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Quantum magnetism vs Spintronics

• No dipolar coupling 
(small magnetic moments) 

Notable exception —> spin ice

• No coupling to phonons 
(basically isolated system of spins) 

Notable exception -> hybridization of magnons 
and phonons in non-collinear spin structures

• Spin transport —> mostly thermal 
1) heat transport in chains/ladders 
2) thermal transport in organic  

spin liquid candidate materials  
(spinon Fermi surface?) 

3) magnon Hall effect (due to DM interactions)
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Spin is almost conserved
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Outline

• Magnon BEC 
• Materials 
• Basic theory and some numerics 
• Field theory of the Lifshitz point 
• Spin-current state near the end-point of 1/3 
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Magnon BEC and superfluidity

1-magnon
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degenerate minima where condensation is possible
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Magnon BEC and superfluidity

1-magnon
hsat =

S(4J2 � |J1|)2

4J2

! ⇠ (k2 �Q2)2 � (hsat � h)

Single magnon condensation at both minima —> 

-Q Q

frustration shows up via presence of two or more  
degenerate minima where condensation is possible
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Single-Q vs double-Q condensation 
is decided by interaction between magnons 

which is strongly renormalized by  
quantum fluctuations.



The difference is not small — 
the entire magnetization M(h) of the triangular lattice 

antiferromagnet is determined by quantum fluctuations
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Today: condensation of magnon pairs

h

Sz=-1

Sz=-2

“molecular” bound state

Formation of molecular fluid: for d>1 at T=0 this is a molecular 
BEC = true spin nematic (magnon superconductor)
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Hidden order
No dipolar order

hS+
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Nematic order

Magnetic quadrupole moment
think of a fluctuating fan state: 

φ is constant, while θ fluctuates (in time)  
in the interval (θ0, - θ0) 
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• Magnon BEC 
• Materials 
• Basic theory and some numerics 
• Field theory of the Lifshitz point 
• Spin-current state near the end-point of 1/3 

magnetization plateau



New system: Frustrated 
ferromagnet

1d S=1/2 chain

J1<0 FM

J2>0 AF
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NaCuMoO4(OH) as a Candidate Frustrated J1–J2 Chain Quantum Magnet
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2Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan

3Center for Supports to Research and Education Activities, Kobe University, Nada, Kobe 657-8501, Japan
4Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-8501, Japan

(Dated: September 5, 2014)

In a frustrated J1–J2 chain with the nearest-neighbor ferromagnetic interaction J1 and the next-
nearest-neighbor antiferromagnetic interaction J2, novel magnetic states such as a spin-nematic state
are theoretically expected. However, they have been rarely examined in experiments because of the
difficulty in obtaining suitable model compounds. We show here that the quasi-one-dimensional
antiferromagnet NaCuMoO4(OH), which comprises edge-sharing CuO2 chains, is a good candidate
J1–J2 chain antiferromagnet. The exchange interactions are estimated as J1 = −51 K and J2

= 36 K by comparing the magnetic susceptibility, heat capacity, and magnetization data with the
data obtained using calculations by the exact diagonalization method. High-field magnetization
measurements at 1.3 K show a saturation above 26 T with little evidence of a spin nematic state
expected just below the saturation field, which is probably due to smearing effects caused by thermal
fluctuations and the polycrystalline nature of the sample.

Low-dimensional quantum spin systems with geomet-
rical frustration and/or competing magnetic interactions
have attracted much attention in the field of magnetism.
Low dimensionality, quantum fluctuations, and frustra-
tion are three ingredients that may effectively suppress
conventional magnetic order and lead us to unconven-
tional magnetic order or exotic ground states such as a
quantum spin liquid[1, 2].
A frustrated J1–J2 chain of spin 1/2 defined as

H = J1
∑

l

sl · sl+1 + J2
∑

l

sl · sl+2 − h
∑

l

szl (1)

provides us with an interesting example: the competi-
tion between the nearest-neighbor (NN) ferromagnetic
interaction J1 and the next-nearest-neighbor (NNN) an-
tiferromagnetic interaction J2 causes various quantum
states in magnetic fields h[3–7]. Realized in low fields
is a long-range order of vector chirality defined as (sl ×
sl+n)z (n = 1, 2). As the field increases, spin correlations
change markedly because bound magnon pairs are stabi-
lized by ferromagnetic J1. The bound magnon pairs form
a spin density wave (SDW) in medium fields, whereas, in
high fields just below the saturation of magnetization,
they exhibit Bose–Einstein condensation into quantum
multipolar states[8–11]. One of the multipolar states ex-
pected just below the saturation is a quadrupolar state
of magnon pairs called a spin nematic state, analogous
to nematic liquid crystals.
To explore these quantum states theoretically pre-

dicted for the frustrated J1–J2 chain, many experimen-
tal studies have been performed on quasi-1D compounds

∗ knawa@issp.u-tokyo.ac.jp
† Present address: Department of Applied Physics, Graduate
School of Engineering, Nagoya University, Chikusa, Nagoya 464-
8603, Japan

TABLE I. Candidate compounds for the J1–J2 chain system.
Listed are the nearest-neighbor intrachain interaction J1, the
next-nearest-neighbor interaction J2, the bond angles of Cu-
O-Cu paths for J1, the antiferromagnetic transition temper-
ature at zero field TN, and the saturation field Hs.

