Spin Superfluidity in the v = 0Quantum Hall State of Graphene

So Takei

Queens College CUNY

S. Takei, A. Yacoby, B. Halperin, Y. Tserkovnyak, Phys. Rev. Lett. 116, 216801 (2016)

SPICE Workshop - Quantum Spintronics, September 23, 2016

contents

- v = 0 quantum Hall state of graphene
- superfluid spin transport using quantum Hall edge states
- summary & conclusions

• graphene Landau levels: reflects linear dispersion and (pseudospin) chirality

$$\epsilon_{\lambda n} = \lambda \frac{\hbar v_F}{\ell_B} \sqrt{2n}$$

$$\ell_B = \sqrt{\frac{\hbar}{eB}}, \ v_F \approx 0.01c$$

$$+ n=4$$

$$+ n=3$$

$$\lambda = 4$$

$$\nu = 4\left(n + \frac{1}{2}\right)$$

$$n = 0, \pm 1, \pm 2, \pm 3, \dots$$

4-fold valley-spin degeneracy

• leading Coulomb Hamiltonian for electrons restricted to the zLL is SU(4)-symmetric

$$\hat{H}_0 = \frac{1}{2} \sum_{\boldsymbol{q}} v_0(\boldsymbol{q}) \hat{\rho}_0(-\boldsymbol{q}) \hat{\rho}_0(\boldsymbol{q})$$

K. Nomura and A. H. MacDonald, Phys. Rev. Lett. **96**, 256602 (2006) M. O. Goerbig *et al.*, Phys. Rev. B **74**, 161407 (2006)

• SU(4) quantum Hall ferromagnetism: at integer filling fractions, possible ground state lies on a degenerate manifold of states polarized in SU(4)-symmetric isospin space, encompassing a variety of different spin and/or valley orders

K. Nomura and A. H. MacDonald, Phys. Rev. Lett. **96**, 256602 (2006) K. Yang *et al.*, Phys. Rev. B **84**, 075423 (2006)

SU(4) symmetry breaking can occur due to Zeeman effect and various short-ranged interactions. Key question: how is the SU(4) symmetry broken in a real system?

• Zeeman effect: ferromagnetic

K. Yang *et al.*, Phys. Rev. B **74**, 075423 (2006) J. Alicea and M. P. A. Fisher, Phys. Rev. B **74**, 075422 (2006) H. A. Fertig and L. Brey, Phys. Rev. Lett. **97**, 116805 (2006)

• short-range e-e interactions: ferromagnetic, CDW, antiferromagnetic

J. Alicea and M. P. A. Fisher, Phys. Rev. B **74**, 075422 (2006) J. Jung and A. H. MacDonald, Phys. Rev. B **80**, 235417 (2009)

• short-range e-ph interactions: CDW, Kékule

J.-N. Fuchs and P. Lederer, Phys. Rev. Lett. **98**, 016803 (2007) K. Nomura, S. Ryu, and D.-H. Lee, Phys. Rev. Lett. **103**, 216801 (2009) C.-Yu Hou, C. Chamon, and C. Mudry, Phys. Rev. B **81**, 075427 (2010) • possibility of gapless U(1) spin-symmetry protected helical edge states

• experiments support an insulating ground state, and inconsistency with a spin-polarized ground state

canted antiferromagnetic scenario

• possible spin unpolarized scenarios:

J.-N. Fuchs and P. Lederer, Phys. Rev. Lett. **98**, 016803 (2007) K. Nomura, S. Ryu, and D.-H. Lee, Phys. Rev. Lett. **103**, 216801 (2009) C.-Yu Hou, C. Chamon, and C. Mudry, Phys. Rev. B **81**, 075427 (2010)

edge reconstruction in tilted magnetic field shows consistency with the canted antiferromagnetic (CAF) ground state scenario

A. F. Young et al., Nature 505, 528 (2014)

• degeneracy lifting of zLL in the bulk and at an edge

superfluid spin transport using quantum Hall edge states

spin superfluidity in the canted antiferromagnet state

classical dynamics for standard bipartite Heisenberg antiferromagnet in a magnetic field
 A. F. Andreev and V. I. Marchenko, Sov. Phys. Uspekhi 23, 21 (1980)

$$s\dot{\boldsymbol{n}} = \chi^{-1}\boldsymbol{m} \times \boldsymbol{n} + \boldsymbol{b} \times \boldsymbol{n}$$

 $s\dot{\boldsymbol{m}} = A\boldsymbol{n} \times \nabla^2 \boldsymbol{n} + \boldsymbol{b} \times \boldsymbol{m}$ $|\boldsymbol{n}| = 1, |\boldsymbol{m}| \ll$

• one gapless mode: (azimuthal) Néel rotations within the plane normal to the field

