed
magnons $N_c(t)$ due to magnon supercurrent $J_x(x)$

1D dispersive
supercurrent

$$J_{dis} = -D_x \frac{\partial N_c}{\partial x}$$
Eurkard Hillebrands
$$\frac{\partial N_g}{\partial t} = -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J_T}{\partial x} + \frac{\partial J_{dis}}{\partial x}$$

Dynamics of condensed magnons in thermal gradient - theory

Dynamics of condensed magnons $N_{\rm c}(t)$, magnons in gaseous states $N_{\rm g}(t)$ and gaseous magnons at the bottom of SW spectrum $N_{\rm b}(t)$ was described using balance equations

With thermal
gradient
$$\frac{\partial N_g}{\partial t} = -\Gamma_g N_g + \Gamma_g N_p e^{-\Gamma_0 t} - A_{gb} N_g^3 + A_{bg} N_b^3$$
1D thermally driven
supercurrent
$$J_T = N_c D_x \frac{\partial \varphi}{\partial x}$$

$$\frac{\partial N_b}{\partial t} = -\Gamma_b N_b + A_{gb} N_g^3 - A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr})$$

$$\frac{\partial N_c}{\partial t} = -\Gamma_c N_c + A_{bc} (N_b^3 - N_{cr}^3) \Theta(N_b - N_{cr}) - \frac{\partial J_T}{\partial x} + \frac{\partial J_{dis}}{\partial x}$$
Additional decrease of population of condensed
magnons $N_c(t)$ due to magnon supercurrent $J_x(x)$

1D dispersive
supercurrent
$$J_{dis} = -D_x \frac{\partial N_c}{\partial x}$$
Total supercurrent
$$J = -B_s N_c \delta \omega_c t + B_{dis} (N_c^0 - N_c)$$

$$B_s \sim B_{dis} \sim -\frac{D_x}{R}$$

$$\frac{\partial N_g}{\partial t} = -\Gamma_c N_c + A_{bc} (N_b^0 - N_c)$$

$$\frac{\partial N_c}{\partial t} = -\Gamma_c N_c + A_{bc} (N_c^0 - N_c)$$

$$\frac{\partial N_c}{\partial t} = -\Gamma_c N_c + B_{dis} (N_c^0 - N_c)$$

$$\frac{\partial N_c}{\partial t} = -\Gamma_c N_c + B_{dis} (N_c^0 - N_c)$$

$$\frac{\partial N_c}{\partial t} = -D_s N_c \delta \omega_c t + B_{dis} (N_c^0 - N_c)$$

$$\frac{\partial N_c}{\partial t} = -D_x \frac{\partial N_c}{\partial t}$$

Burkard Hillebrands

Quantum Spintronics

Dynamics of condensed magnons in thermal gradient - comparison with theory

Burkard Hillebrands

Quantum Spintronics

Dynamics of condensed magnons in thermal gradient - comparison with theory

- 1. Magnonics provides model system for macroscopic quantum phenomena
 - Room temperature experiments
 - Tool: Brillouin light scattering
- 2. First evidence for magnon supercurrent in magnonic Bose Einstein condensate found
- 3. Supercurrent depends on phase gradient
- 4. Phase gradient induced by lateral temperature gradient