Compound J1, J2 ∠ Cu-O-Cu TN Hs

(K) (deg) (K) (T)
Li2ZrCuO4[12, 13] −151, 35 94.1 6.4 -

Rb2Cu2Mo3O12[14, 15] −138, 51 89.9, 101.8 < 2 14
91.9, 101.1

PbCuSO4(OH)2[16–18] −100, 36 91.2, 94.3 2.8 5.4
LiCuSbO4[19] −75, 34 89.8, 95.0 < 0.1 12

92.0, 96.8
LiCu2O2[20–22] −69, 43 92.2, 92.5 22.3 110
LiCuVO4[23–31] −19, 44 95.0 2.1 44.4
NaCuMoO4(OH) −51, 36 92.0, 103.6 0.59 26

such as Li2ZrCuO4[12, 13], Rb2Cu2Mo3O12[14, 15],
PbCu(SO4)(OH)2[16–18], LiCuSbO4[19], LiCu2O2[20–
22], and LiCuVO4[23–31], the key parameters of which
are listed in Table I. These compounds commonly
have edge-sharing CuO2 chains made of CuO6 octahe-
dra. NN Cu spins are magnetically coupled with each
other through two superexchange Cu–O–Cu paths with
approximately 90◦ bond angles, while NNN Cu spins are
coupled through two super-superexchange Cu–O–O–Cu
paths. Thus, according to the Goodenough–Kanamori
rule, J1 should be ferromagnetic while J2 can be antifer-
romagnetic. This is in fact the case for these candidate
compounds, which causes frustration in the J1–J2 chains.

Among these compounds, the most often studied is
LiCuVO4 with J1 = −19 K and J2 = 44 K[25]. It has
been shown using large single crystals that LiCuVO4 ex-
hibits an incommensurate helical order at low fields[25–
29], which may be a 3D analogue of the vector chirality

K. Nawa et al, arXiv:1409.1310

Emergent multipolar spin correlations in a fluctuating spiral: The frustrated ferromagnetic
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We present the phase diagram of the frustrated ferromagnetic S= 1
2 Heisenberg J1−J2 chain in a magnetic

field, obtained by large scale exact diagonalizations and density matrix renormalization group simulations. A
vector chirally ordered state, metamagnetic behavior and a sequence of spin-multipolar Luttinger liquid phases
up to hexadecupolar kind are found. We provide numerical evidence for a locking mechanism, which can drive
spiral states toward spin-multipolar phases, such as quadrupolar or octupolar phases. Our results also shed light
on previously discovered spin-multipolar phases in two-dimensional S= 1

2 quantum magnets in a magnetic
field.

DOI: 10.1103/PhysRevB.80.140402 PACS number!s": 75.10.Jm, 75.30.Kz, 75.40.Cx, 75.40.Mg

Spiral or helical ground states are an old and well-
understood concept in classical magnetism,1 and several ma-
terials are successfully described based on theories of spiral
states. For low spin and dimensionality however quantum
fluctuations become important and might destabilize the spi-
ral states. Given that spiral states generally arise due to com-
peting interactions, fluctuations are expected to be particu-
larly strong.

A prominent instability of spiral states is their intrinsic
twist #Si!S j$ !vector chirality".2 It has been recognized that
finite temperature3 or quantum4 fluctuations can disorder the
spin moment #Si$ of the spiral, while the twist remains finite.
Such a state is called p-type spin nematic.5 In the context of
quantum fluctuations such a scenario has been confirmed re-
cently in a ring-exchange model,6 while possible experimen-
tal evidence for the thermal scenario has been presented in.7

The twist also gained attention in multiferroics, since it
couples directly to the ferroelectricity.8

In this Rapid Communication we provide evidence for the
existence of yet a different instability of spiral states toward
spin-multipolar phases. The basic idea is that many spin-
multipolar order parameters are finite in the magnetically
ordered spiral state, but that under a suitable amount of fluc-
tuations the primary spin order is lost, while a spin-
multipolar order parameter survives. We demonstrate this
mechanism based on the magnetic field phase diagram of a
prototypical model, the frustrated S= 1

2 Heisenberg chain
with ferromagnetic nearest-neighbor and antiferromagnetic
next nearest-neighbor interactions. Furthermore we show
that this instability provides a natural and unified understand-
ing of previously discovered two-dimensional spin-
multipolar phases.9,10

To be specific, we determine numerically the phase dia-
gram of the following Hamiltonian:

H = J1%
i

Si · Si+1 + J2%
i

Si · Si+2 − h%
i

Si
z, !1"

and we set J1=−1, J2"0 in the following. Si are spin-1/2
operators at site i, while h denotes the uniform magnetic
field. The magnetization is defined as mª1 /L%iSi

z. We em-

ploy exact diagonalizations !EDs" on systems sizes up to
L=64 sites complemented by density matrix renormalization
group !DMRG" !Ref. 11" simulations on open systems of
maximal length L=384, retaining up to 800 basis states.

The classical ground state of Hamiltonian !1" is ferromag-
netic for J2#1 /4 and a spiral with pitch angle $
=arccos!1 /4J2"! &0,% /2' otherwise. The Lifshitz point is
located at J2=1 /4. In a magnetic field the spins develop a
uniform component along the field, while the pitch angle in
the plane transverse to the field axis is unaltered by the field.

The zero field quantum mechanical phase diagram for
S= 1

2 is still unsettled. Field theoretical work predicts a finite,
but tiny gap accompanied by dimerization12,13 for J2&1 /4,
which present numerical approaches are unable to resolve.
The classical Lifshitz point J2=1 /4 is not renormalized for
S= 1

2 , and the transition point manifests itself on finite sys-
tems as a level crossing between the ferromagnetic multiplet
and an exactly known singlet state.14 The theoretical phase
diagram at finite field has recently received considerable
attention,15–17 triggered by experiments on quasi one-
dimensional cuprate helimagnets.18–20 One of the most pecu-
liar features of the finite size magnetization process is the
appearance of elementary magnetization steps of
'Sz=2,3 ,4 in certain J2 and m regions. This has been attrib-
uted to the formation of bound states of spin flips, leading to
dominant spin-multipolar correlations close to saturation. A
detailed phase diagram is however still lacking.