• projected dynamics only in terms of the variables in the gapless sector

$$s\dot{\phi} = \chi^{-1}\xi_z, \quad s\dot{\xi}_z = A\nabla^2\phi$$

 $J_s(x,t) = -A\nabla\phi(x,t)$
spin supercurrent

Superfluid of spin component antiparallel to the field

1

two-terminal spin transport setup

ST, A. Yacoby, B. Halperin, Y. Tserkovnyak, Phys. Rev. Lett. **116**, 216801 (2016)

linear response theory for spin injection/detection

- inter-channel scattering can occur at the vertices and along the line junction
- spin current lost on the injection edge should be absorbed by CAF (neglecting external sources of spin loss, e.g., spin-orbit coupling, magnetic impurities, etc.)

$$\bar{I}_s = \gamma \left[\frac{\hbar}{2e} \frac{e^2}{h} \left(V_{\uparrow} - V_{\downarrow} \right) \right] \qquad \qquad \gamma = 0 \quad \text{no inter-channel mixing} \\ \gamma = 1 \quad \text{full inter-channel mixing}$$

- injected spin current is carried by dynamically precessing Néel texture within graphene plane, i.e., spin superfluid.
- spin current ejected into edges by a collinear antiferromagnet with Néel vector rotating within the xy plane
 R. Cheng et al., Phys. Rev. Lett. 113, 057601 (2014)

ST, A. Yacoby, B. Halperin, Y. Tserkovnyak, Phys. Rev. Lett. **116**, 216801 (2016)

edge equilibration

- scattering at vertices arises due to:
 - slight misalignment of spin states between the regions inside and outside the injection region
 - any source of momentum non-conservation, e.g., disorder, sharp change in current direction, etc.

$$\hat{S} = \begin{pmatrix} t & 1-t \\ 1-t & t \end{pmatrix} \qquad \begin{array}{c} t = 0.5 \\ t = 1 \end{array} \quad \text{full vertex mixing} \\ t = 1 \qquad \text{no vertex mixing} \end{array}$$

- inter-channel tunneling conductance **g** per unit length depends on:
 - spatial proximity of the two edge channels
 - elastic impurities: gives momentum non-conservation necessary to overcome mismatch of Fermi momenta
 - spin-flip mechanism: provided by the neighboring CAF

edge equilibration

• line junction equilibration length scale

$$\ell = \frac{e^2}{2hg}$$

• current exiting the line junction

$$\begin{pmatrix} I_{\uparrow}(W) \\ I_{\Downarrow}(W) \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1+e^{-w} & 1-e^{-w} \\ 1-e^{-w} & 1+e^{-w} \end{pmatrix} \begin{pmatrix} I_{\uparrow}(0) \\ I_{\Downarrow}(0) \end{pmatrix} \qquad \qquad w =$$

total edge transport

$$\begin{pmatrix} I_{\uparrow} \\ I_{\downarrow} \end{pmatrix} = \hat{S}\hat{S}_{\rm int}\hat{S} \begin{pmatrix} \frac{e^2}{h}V_{\uparrow} \\ \frac{e^2}{h}V_{\downarrow} \end{pmatrix}$$

• inter-channel scattering parameter:

$$\gamma = 1 - (1 - 2t)^2 e^{-w}$$

• transmitted spin current

$$i'_{s} = \frac{1}{4\pi} \frac{\gamma \gamma'}{\gamma + \gamma'} e(V_{\uparrow} - V_{\downarrow}) \qquad i'_{s} = \frac{1}{4\pi} \frac{\gamma \gamma'}{\gamma + \gamma' + 4\pi \alpha s W L/\hbar} e(V_{\uparrow} - V_{\downarrow})$$

ST, A. Yacoby, B. Halperin, Y. Tserkovnyak, Phys. Rev. Lett. 116, 216801 (2016)

• transmitted spin current with no bulk Gilbert damping:

$$i'_{s} = \frac{1}{4\pi} \frac{\gamma \gamma'}{\gamma + \gamma'} e(V_{\uparrow} - V_{\downarrow}) \qquad \gamma = 1 - (1 - 2t)^{2} e^{-w}$$

effective spin conductance

ST, A. Yacoby, B. Halperin, Y. Tserkovnyak, Phys. Rev. Lett. 116, 216801 (2016)

• transmitted spin current with Gilbert damping

$$i'_{s} = \frac{1}{4\pi} \frac{\gamma \gamma'}{\gamma + \gamma' + 4\pi \alpha s W L/\hbar} e(V_{\uparrow} - V_{\downarrow})$$

ST, A. Yacoby, B. Halperin, Y. Tserkovnyak, Phys. Rev. Lett. **116**, 216801 (2016)

- showed how (long-ranged) superfluid spin transport can be realized in the v = 0 quantum Hall state of graphene
- linear-response/Onsager reciprocity to understand spin injection/detection using quantum Hall edge states.
- superfluid spin transport will constitute a direct evidence for the canted antiferromagnetic scenario.
- microscopic approaches are necessary to determine the dependence of edge equilibration length on the disorder along the edge and on the profile of the electrostatic potential between the v = 0 and v = -2 regions
- further detailed theories of the injection and detection regions are necessary to understand the effects of external sources of spin loss along the edge on spin transport