Non-equilibrium transport properties of spin-dependent nanostructures

Dirk Schuricht (Utrecht)

with

Niklas Gergs (Utrecht) Christoph Hörig (Utrecht) Maarten Wegewijs (Aachen)

Basic transport setup

experimental realisations: heterostructures, nano wires, carbon nanotubes, molecules, ...

Hanson et al., RMP 2007

Sand-Jespersen et al., PRL 2007

Jespersen et al., Nat. Phys. 2011

Roch et al., Nature 2008

Basic transport setup

Goal: understand transport phenomena

Experimental examples

transport through nanotube quantum dot

Kim et al, Nat Nano 2014

Gaudenzi, Misiorny, Burzuri, van der Zant & Wegewijs, to appear in J Chem Phys 2016

Outline

• paradigmatic system: Anderson model

- basic transport processes (well known in literature)
- energy and heat transport energy transport spectroscopy
- multi-level systems

- - $(\mu_{\mathrm{D}}, T_{\mathrm{D}})$

 $\mu_{
m S}, T_{
m S}$

- spin-dependent transport spin current without charge current
- spin-valve setups

Basic transport processes

Single-level Anderson model

$$\mu_{\rm S} = \left| \begin{array}{c} | \uparrow \downarrow \rangle \\ \mu_{\rm S} = \left| \begin{array}{c} | \uparrow \rangle \\ T_{\rm S} \end{array} \right| \left| \begin{array}{c} | \uparrow \rangle \\ | \downarrow \rangle \end{array} \right| \left| \begin{array}{c} | \uparrow \rangle \\ T_{\rm D} \end{array} \right| \left| \begin{array}{c} | \uparrow \rangle \\ | \downarrow \rangle \end{array} \right| \left| \begin{array}{c} | \uparrow \rangle \\ T_{\rm D} \end{array} \right| \left| \begin{array}{c} | \uparrow \rangle \\ T_{\rm D} \end{array} \right|$$

$$H = H_{\rm res} + H_{\rm d} + H_{\rm tun}$$

$$H_{\rm res} = \sum_{\alpha k\sigma} \epsilon_k c^{\dagger}_{\alpha k\sigma} c_{\alpha k\sigma}$$

$$H_{\rm d} = \sum_{\sigma} \left(\varepsilon + \frac{B\sigma}{2} \right) d^{\dagger}_{\sigma} d_{\sigma} + U d^{\dagger}_{\uparrow} d_{\uparrow} d^{\dagger}_{\downarrow} d_{\downarrow}$$

$$H_{\rm tun} = t \sum_{\alpha k\sigma} \left(c^{\dagger}_{\alpha k\sigma} d_{\sigma} + d^{\dagger}_{\sigma} c_{\alpha k\sigma} \right)$$

electrodes, density of states ρ_0

quantum dot, gate voltage ε , Coulomb repulsion *U*, magnetic field *B*

tunneling, rate $\Gamma = 2\pi\rho_0 t^2$

Real-time technique

reduced density matrix of dot

 $\rho_{\rm d}(t) = \operatorname{tr}_{\rm res} \rho(t)$

integrate out source and drain degrees

von-Neumann equation for full system

Liouville operator $L = L_{res} + L_d + L_{tun}$

 $\rightarrow \rho(t) = e^{-iLt}\rho(0)$

 $i\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = [H,\rho(t)] = L\rho(t)$

rate equation for occupations on dot applicable for weak tunneling $\Gamma \ll T, U$

of freedom perturbatively in L_{tun}

$$L_{\rm d}^{\rm eff} \rho_{\rm d}^{\rm st} = 0$$

stationary observables, eg, currents possible to describe time evolution

remark: many other methods on the market

$(2) \qquad |0\rangle \qquad (1) \\ |\uparrow\rangle, |\downarrow\rangle \qquad (1)$

process in O(Γ):
when energy differences on dot
equal V/2, eg, electron
(1) hops off dot to drain
(2) hops from source to dot

broadening of SET resonance by temperature

Single-electron tunneling (SET)

 $U = 10^5 \Gamma$ $T = 300 \Gamma$ B = 0

Single-electron tunneling (SET)

 $U = 10^5 \Gamma$ $T = 300 \Gamma$ B = U/4

Cotunneling (COT)

 $U = 10^5 \Gamma$ $T = 300 \Gamma$ B = U/4

Thermal bias

 $U = 10^5 \,\Gamma$ $T_{\rm D} = 3T_{\rm S} = 900 \,\Gamma$ B = U/4

one can also add a finite thermal bias $\Delta T = T_{\rm S} - T_{\rm D}$

see: Gergs et al, PRB 2015

Spin-valve setup

Spin-valve Anderson model

$$H_{\rm res} = \sum_{\alpha k\sigma} \epsilon_k c^{\dagger}_{\alpha k\sigma} c_{\alpha k\sigma}$$

$$H_{\rm d} = \sum_{\sigma} \varepsilon \, d_{\sigma}^{\dagger} d_{\sigma} + U d_{\uparrow}^{\dagger} d_{\uparrow} d_{\downarrow}^{\dagger} d_{\downarrow}$$

$$H_{\rm tun} = t \sum_{\alpha k\sigma} \left(c^{\dagger}_{\alpha k\sigma} d_{\sigma} + d^{\dagger}_{\sigma} c_{\alpha k\sigma} \right)$$