We present our numerical phase diagram in the J2 / (J1( vs.
m /msat plane in Fig. 1. At least five different phases are
present. The low magnetization region consists of a single
vector chiral phase !gray". Below the saturation magnetiza-
tion we confirm the presence of three different multipolar
Luttinger liquid phases !red, green, and blue". The red phase
extends up to J2→(,16 and its lower border approaches
m=0+ in that limit. All three multipolar liquids present a
crossover as a function of m /msat, where the dominant cor-
relations change from spin-multipolar close to saturation to
spin-density wave !SDW" character at lower magnetization.
One also expects a tiny incommensurate p=2 phase close to
the p=3 phase,17 which we did not aim to localize in this

PHYSICAL REVIEW B 80, 140402!R" !2009"
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LiCuVO4 : spin nematic?

estimates: 
J1 = - 1.6 meV 
J2 = 3.9 meV 
J5 = -0.4 meV

J. Phys. Soc. Jpn. Letter

Fig. 1. (Color online) Crystal structure of LiCuVO4. Cu-O chains separated by VO4 tetrahedra and

Li+ ions are along the b direction. ∠ Cu-O-Cu ∼ 90◦ indicates the ferromagnetic interaction.

constants and η is Luttinger parameter.9) Recent numerical studies exhibit magnetization vs

J1/J2 phase diagram and the quadrupole phase in fact persists down to rather low magnetic

field.9–11) In addition the phase consists of two states, SDW2 in lower field where ⟨sz0s
z
l ⟩

is dominant and nematic in higher field where ⟨s+0 s
+
1 s

−

l s
−

l+1⟩ is dominant. In both states

transverse two spin correlation is short ranged and decays exponentially.

In most quasi-1D magnet weak interchain interaction induces magnetic LRO at low tem-

perature but it inherits quantum nature. In case of VC phase, spiral order in which the

magnitude of the magnetic moment is strongly suppressed due to quantum fluctuation would

be induced. In case of SDW2, LRO of the longitudinal spin correlation would appear with

propagating wave vector k2 = 2kF .12) The former is a good analogue for classical spin system

but the latter is a totally novel state induced by frustration and quantum fluctuation.

LiCuVO4
13) is one of the model compound for the frustrated ferromagnetic chain. As

shown in Fig. 1 the CuO plaquette forms 1D S = 1/2 chain in the crystallographic b direction.

Considering the bond angle of Cu-O-Cu ∼ 90◦, nearest neighbor interaction is presumed to be

ferromagnetic14, 15) and next nearest neighbor (NNN) interaction be antiferromagnetic(AF).

The magnetic susceptibility showed typical behavior of 1D frustrated magnet, i.e., broad max-

imum due to AF short-range fluctuation at Tmax = 28K16) was observed. At T ≤ TN = 2.3 K

incommensurate magnetic order with propagation vector ksp = (0 0.532 0) was identified.17)

Neutron diffraction elucidates the spiral structure in the ab plane at zero field17) and also at

small field H ≤ 3.5 T.18) The magnetic moment is strongly suppressed as small as 0.25µB
19)

∼ 0.31µB.17) Inelastic neutron scattering showed enhanced spin dispersion in the b∗ direc-

tion and small one in others.20) Exchange parameters have been estimated from independent

experiments including the magnetic dispersion,20) the continuum excitation,21) and magneti-

2/9

Emergent multipolar spin correlations in a fluctuating spiral: The frustrated ferromagnetic
spin-1

2 Heisenberg chain in a magnetic field

Julien Sudan,1 Andreas Lüscher,1 and Andreas M. Läuchli2,*
1Institut Romand de Recherche Numérique en Physique des Matériaux (IRRMA), CH-1015 Lausanne, Switzerland

2Max Planck Institut für Physik Komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden, Germany
!Received 22 July 2008; published 7 October 2009"

We present the phase diagram of the frustrated ferromagnetic S= 1
2 Heisenberg J1−J2 chain in a magnetic

field, obtained by large scale exact diagonalizations and density matrix renormalization group simulations. A
vector chirally ordered state, metamagnetic behavior and a sequence of spin-multipolar Luttinger liquid phases
up to hexadecupolar kind are found. We provide numerical evidence for a locking mechanism, which can drive
spiral states toward spin-multipolar phases, such as quadrupolar or octupolar phases. Our results also shed light
on previously discovered spin-multipolar phases in two-dimensional S= 1

2 quantum magnets in a magnetic
field.

DOI: 10.1103/PhysRevB.80.140402 PACS number!s": 75.10.Jm, 75.30.Kz, 75.40.Cx, 75.40.Mg

Spiral or helical ground states are an old and well-
understood concept in classical magnetism,1 and several ma-
terials are successfully described based on theories of spiral
states. For low spin and dimensionality however quantum
fluctuations become important and might destabilize the spi-
ral states. Given that spiral states generally arise due to com-
peting interactions, fluctuations are expected to be particu-
larly strong.

A prominent instability of spiral states is their intrinsic
twist #Si!S j$ !vector chirality".2 It has been recognized that
finite temperature3 or quantum4 fluctuations can disorder the
spin moment #Si$ of the spiral, while the twist remains finite.
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quantum fluctuations such a scenario has been confirmed re-
cently in a ring-exchange model,6 while possible experimen-
tal evidence for the thermal scenario has been presented in.7

The twist also gained attention in multiferroics, since it
couples directly to the ferroelectricity.8

In this Rapid Communication we provide evidence for the
existence of yet a different instability of spiral states toward
spin-multipolar phases. The basic idea is that many spin-
multipolar order parameters are finite in the magnetically
ordered spiral state, but that under a suitable amount of fluc-
tuations the primary spin order is lost, while a spin-
multipolar order parameter survives. We demonstrate this
mechanism based on the magnetic field phase diagram of a
prototypical model, the frustrated S= 1
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and we set J1=−1, J2"0 in the following. Si are spin-1/2
operators at site i, while h denotes the uniform magnetic
field. The magnetization is defined as mª1 /L%iSi
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located at J2=1 /4. In a magnetic field the spins develop a
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The zero field quantum mechanical phase diagram for
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2 is still unsettled. Field theoretical work predicts a finite,
but tiny gap accompanied by dimerization12,13 for J2&1 /4,
which present numerical approaches are unable to resolve.
The classical Lifshitz point J2=1 /4 is not renormalized for
S= 1

2 , and the transition point manifests itself on finite sys-
tems as a level crossing between the ferromagnetic multiplet
and an exactly known singlet state.14 The theoretical phase
diagram at finite field has recently received considerable
attention,15–17 triggered by experiments on quasi one-
dimensional cuprate helimagnets.18–20 One of the most pecu-
liar features of the finite size magnetization process is the
appearance of elementary magnetization steps of
'Sz=2,3 ,4 in certain J2 and m regions. This has been attrib-
uted to the formation of bound states of spin flips, leading to
dominant spin-multipolar correlations close to saturation. A
detailed phase diagram is however still lacking.

