SPICE - Quantum Spintronics

Are Topological Materials Useful in Spintronics?

Allan MacDonald University of Texas at Austin

Classes of Spintronic Materials

- Ferromagnetic Metals
- Light Paramagnetic Metals
- Antiferromagnetic Metals
- Antiferromagnetic Insulators
- Ferromagnetic Insulators
- Heavy Paramagnetic Metals
- Topological Insulators ?

Spin-Orbit Torques

Miron et al.Nature Mat. 9 (2010)Nature 476 (2011)Liu et al.PRL 109 (2012)Science 336 (2012)

Spin-Orbit Torques in TI DMSs

Fan et al., Nature Mat. (2014) Ndiaye et al. arXiv:1509.06929 Franz and Garate, PRL (2010)

Emergent Collective DOF

Ferromagnet

Heavy Metal

Incoherent motion

Courtesy Catherine Kallin

Landau-Liftshitz Gilbert Equation

SOT 100

(Current Parallel to Magnetization)

i) Rashba Interactions and Spin Momentum Locking

SOT 100

(Current Parallel to Magnetization)

ii) Spin Hall Effect

Spin-Torques Beyond Spin-Transfer

Alvaro Nunez - Ph.D. Thesis (2004) SSC (2006)

Rashba Torque

 $M_y \approx p_x z$. $p_x = allowed$

Spin Hall Torque

$M_z \approx p_y z$. $p_x = not allowed$

Spin Hall Torque

 $M_y \approx p_y z$. $(p_y x)$. p_x = allowed

Bulk Transport Theory Relaxation Time Approx

Bulk Transport Theory

$$\begin{aligned} \frac{\partial \rho^{(0)}}{\partial \mathbf{k}} &= \sum_{m} \left\{ \frac{\partial f_{m\mathbf{k}}}{\partial \mathbf{k}} |mk\rangle \langle mk| + \\ &+ f_{m\mathbf{k}} \left| \frac{\partial}{\partial \mathbf{k}} mk \right\rangle \langle mk| + f_{m\mathbf{k}} |mk\rangle \left\langle \frac{\partial}{\partial \mathbf{k}} mk \right| \right\} \end{aligned}$$

$$\begin{bmatrix} H, \ \rho \end{bmatrix}_{nn'} &= \left(\varepsilon_{nk} - \varepsilon_{n'k} \right) \rho_{nn'} \qquad \begin{array}{l} \text{Off diagonal response is intrinsic when bands well defined} \\ \\ &\left| \frac{\partial}{\partial \mathbf{k}} nk \right\rangle = \sum_{m \neq n} \left(\frac{\langle mk | \frac{\partial H}{\partial \mathbf{k}} |nk\rangle}{\varepsilon_{nk} - \varepsilon_{mk}} \right) |mk\rangle \end{aligned}$$

Response of Atom to Static Electric Field

$$\Psi_n^{(1)} = \sum_{k \neq n} \Psi_k^{(0)} \frac{V_{kn}}{E_n^{(0)} - E_k^{(0)}}$$

$$\boldsymbol{\alpha} = e^2 \sum_{k \neq n} \frac{\mathbf{r}_{nk} \mathbf{r}_{kn} + \mathbf{r}_{kn} \mathbf{r}_{nk}}{E_k^{(0)} - E_n^{(0)}}$$

Response of Insulator to static Electric Field

$$\rho_{n'n}^{(1)}(\vec{k}) = ieE \; \frac{f_{n',\vec{k}} - f_{n,\vec{k}}}{(E_{n',\vec{k}} - E_{n,\vec{k}})^2} \; \langle \Psi_{n',\vec{k}} | \frac{\partial H}{\partial k_x} | \Psi_{n,\vec{k}} \rangle$$

Response of Metal to static Electric Field

$$\rho_{n,n}^{(1)}(\vec{k}) = f_{n,\vec{k}+\vec{\delta}} - f_{n,\vec{k}}$$

$$\frac{\delta}{K}\sim \frac{eE\tau_{tr}}{K\hbar}\sim \frac{eEa}{\hbar/\tau_{tr}}$$

$$E = \rho \times j \approx 10^{-4} \Omega \text{cm} \times 10^{6} \text{ A/cm}^{2}$$

eEa << h/τ_{tr} << W

Topological Insulators A Model Spin-Orbit-Torque System

 $\hat{\mathcal{H}} = v(-p_x\hat{\sigma}_2 + p_y\hat{\sigma}_1) + \Delta\hat{\sigma}_3$

Theory-free Rashba SO Torque Coefficient

 $\tau_{R}/(I/e) \approx (WLs_{tr} \times \Delta/\hbar)/(Wv_{D}s_{tr})$ = $\Delta/(\hbar v_{D}/L)$

Massive Dirac Model for Current-Induced Spin Density

Magneto-resistance of Massive Dirac Model

Anomalous Hall Effect

 $\boldsymbol{\rho} = \begin{bmatrix} \rho_{\perp} \cos^2 \varphi_M + \rho_{\parallel} \sin^2 \varphi_M & \rho_P \cos \varphi_M \sin \varphi_M + \rho_H \\ \rho_P \cos \varphi \sin \varphi_M - \rho_H & \rho_{\perp} \sin^2 \varphi_M + \rho_{\parallel} \cos^2 \varphi_M \end{bmatrix}$

Anisotropic Magneto-resistance

 $\rho_P = \rho_{\parallel} - \rho_{\perp}$

Magneto-resistance of Massive Dirac Model

Resistively Detected SOT

Spin-Orbit Torques in TI DMSs

Fan et al., Nature Mat. (2014) Ndiaye et al. arXiv:1509.06929 Franz and Garate, PRL (2010)

- k_c = 10⁷ cm⁻¹
- 2 10 kΩ
- eE = 10 eV/cm
- B_{so} = 1.5 x 10⁻⁶ eV (expt)

Numbers 7

()

- $B_{so}/\Delta = s_{ci}/S_{bulk} = 10^{-5}$
- $S_{bulk} = 10^{14} \text{ QL}^{-1} \text{ cm}^{-2}$
- $s_{ci} = k_c^2 (eE/k_c)/E_{gap}$
 - = 10¹⁴ cm⁻² (10⁻⁶eV/10⁻¹eV)

 Diagonal (Normal - Rashba) vs.
 Off-Diagonal (Anomalous - `Spin Hall') Response

Experimental Findings
 `Make Sense'

Atomic Limit Electric Field Induced Torques

TI Thin Films as Multiferroic Materials

Qi and Zhang - RMP (2011) Zang and Nagaosa - PRB (2010) Pesin and AHM - PRL (2013)

Maxwell's Equations

Axion Maxwell's Equations

Magneto-Electric Coupling Coefficent

 $\nabla \cdot \boldsymbol{E} = 4\pi\rho - \nabla\alpha_{\rm ME} \cdot \boldsymbol{B},$

 $\nabla \times \boldsymbol{B} - (1/c) \partial \boldsymbol{E} / \partial t = (4\pi/c)\boldsymbol{J} + \nabla \alpha_{\rm ME} \times \boldsymbol{E}$

Spice - Quantum Spintronics

Are Topological Materials Useful in Spintronics ?

Allan MacDonald University of Texas at Austin

