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Condensation of magnons driven by 
thermal gradients



Thermal spin currents in YIG/Pt bilayers
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Magnon condensation driven by T
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magnon
spin flip

- Spin current generates quasi-
equilibrium cloud of incoherent 
magnons

- Nonlinear magnon scattering 
populates quasi-uniform mode

- Macroscopic coherent 
occupation of quasi-uniform 
mode above a critical current 
(condensation)



Magnetization auto-oscillation by pure spin currents
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- Magnetization auto-
oscillations can be achieved 
by injecting pure spin current 
into insulating ferromagnet

- Two sources of spin current:
- spin accumulation due to 

spin Hall effect
- spin Seebeck current due 

to temperature gradient
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Theoretical phase diagram



Linewidth control in YIG/Pt

Control of linewidth in 
YIG/Pt via spin Hall current 

Control of linewidth in YIG/Pt 
via spin Seebeck current

Hamadeh et al, PRL (2014) L. Lu et al., PRL (2012)



YIG/Pt nanowire devices
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- YIG/Pt bilayer nanowire 
devices

- High current densities 
can be applied to Pt wire

- Large vertical 
temperature gradient T 
due to high resistivity of 
the Pt layer

- Combination of spin Hall 
and spin Seebeck
currents



 Spin Hall magnetoresistance 0.005-0.012%

 Spin Seebeck magneto-resistance ~ T
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Spin Hall and spin Seebeck magnetoresistance
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T = 140 K

0.35 µm × 2.5 µm nanowire



Low DC current
High mw current

 Spin Hall magnetoresistance 0.005-0.012%

 Spin Seebeck magneto-resistance ~ T
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Microwave emission from the nanowire device

Critical current

- Small MR: emission power is 
typically sub-femtoWatt

- Conventional frequency-swept 
spectrum analyzer 
measurements insufficient

- Reliable method of measuring 
emission is sweeping magnetic 
field at fixed detection frequency

3.2 GHz
 = 70

0.35 µm × 2.5 µm nanowire

T = 140 K



Angular dependence of critical current

- Angular dependence of Ic
due to spin Hall current:

- Ic due to spin Seebeck
current is expected to be 
independent of :

- Our data suggest that 
both spin Hall and spin 
Seebeck currents are 
important for excitation of 
self-oscillations
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CNRS group results

M. Collet et al., Nat. Comm. (2015)
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- YIG/Pt microdisk ST oscillators studied by CNRS group 
closely follow the 1/sin() critical current dependence  

Room T



Temperature profile simulations

T in YIG ~ 0.26 K/nm T in YIG ~ 0.033 K/nm

UC Irvine YIG/Pt devices CNRS YIG/Pt devices

@ critical current



Spin Hall oscillatorsSpin torque ferromagnetic resonance

- ST-FMR spectra can be 
measured in our YIG/Pt 
nanowire devices

- Due to small MR, ST-FMR 
signals are only seen at 
large microwave power

- µ-wave generates Ohmic
heat and spin Seebeck
current

- truly linear FMR regime 
is not achievable

- Only qualitative analysis of 
the measured spectral 
linewidth is possible



Mode identification

- The LF mode seen in the experiment and simulations has edge character
- Auto-oscillations of the LF1 mode are seen in the experiment

- Micromagnetic simulations of the spin wave spectra reveal 
two dominant low frequency modes

- Same modes are observed in ST-FMR measurements



Linewidth versus bias current, near hard axis

- Near hard axis, the 
asymmetry in the 
linewidth versus 
current is apparent

- This asymmetry is 
due to combined 
action of spin Hall 
and spin Seebeck
torques

SH – damping
SS – antidamping

SH – antidamping
SS – antidamping

- 3 dBm



Linewidth versus bias current, near easy axis

- For magnetization nearly parallel to the wire axis, spin Hall 
antidumping is inactive

- Yet, strong decrease of the linewidth is observed for both 
current polarities

- The data are consistent 
with anti-damping 
arising from spin 
Seebeck current alone 
(symmetric in current) φ = 15

1 dBm

SH – small
SS – antidamping

SH – small
SS – antidamping



Summary
Observed current-driven auto-oscillations of magnetization 
in YIG/Pt nanowire devices

The critical current shows weak angular dependence

Large Ohmic heating in Pt results in large temperature 
gradient across YIG film – high density of spin Seebeck
current

Auto-oscillations in YIG/Pt nanowire devices are driven by 
combined action of spin Hall and spin Seebeck currents