We present our numerical phase diagram in the J2 / (J1( vs.
m /msat plane in Fig. 1. At least five different phases are
present. The low magnetization region consists of a single
vector chiral phase !gray". Below the saturation magnetiza-
tion we confirm the presence of three different multipolar
Luttinger liquid phases !red, green, and blue". The red phase
extends up to J2→(,16 and its lower border approaches
m=0+ in that limit. All three multipolar liquids present a
crossover as a function of m /msat, where the dominant cor-
relations change from spin-multipolar close to saturation to
spin-density wave !SDW" character at lower magnetization.
One also expects a tiny incommensurate p=2 phase close to
the p=3 phase,17 which we did not aim to localize in this
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LiCuVO4 experiment: collinear SDW along B
Buttgen et al 2012, 2014Hagiwara, Svistov et al, 2011



LiCuVO4

No spin-flip 
scattering above 

~ 9 Tesla: 
longitudinal 
SDW state

SF = spin flip, ΔS = 1"
NSF = no spin flip, ΔS = 0 

longitudinal SDW



Cold reality

• so far, extensive experimental evidence for 
longitudinal SDW  

• Spin Nematic phase is constrained to field 
interval < 1 T right below the saturation field 
(of the order 40 T)

“Our results suggest that the theoretically predicted spin-nematic phase, if it exists in 
LiCuVO4, can be established only within the narrow field range 40.5<H<41.4 T.”



Huge 1/3 magnetization plateau !



 
FIG. 2 (color online). (a) 51V NMR spectra measured on a single-domain piece of a crystal in 

magnetic fields between 15 and 30 T applied perpendicular to the ab plane at T = 0.4 K. (b) 

Magnetization curve of single crystals (top, black line) and its field derivative (bottom, red line) in B 

A ab at 1.4 K after the subtraction of the Van Vleck paramagnetic magnetization (MVV). 

Magnetization deduced from the center of the gravity of the NMR spectra is also plotted (top, blue 

circles). Expected spin structures in phases II and III are schematically depicted in the inset. 
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small plateau’s onset field of 27 Tesla,  
relative to J ~ 100 K, 

suggest the presence of ferromagnetic  
exchange interactions 
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Frustrated ferromagnet
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larly strong.
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tal evidence for the thermal scenario has been presented in.7

The twist also gained attention in multiferroics, since it
couples directly to the ferroelectricity.8

In this Rapid Communication we provide evidence for the
existence of yet a different instability of spiral states toward
spin-multipolar phases. The basic idea is that many spin-
multipolar order parameters are finite in the magnetically
ordered spiral state, but that under a suitable amount of fluc-
tuations the primary spin order is lost, while a spin-
multipolar order parameter survives. We demonstrate this
mechanism based on the magnetic field phase diagram of a
prototypical model, the frustrated S= 1

2 Heisenberg chain
with ferromagnetic nearest-neighbor and antiferromagnetic
next nearest-neighbor interactions. Furthermore we show
that this instability provides a natural and unified understand-
ing of previously discovered two-dimensional spin-
multipolar phases.9,10

To be specific, we determine numerically the phase dia-
gram of the following Hamiltonian:

H = J1%
i

Si · Si+1 + J2%
i

Si · Si+2 − h%
i

Si
z, !1"

and we set J1=−1, J2"0 in the following. Si are spin-1/2
operators at site i, while h denotes the uniform magnetic
field. The magnetization is defined as mª1 /L%iSi

z. We em-

ploy exact diagonalizations !EDs" on systems sizes up to
L=64 sites complemented by density matrix renormalization
group !DMRG" !Ref. 11" simulations on open systems of
maximal length L=384, retaining up to 800 basis states.

The classical ground state of Hamiltonian !1" is ferromag-
netic for J2#1 /4 and a spiral with pitch angle $
=arccos!1 /4J2"! &0,% /2' otherwise. The Lifshitz point is
located at J2=1 /4. In a magnetic field the spins develop a
uniform component along the field, while the pitch angle in
the plane transverse to the field axis is unaltered by the field.

The zero field quantum mechanical phase diagram for
S= 1

2 is still unsettled. Field theoretical work predicts a finite,
but tiny gap accompanied by dimerization12,13 for J2&1 /4,
which present numerical approaches are unable to resolve.
The classical Lifshitz point J2=1 /4 is not renormalized for
S= 1

2 , and the transition point manifests itself on finite sys-
tems as a level crossing between the ferromagnetic multiplet
and an exactly known singlet state.14 The theoretical phase
diagram at finite field has recently received considerable
attention,15–17 triggered by experiments on quasi one-
dimensional cuprate helimagnets.18–20 One of the most pecu-
liar features of the finite size magnetization process is the
appearance of elementary magnetization steps of
'Sz=2,3 ,4 in certain J2 and m regions. This has been attrib-
uted to the formation of bound states of spin flips, leading to
dominant spin-multipolar correlations close to saturation. A
detailed phase diagram is however still lacking.

We present our numerical phase diagram in the J2 / (J1( vs.
m /msat plane in Fig. 1. At least five different phases are
present. The low magnetization region consists of a single
vector chiral phase !gray". Below the saturation magnetiza-
tion we confirm the presence of three different multipolar
Luttinger liquid phases !red, green, and blue". The red phase
extends up to J2→(,16 and its lower border approaches
m=0+ in that limit. All three multipolar liquids present a
crossover as a function of m /msat, where the dominant cor-
relations change from spin-multipolar close to saturation to
spin-density wave !SDW" character at lower magnetization.
One also expects a tiny incommensurate p=2 phase close to
the p=3 phase,17 which we did not aim to localize in this
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Spiral or helical ground states are an old and well-
understood concept in classical magnetism,1 and several ma-
terials are successfully described based on theories of spiral
states. For low spin and dimensionality however quantum
fluctuations become important and might destabilize the spi-
ral states. Given that spiral states generally arise due to com-
peting interactions, fluctuations are expected to be particu-
larly strong.