electrodes, density of states $\rho_{\pm} = (1 \pm p)\rho_0$, polarisation p

cf. Braun et al,

PRB 2004

quantum dot, gate voltage ε , Coulomb repulsion *U*

tunneling, rate $\Gamma = 2\pi\rho_0 t^2$

induced magnetic field on dot (Braun et al, PRB 2004)

$$\vec{B}_{\rm ind} = \frac{\pi \rho_0 t^2 p}{2} \sum_{\alpha} \Re \left[\psi \left(\frac{1}{2} + i \frac{\varepsilon - \mu_{\alpha}}{2\pi T} \right) - \psi \left(\frac{1}{2} + i \frac{\varepsilon + U - \mu_{\alpha}}{2\pi T} \right) \right] \vec{n}_{\alpha}$$
polarisation
essential
but no interesting effect since $\vec{n}_{\rm S} \parallel \vec{B}_{\rm ind} \parallel \vec{n}_{\rm D}$

generalisation to different polarisations, thermal bias, ... straightforward

Antiparallel setup

 $U = 10^5 \Gamma$ $T = 300 \Gamma$ p = 0.99

Orthogonal setup

non-trivial transport due to precession of electron spin on dot in induced magnetic field (Hell et al, PRB 2015) $U = 10^5 \Gamma$ $T = 300 \Gamma$ p = 0.99

 $V\left[U\right]$

 $V\left[U
ight]$

(in progress, see also poster by Niklas Gergs)

add base reservoir

chemical potential μ_B tunneling rate $\Gamma_B = 2\pi\rho_0 t_B^2 \gg \Gamma$

$$H = H_{\rm res} + H_{\rm d} + H_{\rm tun} + H_{\rm B}$$

$$H_{\rm res} = \sum_{\alpha k\sigma} \epsilon_k c^{\dagger}_{\alpha k\sigma} c_{\alpha k\sigma}$$

$$H_{\rm d} = \sum_{\sigma} \varepsilon \, d_{\sigma}^{\dagger} d_{\sigma} + U d_{\uparrow}^{\dagger} d_{\uparrow} d_{\downarrow}^{\dagger} d_{\downarrow}$$

$$H_{\rm tun} = t \sum_{\alpha k\sigma} \left(c^{\dagger}_{\alpha k\sigma} d_{\sigma} + d^{\dagger}_{\sigma} c_{\alpha k\sigma} \right)$$

electrodes, density of states $\rho_{\pm} = (1 \pm p)\rho_0$, polarisation p

quantum dot, gate voltage ε , Coulomb repulsion *U*

tunneling, rate
$$\Gamma = 2\pi\rho_0 t^2$$

 $U = 10^{6} \Gamma$ $T = 300 \Gamma$ p = 0.99 $\Gamma_{\rm B} = 10 \Gamma$

base yields new resonances transport

controllable

 $U = 10^6 \, \Gamma$

 $T=300\,\Gamma$

Conclusions

- showed a lot of plots
- discussed basic transport processes in quantum dots single-electron tunneling, elastic and inelastic cotunneling, cotunneling assisted single-electron

tunneling

- processes are well visible in energy/heat transport
- spin precession in induced magnetic field in spinvalve setup

spin current without charge current in Coulomb

blockade regime

- controllable spin transport in three-terminal setup see also poster by Niklas Gergs
- reference for energy transport:

Phys. Rev. B 91, 201107(R) (2015)

Relaxation dynamics in Kondo quantum dots

Pletyukhov, Schuricht & Schoeller, PRL 104, 106801 (2010)

Time evolution in quantum dots

studies e.g. in the context of quantum information theory, q-bits, error correction, ...

GaAs/AlGaAs double dot (Petta et al., Science 2005)

two-state system from singlet and *m*=0 triplet

Anisotropic Kondo model

obtained from Anderson model by Schrieffer-Wolff transformation

$$H = H_{\rm res} + H_{\rm d} + H_{\rm tun}$$

$$H_{\rm res} = \sum_{\alpha k\sigma} \epsilon_k c^{\dagger}_{\alpha k\sigma} c_{\alpha k\sigma}$$

electrodes, density of states ho_0

 $H_{\rm d} = hS^z$

$$H_{\text{tun}} = J_{\perp} \left(S^{x} s^{x} + S^{y} s^{y} \right) + J_{z} S^{z} s^{z} \quad \text{ex}$$

quantum dot, spin-1/2, external magnetic field h

exchange interaction J

local reservoir spin
$$\vec{s} = \frac{1}{2} \sum_{\alpha \alpha' k k' \sigma \sigma'} c^{\dagger}_{\alpha k \sigma} \vec{\sigma}_{\alpha \alpha'} c_{\alpha' k' \sigma'}$$

Relaxation in anisotropic Kondo model

Strongly anisotropic model

Universal short-time behaviour

short times:
$$t < \frac{1}{\max\{V, h\}}$$
 \longrightarrow $\Lambda_t = \frac{1}{t}$
 \longrightarrow $J_t = J(\Lambda_t) = -\frac{1}{2\ln(T_{\rm K}t)}$ (isotropic model)
magnetization $\langle \vec{S}(t) \rangle = \left[1 + \frac{1}{\ln(T_{\rm K}t)}\right] \langle \vec{S}(0) \rangle$

conductance
$$G(t) = \frac{I(t)}{V} = \frac{e^2}{h} \frac{3\pi^2}{8 \ln^2(T_{\rm K}t)}$$
 both for AFM and FM

anisotropic model: power laws with exponents $\propto \sqrt{J_z^2 - J_\perp^2}$

Hackl et al., PRL 2009: FM model $\langle S^z(t) \rangle, V = h_0 = 0$