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Magnon computing

A.V. Chumak et al., Nature Phys. 11, 453 (2015)

Concept of magnon spintronics

Magnon transport plays a central role in magnonics 
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Magnon gas

 Energy  

 Momentum

 Mass

 Spin

 Lifetime ~ 400-700 ns !
(Yttrium Iron Garnet, Y3Fe5O12)

Magnon as a quanta of spin-wave

1s 
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dipolar interaction exchange

Landau-Lifshitz equation:

Magnon-phonon spectrum of

in-plane magnetized YIG film

mel ...U

M
- +

magnetoelastic

YIG film: 6 µm 
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Magnon-phonon spectrum of

in-plane magnetized YIG film

Thickness modes
having a non-uniform 
harmonic distribution of
dynamic magnetization
along the film thickness

Energy and 
momentum 

conservation laws

fp

fsw = fp/2

Bose-Einstein

condensate

of magnons

µ=Emin

Parametric pumping
by electromagnetic wave 
at microwave  frequency

S.O. Demokritov et al., 
Nature 443, 430 (2006)

YIG film: 6 µm 
Magnon thermalization

due to 4-particle scattering:
incoherent magnon gas
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 Inelastic scattering of photons from spin waves

 Intensity of the scattered light is proportional to 
magnon density

Elastically scattered 
light

Brillouin light scattering (BLS) 

spectroscopy

magnons

sw sw,f q
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L sw
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Frequency resolution: 50 MHz
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Time- and wavevector-resolved 

BLS spectroscopy

Max wavenumber: 2.36×105 rad/cm
Wavenumber resolution:   2×103 rad/cm

Time resolution:   1 ns
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Wavevector-resolved BLS spectroscopy

Wavenumber q (x105 rad/cm)

B
LS
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Hybridization between a phonon mode and magnon modes results in
magneto-elastic magnon (MEM) mode

Thermal magnon-phonon spectrum

Stokes

Anti-Stokes
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Gaseous phase and magnon BEC 

at the bottom of spin-wave spectrum

Pumping pulse
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0 1265 OeH  MEM
0 1710 OeH 

Shift of the magnon density peak caused by change of the bias magnetic field

MEM

Magnon accumulation in MEM mode

(under parametric pumping conditions)
(G

H
z)

(G
H

z)

How magnons accumulate in the BEC and the MEM mode ? 
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MEM

Intercoupling of BEC and MEM
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Magnon spectrum
population at different 
pumping powers for 

Population of the low 
energy states 
at different pumping 
powers

Calculated magnon 
spectrum



Alexander A. Serga Quantum Spintronics: Spin Transport Through Quantum Magnetic Materials Mainz, September 21, 2016

MEM
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Magnon spectrum
population at different 
pumping powers for 

Population of the low 
energy states 
at different pumping 
powers

Calculated magnon 
spectrum

Intercoupling of BEC and MEM
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MEMBEC
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pumping powers for 

Population of the low 
energy states 
at different pumping 
powers

Calculated magnon 
spectrum

Intercoupling of BEC and MEM

(G
H
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MEMBEC
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energy states 
at different pumping 
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MEMBEC
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Magnon spectrum
population at different 
pumping powers for 

Population of the low 
energy states 
at different pumping 
powers

Calculated magnon 
spectrum

Intercoupling of BEC and MEM 

(G
H

z)

Formation of 
the magnon BEC 
is accompanied 
by saturation

of the MEM peak 

The MEM density 
peak appears 
before the 
magnon BEC
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Accumulation of magnon-phonon 

hybrid particles

Bottleneck

Pure phonon states -
no non-linear scattering and thus

no connection with upper 
magnon states

Accumulation of the 
hybridized magnon-phonon states 

at the bottom of the magnon spectrum

Magnon-phonon hybridization area Ratio of magnetic Em and elastic Eel energies 
in the magneto-elastic magnon mode
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Accumulation of magnon-phonon 

hybrid particles

Bottleneck

Pure phonon states -
no non-linear scattering and thus

no connection with upper 
magnon states

Accumulation of the 
hybridized magnon-phonon states 

at the bottom of the magnon spectrum

Barrier

BEC

Magnon-phonon hybridization area Ratio of magnetic Em and elastic Eel energies 
in the magneto-elastic magnon mode

Magnon “highway” - current of magnons 
in a phase space to the BEC state
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Hamiltonian approach 

to magnon-phonon hybridization

Hamiltonian equation of motion: 

Magnon – phonon hybridization Hamiltonian

Interaction Hamiltonian of 2     2 magnon scattering

hybridization

V. L’vov and A. Pomyalov, unpublished

T
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Magnon-phonon hybridization

Linear canonical Bogoliubov transformation for transition to hybridized MEM modes       

Rotation in the (aq , bq) plane allows us to 
obtain the diagonal quadratic Hamiltonian 

for the upper and lower MEM modes
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Interaction amplitudes T

of the upper and lower MEMs 

Upper-Upper interaction Lower-Lower interaction
Cross Upper-Lower
MEMs interaction
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Statistical description
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Statistical description
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Statistical description
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Dimensionless distance to crossover 0q q 

Increase in the magnon BEC population 
decreases bottleneck effect 
and explains the saturation phenomenon
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Transport measurements of accumulated

hybridized bosons
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pumping microstrip

200 ns long pumping pulse

Experimental time-space diagram 
for MEM mode

Position of the 
maximum of a 
travelling packet of 
hybridized bosons
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Accumulation of hybridized bosons with 
non-zero group velocity can be used 
for spin transport

1100m/sgrv 
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 Hybridization between magnons and phonons 
creates a spectral bottleneck in the system

 The effects evidence the bottleneck accumulation 
of the hybridized magnon-phonon bosons
at the bottom of the magnon spectrum

 Developed minimal model describes observed 
phenomenon of the hybrid bosons accumulation

 Accumulation of hybridized bosons with 
non-zero group velocity can be used 
for spin transport

Summary
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