A prominent instability of spiral states is their intrinsic
twist #Si!S j$ !vector chirality".2 It has been recognized that
finite temperature3 or quantum4 fluctuations can disorder the
spin moment #Si$ of the spiral, while the twist remains finite.
Such a state is called p-type spin nematic.5 In the context of
quantum fluctuations such a scenario has been confirmed re-
cently in a ring-exchange model,6 while possible experimen-
tal evidence for the thermal scenario has been presented in.7

The twist also gained attention in multiferroics, since it
couples directly to the ferroelectricity.8

In this Rapid Communication we provide evidence for the
existence of yet a different instability of spiral states toward
spin-multipolar phases. The basic idea is that many spin-
multipolar order parameters are finite in the magnetically
ordered spiral state, but that under a suitable amount of fluc-
tuations the primary spin order is lost, while a spin-
multipolar order parameter survives. We demonstrate this
mechanism based on the magnetic field phase diagram of a
prototypical model, the frustrated S= 1

2 Heisenberg chain
with ferromagnetic nearest-neighbor and antiferromagnetic
next nearest-neighbor interactions. Furthermore we show
that this instability provides a natural and unified understand-
ing of previously discovered two-dimensional spin-
multipolar phases.9,10

To be specific, we determine numerically the phase dia-
gram of the following Hamiltonian:

H = J1%
i

Si · Si+1 + J2%
i

Si · Si+2 − h%
i

Si
z, !1"

and we set J1=−1, J2"0 in the following. Si are spin-1/2
operators at site i, while h denotes the uniform magnetic
field. The magnetization is defined as mª1 /L%iSi

z. We em-

ploy exact diagonalizations !EDs" on systems sizes up to
L=64 sites complemented by density matrix renormalization
group !DMRG" !Ref. 11" simulations on open systems of
maximal length L=384, retaining up to 800 basis states.

The classical ground state of Hamiltonian !1" is ferromag-
netic for J2#1 /4 and a spiral with pitch angle $
=arccos!1 /4J2"! &0,% /2' otherwise. The Lifshitz point is
located at J2=1 /4. In a magnetic field the spins develop a
uniform component along the field, while the pitch angle in
the plane transverse to the field axis is unaltered by the field.

The zero field quantum mechanical phase diagram for
S= 1

2 is still unsettled. Field theoretical work predicts a finite,
but tiny gap accompanied by dimerization12,13 for J2&1 /4,
which present numerical approaches are unable to resolve.
The classical Lifshitz point J2=1 /4 is not renormalized for
S= 1

2 , and the transition point manifests itself on finite sys-
tems as a level crossing between the ferromagnetic multiplet
and an exactly known singlet state.14 The theoretical phase
diagram at finite field has recently received considerable
attention,15–17 triggered by experiments on quasi one-
dimensional cuprate helimagnets.18–20 One of the most pecu-
liar features of the finite size magnetization process is the
appearance of elementary magnetization steps of
'Sz=2,3 ,4 in certain J2 and m regions. This has been attrib-
uted to the formation of bound states of spin flips, leading to
dominant spin-multipolar correlations close to saturation. A
detailed phase diagram is however still lacking.

We present our numerical phase diagram in the J2 / (J1( vs.
m /msat plane in Fig. 1. At least five different phases are
present. The low magnetization region consists of a single
vector chiral phase !gray". Below the saturation magnetiza-
tion we confirm the presence of three different multipolar
Luttinger liquid phases !red, green, and blue". The red phase
extends up to J2→(,16 and its lower border approaches
m=0+ in that limit. All three multipolar liquids present a
crossover as a function of m /msat, where the dominant cor-
relations change from spin-multipolar close to saturation to
spin-density wave !SDW" character at lower magnetization.
One also expects a tiny incommensurate p=2 phase close to
the p=3 phase,17 which we did not aim to localize in this
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Numerics: nematicity and 
1st order seem connected?

study. Finally the multipolar Luttinger liquids are separated
from the vector chiral phase by a metamagnetic transition,
which occupies a larger and larger fraction of m as
J2→1 /4+, leading to an absence of multipolar liquids com-
posed of five or more spin flips. In the following we will
characterize these phases in more detail and put forward an
explanation for the occurrence and locations of the spin-
multipolar phases.

For m!0 we reveal a contiguous phase sustaining long
range vector chiral order21 !breaking discrete parity symme-
try", similar to phases recently discovered for J1 ,J2!0.22,23

Direct evidence for the presence of this phase is obtained
from measurements of the squared vector chiral order param-
eter,

"2!r,d" ª #$S0 # Sd%z$Sr # Sr+d%z& . !2"

In Fig. 2 we display DMRG results for long distance corre-
lations between J1 bonds !d=1, black symbols" and J2 bonds
!d=2, red symbols" obtained on a L=192 system. The three
chosen values of J2 reflect positions underneath each of the
three spin-multipolar Luttinger liquids shown in Fig. 1. The
non-monotonic behavior of the correlations at very small m
is probably a finite size artifact or convergence issue. Beyond
the long range order in the vector chirality, the system be-
haves as a single channel Luttinger liquid !with central
charge c=1, confirmed by our DMRG based entanglement
entropy analysis24" with critical incommensurate transverse
spin correlation functions.22 The transition to the spin-

multipolar phases at larger m seems to occur generically via
metamagnetic behavior !cf. left and right panels of Fig. 2".
For the parameter set in the middle panel we expect the same
behavior, but it can’t be resolved based on the system sizes
used.

Hamiltonian !1" presents unusual elementary step sizes
$Sz!1 in some extended J2 / 'J1' and m domains, where $Sz

is independent of the system size.15 This phenomenon has
been explained based on the formation of bound states of
p=$Sz magnons in the completely saturated state, and at
finite m /msat a description in terms of a single component
Luttinger liquid of bound states has been put forward.16,17

We have determined the extension of the $Sz=2,3 ,4 regions
in Fig. 1, based on exact diagonalizations on systems sizes
up to 32 sites and DMRG simulations on systems up to 192
sites. The boundaries are in very good agreement with pre-
vious results15 where available. The $Sz=3 and 4 domains
form lobes which are widest at msat and whose tips do not
extend down to zero magnetization. The higher lobes are
successively narrower in the J2 direction. We have also
searched for $Sz=5 and higher regions, but found them to be
unstable against a direct metamagnetic transition from the
vector chiral phase to full saturation. Individual bound states
of p%5 magnons do exist !see below", but they experience a
too strong mutual attraction to be thermodynamically stable.

An exciting property of the Luttinger liquids of p bound
magnon states17 is that the transverse spin correlations are
exponentially decaying as a function of distance due to the
binding, while p-multipolar spin correlations

()
n=0

p−1

S0+n
+ )

n=0

p−1

Sr+n
− * + !− 1"r,1

r
-1/K

!3"

are critical with wave vector & !multipolar correlations with
p!' p also decay exponentially". p=2,3 ,4 correspond to
quadrupolar, octupolar, and hexadecupolar correlations, re-
spectively. Therefore they can be considered as one-
dimensional analogs of spin multipolar ordered phases found
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FIG. 1. !Color online" Phase diagram of the frustrated ferromag-
netic chain !1" in the J1 /J2 vs m /msat plane. The gray low-m region
exhibits vector chiral long range order. The colored regions denote
spin-multipolar Luttinger liquids of bound states of p=2,3 ,4 spin
flips. Close to saturation the dominant correlations are multipolar,
while below the dashed crossover lines, the dominant correlations
are of SDW!p" type. The tiny cyan colored region corresponds to an
incommensurate p=2 phase. The white region denotes a metamag-
netic jump. Finally the scribbled region close to the transition
J1 /J2→−4 has not been studied here, but consists most likely of a
low field vector chiral phase, followed by a metamagnetic region
extending up to saturation magnetization. The inset shows the same
diagram in the J1 /J2 vs h /hsat plane.
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FIG. 2. !Color online" Squared vector chirality order parameter
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I. NLSM

A. Classical limit

Let us consider the Non-Linear sigma Model (NLsM)
which should describe the behavior near the Lifshitz
point of the J

1

� J
2

chain. The action in 1+1 dimen-
sions is

S =

Z

dxd⌧
�

isA
B

[m̂]� �|@
x

m̂|2 +K|@2

x

m̂|2

+u|@
x

m̂|4 � hm̂
z

 

. (1)

Here s is the spin and A
B

is the Berry phase term de-
scribing those spins. It can be written in various ways,
for example

A
B

=

Z

1

0

du m̂ · @
⌧

m̂⇥ @
u

m̂, (2)

where we introduce a fictitious auxiliary coordinate u
such that m̂(u = 0) = ẑ and m̂(u = 1) = m̂ is the
physical value, or equivalently,

A
B

=
m̂

1

@
⌧

m̂
2

� m̂
2

@
⌧

m̂
1

1 + m̂
3

. (3)

The main important point for us is that A
B

contains a
single derivative of imaginary time ⌧ .

The action in Eq. (1) needs a condition for stability
against large gradients of m̂. To get it, we note that by
di↵erentiation twice of m̂ · m̂ = 1 we obtain

|@
x

m̂|2 = �m̂ · @2

x

m̂  |@2

x

m̂|, (4)

where the final inequality is obvious. This in turn implies
that |@2

x

m̂|2 > |@
x

m̂|4, which is enough to show stability
is present so long as u + K > 0. This means we may
consider negative u so long as u > �K.

Note that for � < 0, or su�ciently large h, the NLsM
has an exact ferromagnetic ground state, described by
just constant m̂, or a wavefunction of fully polarized
spins. This is a fully classical state. When � > 0 and
h is not too large, however, there will be an incommen-
surate ground state, and thereby quantum fluctuations
will occur. In this regime the NLsM is non-trivial. Nev-
ertheless, we can expect that near the Lifshitz point, at
least on scales that are not too long, a classical descrip-
tion should be correct (we expect that the L ! 1 and
classical limits may not commute, but at least the clas-
sical analysis should lead us to a first understanding).

Can we see this formally somehow? Let us try rescaling
to bring out the behavior for small �. We let x ! p

K/�x
and ⌧ ! K

�

2 ⌧ , where the second rescaling follows from
the linear derivative nature of the Berry phase term. The
magnetization itself does not rescale as m̂ is a unit vector.
Carrying out this rescaling, we find

S =

r

K

�

Z

dxd⌧
�

isA
B

[m̂]� |@
x

m̂|2 + |@2

x

m̂|2

�v|@
x

m̂|4 � hm̂
z

 

, (5)

where we defined v = �u/K and h = hK/�2. We see
that when �/K ⌧ 1, the action is large in dimensionless
terms, and we expect a saddle point approximation to
apply. This is precisely the classical limit! Note that this
is valid when u/K is fixed, and also h ⇠ �2/K, which
fixed the overall field scale of the problem.

B. Saddle point

To find the actual saddle point, we make an assump-
tion that it is of the form of an umbrella state (I tried
also to look for a planar state, but it seemed to be
energetically unfavorable). To avoid having to rescale,
we work in the original variables of Eq. (1). Let m̂ =
(' cos qx,' sin qx,

p

1� '2). Then the action is just the
integral of the energy density

" = ��q2'2 +Kq4'2 + uq4'4 � h(
p

1� '2 � 1), (6)

where we chose to add a constant h factor so that " = 0
when ' = 0. This is easily minimized over wavevector

q2 =
�

2(K + u'2)
, (7)

whence

" = � �2'2

4(K + u'2)
� h(

p

1� '2 � 1). (8)

We can see by direct expansion in a Taylor series in '
that a second order transition is possible for u > �K/4.
For more negative u we can find the first order point
by standard means. There are two conditions. First, a
minimum exists @

'

" = 0, and second, the minimum has
the same energy as the trivial one, "(') = 0. This gives
two conditions which determine the order parameter '
at the transition and the field h at this point. According

two symmetry 
allowed interactions 

at O(q4)

All properties near Lifshitz point obey “one parameter 
universality” dependent upon u/K ratio
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S = Ssp +

Z
dx d⌧ {⌘@⌧⌘ +H(⌘, ⌘)} +O(⌘3)

diagonalization gives correction to GS energy 

2

 and �, quartic in derivatives, which is crucial in the follow-
ing. The � term has been ignored in previous field theoretic
approaches[16, 17].

The action (2) needs a condition for stability against large
gradients of m̂. Starting from constraint m̂ · m̂ = 1, it is easy
to obtain |@2

xm̂|2 > |@xm̂|4, which is enough to show stability
is present so long as � +  > 0. This means negative � in (2)
is allowed so long as � > �.

The action describes several distinct dynamical regimes.
For � < 0, the excitations above the ground states are quadrat-
ically dispersing spin waves, ! ⇠ kz , characterized by the
dynamical critical exponent z = 2, which is easily seen by
equating the linear ⌧ derivative in AB with the second spatial
derivative in the � term. For � = 0, the dynamics changes to
z = 4. For � > 0, the theory is more non-trivial, and there is
even a z = 1 regime (see below).

Asymptotic solubility: Physically, the absence of fluctua-
tions in the FM state suggests a saddle point approximation
may apply near to it. Indeed, a simple rescaling x ! p

/� x0

and ⌧ ! ⌧ 0/�2 transforms the action into suggestive form
(we defined v = ��/ and h0

= h/�2)

S =

r



�

Z

dx0d⌧ 0
�

isA0
B [m̂]� sign(�)|@x0m̂|2 + |@2

x0m̂|2

�v|@x0m̂|4 � h0m̂z

 

, (4)

which shows that near the critical point, when �/ ⌧ 1, the
action is large in dimensionless terms so that a saddle point
analysis becomes asymptotically correct on approaching the
Lifshitz point. Because |�| appears only in the prefactor of the
action in Eq. (4), the phase diagram at the saddle point level
and only the dimensionless parameters v and h0 control the
saddle point. Note that v < 1 defines the stability region of
the theory.

FIG. 1. Saddle point result for the magnetization m(h) for different
values of interaction parameter v, which is shown next to each curve.

The saddle point of Eq. (2) with minimum action describes
a cone (umbrella) state:

m̂
sp

= (' cos qx,' sin qx,
p

1� '2

), (5)

with 0  '  1 and q functions of the parameters of the ac-
tion. Solutions with both sign of q are degenerate, which re-
flects spontaneous breaking of reflection symmetry and chiral
order: ẑ · m̂

sp

⇥ @xm̂sp

= '2q 6= 0. For sufficient large field,

h > hc, the solution is simply the ferromagnetic one, with
' = 0. On reducing the field, there are two possible behav-
iors. For � > �/4 (v < 1/4), a continuous transition occurs
at the critical field hc = h

0

= �2/(2). The “order param-
eter” ', which represents the local moment transverse to the
magnetic field, increases smoothly from zero below h

0

. This
corresponds to the point of local instability of the FM phase to
single magnons, which Bose condense when their energy van-
ishes at h

0

. For � < �/4 (v > 1/4), the transition occurs
discontinuously at hc > h

0

, at which point the ferromagnetic
state is still locally stable. The order parameter jumps to a
non-zero value 'c for h = hc � 0

+. This is a metamagnetic
transition, described by

'2

c =

2

p
v � 1

v
, hc =

�2

8
p
v(1�p

v)
, q2c =

�

4(1�p
v)

,

(6)
which hold for 1/4 < v < 1. Due to the aforementioned scale
invariance, the metamagnetic line extends for all � at the sad-
dle point level. The saddle point gives direct predictions for
experiment such as the magnetization m =

p

1� '2 shown
in Fig. 1.

Quantum corrections: Fluctuations beyond the saddle point
have several types of effects. One innocuous effect is that of
phase fluctuations within the “cone phase”: configurations of
form of Eq. (5) with qx ! qx + ✓ have small action when
✓(x, ⌧) has small space-time gradients. Fluctuations of ✓ are
thereby described by a free boson theory with central charge
c = 1, which converts the long-range cone order into power-
law spin correlations, but preserves the chiral order. These
properties characterize a “vector chiral” phase (VC), identi-
fied previously in the FFHC.

A more drastic effect of fluctuations is to move the phase
boundaries and even introduce new phases. We show below
that quantum fluctuations lower the energy difference between
the cone and FM states, eventually inducing a metamagnetic
endpoint.

To proceed, we write the magnetization m̂ in the co-moving
system of coordinates

m̂ =

r

2� ⌘̄⌘

s
[

⌘̄ + ⌘

2

p
s
ê
1

+ i
⌘̄ � ⌘

2

p
s
ê
2

] + (1� ⌘̄⌘

s
)ê

3

, (7)

where the rotating dreibein êj(x) are chosen as follows:
ê
1

⇥ ê
2

= ê
3

⌘ m̂
sp

. The fields ⌘̄, ⌘ describe magnons, trans-
verse fluctuations of the magnetization. To quadratic order the
action in Eq. (2) becomes S =

R

d⌧
⇥
R

dx ⌘̄@⌧⌘ +H
fluct

⇤

,
which shows that ⌘̄, ⌘ are canonical Bose operators, and
H

fluc

(⌘̄, ⌘) is a Hamiltonian. Fourier transforming it into
momentum space shows that H

fluc

contains both normal and
anomalous terms:

H
fluc

=

X

k

2Ak⌘̄k⌘k +Bk(⌘k⌘�k + ⌘̄k⌘̄�k). (8)

Here coefficients Ak, Bk are functions of momentum k and
depend on parameters �,, v, h and ' of the saddle point ac-

transformation to rotating frame

effective Bogoliubov Hamiltonian

ê
1

⇥ ê
2

= ê
3

= m̂
saddle�point



Metamagnetic endpoint?
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2-magnon check of the proposed scenario
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•Compute exact 2-magnon energy in QFT
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Summary
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Lifshitz point is a 
“parent” of many 

phases
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∴ Similar theory applies in d>1, and very 
similar conclusions apply

• Rescaling:
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Question
• Is magnon pairing possible in a system with  
purely repulsive (antiferromagnetic) interactions?

Nematic — superconductor analogy suggests positive answer: 
Magnon analogue of Kohn-Luttinger mechanism (e.g. pairing 

due to repulsive interactions)



2-magnon condensate near the end-point of the 1/3 
magnetization plateau
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Spatially anisotropic model: classical vs quantum
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Emergent Ising orders in quantum two-dimensional 
triangular antiferromagnet at T=0
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UUD-to-cone phase transition 
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Low-energy  excitation spectra
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Two-magnon instability

Magnon pairs Ψ1,2 condense before single magnons d1,2
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Two-magnon condensate = Spin-current nematic state
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Spontaneously broken Z2  -- spatial inversion  
[in addition to broken Z3 inherited from the UUD state] 
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Leads to spontaneous generation of Dzyaloshisnkii-Moriya interaction
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Finite scalar (and vector) chiralities. Sign of     determines sense of spin-current circulation⌥



Continuous transition: plateau —> spin-current —> cone ! 
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gapped single particles; 
but 

spontaneously broken time-reversal   
= spontaneous circulating 

currents
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Motivated by experiments on Josephson junction arrays in a magnetic field and ultracold interacting atoms in an
optical lattice in the presence of a “synthetic” orbital magnetic field, we study the “fully frustrated” Bose-Hubbard
model and quantum XY model with half a flux quantum per lattice plaquette. Using Monte Carlo simulations and
the density matrix renormalization group method, we show that these kinetically frustrated boson models admit
three phases at integer filling: a weakly interacting chiral superfluid phase with staggered loop currents which
spontaneously break time-reversal symmetry, a conventional Mott insulator at strong coupling, and a remarkable
“chiral Mott insulator” (CMI) with staggered loop currents sandwiched between them at intermediate correlation.
We discuss how the CMI state may be viewed as an exciton condensate or a vortex supersolid, study a Jastrow
variational wave function which captures its correlations, present results for the boson momentum distribution
across the phase diagram, and consider various experimental implications of our phase diagram. Finally, we
consider generalizations to a staggered flux Bose-Hubbard model and a two-dimensional (2D) version of the
CMI in weakly coupled ladders.
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I. INTRODUCTION

The effect of frustration in generating unusual states of
matter such as fractional quantum Hall fluids or quantum spin
liquids is an important and recurring theme in the physics of
condensed matter systems.1,2 Recently, research in the field
of ultracold atomic gases has begun to explore this area,
spurred on by the creation of artificial gauge fields using
Raman transitions in systems of cold atoms.3,4 These gauge
fields can be used to thread fluxes through the plaquettes of
optical lattices giving rise to “kinetic frustration” by producing
multiple minima in the band dispersion and frustrating simple
Bose condensation into a single nondegenerate minimum.
Similarly, time-dependent shaking of the optical lattice5,6 or
populating higher bands of an optical lattice7 can be used
to control the sign of the hopping amplitude in an optical
lattice, again leading to such “kinetic frustration.” For bosonic
atoms with weak repulsion, such kinetic frustration gets
resolved in a manner such that the resulting superfluid state
can have a broken symmetry corresponding to picking out
a particular linear combination of the different minima.7–11

Increasing the strength of the interactions at commensurate
filling can be expected to eventually yield a Mott insulator
(MI) with the motion of the bosons quenched, which thus
renders the kinetic frustration ineffective. In a synthetic flux
and at strong coupling, the fully gapped MI is identical to the
one expected for the same lattice without a frustrating flux
per plaquette;12 this simply means that at strong coupling,
we can adiabatically remove the flux without encountering a
quantum phase transition. However, there could exist a state
intermediate to the superfluid and the MI described above for
which charge motion has been suppressed enough to open
up a gap but not restore the broken symmetry associated
with frustration. Such a state is stabilized by virtual boson

fluctuations which can “sense” the local flux on a plaquette.
In a recent paper, we have found numerical evidence for the
existence of such a remarkable intermediate state in frustrated
two-leg ladders of bosons for the so-called fully frustrated
Bose-Hubbard (FFBH) model which has half a flux quantum
per plaquette. We call this state a “chiral Mott insulator” (CMI)
since it is fully gapped due to boson-boson interactions, exactly
like an ordinary Mott insulator, and in addition possesses chiral
order associated with the spontaneously broken time-reversal
symmetry arising from resolving the kinetic frustration. The
superfluid state of this system also possesses this chiral order
and we thus dub it a chiral superfluid (CSF).13 Other recent
studies have also focused on various such exotic bosonic states
driven by “ring-exchange” interactions,14–19 which again arise
due to virtual charge fluctuations in a Mott insulator.

In this paper, we discuss further details of our work on this
FFBH ladder model and its close cousin, the fully frustrated
quantum XY model, to which it reduces at high filling factors.
We also discuss how one might stabilize such a Mott insulator
in higher dimensions. Such a CMI may also be viewed as a
bosonic Mott-insulating version of the staggered loop current
states20–22 studied in the context of high-temperature cuprate
superconductivity.

Classical analogs of the CMI and CSF states have been
studied in the past.9–11 The simplest classical model displaying
analogous phases is the fully frustrated XY model in two
dimensions.23,24 At small but finite temperature, this model
has a phase with algebraic U (1) order for the spins along with
a staggered pattern of vorticity associated with each plaquette
corresponding to broken Z2 symmetry. This is the analog of
the CSF phase. As the temperature is increased, the U (1)
symmetry is restored while the Z2 symmetry continues to be
broken in a state that is the analog of the CMI. Upon further

174501-11098-0121/2013/87(17)/174501(13) ©2013 American Physical Society
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Conclusions
Magnon pairing is a fascinating problem 

!
Route to multipolar orders of frustrated ferromagnets 

extention to d=2 problems? 
!

Spin-current/Chiral Mott insulators  
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