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graphene in magnetic field
• graphene Landau levels: reflects linear dispersion and (pseudospin) chirality

one observes that the square of the energy is proportional to
this quantum number, !2n ¼ ðℏ!0Þ2n. This equation has two
solutions, a positive and a negative one, and one needs to
introduce another quantum number " ¼ $, which labels the
states of positive and negative energy, respectively. This
quantum number plays the same role as the band index
(" ¼ þ for the conduction and " ¼ & for the valence
band) in the zero-B-field case discussed in the preceding
section. One thus obtains the spectrum (McClure, 1956)

!";n ¼ "
ℏvF

lB

ffiffiffiffiffiffi
2n

p
(85)

of relativistic Landau levels (LLs) that disperse as "
ffiffiffiffiffiffiffi
Bn

p
as a

function of the magnetic field [see Fig. 11(a)]. Note that, as in
the B ¼ 0 case, the level spectrum is twofold valley
degenerate.

Once we know the second spinor component, the first
component is obtained from Eq. (83), which reads un /
âvn ' âjni' jn& 1i because of the usual equations

âyjni ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
jnþ 1i and âjni ¼

ffiffiffi
n

p
jn& 1i

(86)

for the ladder operators, where the last equation is valid for
n > 0. One then needs to distinguish the zero-energy LL
(n ¼ 0) from all other levels. Indeed, for n ¼ 0, the first
component is zero because

âjn ¼ 0i ¼ 0: (87)

In this case, one obtains the spinor

c n¼0 ¼
0

jn ¼ 0i
" #

: (88)

In all other cases (n ! 0), one has positive- and negative-
energy solutions, which differ from each other by a relative
sign in one of the components. A convenient representation
of the associated spinors is given by

c #
";n!0 ¼

1ffiffiffi
2

p jn& 1i
#"jni

" #
: (89)

The particular form of the n ¼ 0 spinor (88) associated
with zero-energy states merits a more detailed comment. One
notes that only the second spinor component is nonzero.
Remember that this component corresponds to the B sublat-
tice in the K valley (# ¼ þ) and to the A sublattice in the K0

valley (# ¼ &); the valley pseudospin therefore coincides
with the sublattice pseudospin, and the two sublattices are
decoupled at zero energy. Note that this is also the case in the
absence of a magnetic field, where Eq. (50) between the
chirality, the band index, and the valley pseudospin is valid
only at nonzero values of the wave vector, i.e., not exactly at
zero energy. Indeed, the chirality can no longer be defined as
the projection of the sublattice pseudospin on the direction of
propagation q=jqj, which is singular at q ¼ 0. At zero en-
ergy, it is therefore useful to identify the chirality with the
valley pseudospin. Note, however, that, in the absence of a
magnetic field, this particularity concerns only a nonexten-
sive number of states (only two) because of the vanishing
density of states at zero energy, whereas the zero-energy LL
n ¼ 0 is macroscopically degenerate, as discussed in the
following section.

a. LL degeneracy

A particular feature of both relativistic and nonrelativistic
LLs is their large degeneracy, which equals the number of
flux quanta NB ¼ A( B=ðh=eÞ threading the 2D surfaceA
occupied by the electron gas. From the classical point of view,
this degeneracy is related to the existence of a constant of
motion, namely, the position of the guiding center, i.e., the
center of the classical cyclotron motion. Indeed, due to trans-
lational invariance in a uniform magnetic field, the energy of
an electron does not depend on the position of this guiding
center. Translated to quantum mechanics, this means that the
operator corresponding to this guiding center R ¼ ðX; YÞ
commutes with the Hamiltonian H ðpþ eAÞ.

In order to understand how the LL degeneracy is related
to the guiding-center operator, we formally decompose the
position operator

r ¼ Rþ ! (90)

into its guiding center R and the cyclotron variable ! ¼
ð$x;$yÞ, as depicted in Fig. 11(b). Whereas the guiding

center is a constant of motion, as mentioned, the cyclotron
variable describes the dynamics of the electron in a magnetic
field and is, classically, the time-dependent component of the
position. Indeed, the cyclotron variable is perpendicular to
the electron’s velocity and thus related to the kinetic mo-
mentum ! by

$x ¼
!y

eB
and $y ¼ &!x

eB
; (91)

which, as a consequence of the commutation relations (77),
satisfy

½$x;$y* ¼
½!x;!y*
ðeBÞ2 ¼ &il2B; (92)

whereas they commute naturally with the guiding-center
components X and Y. Equation (92) thus induces the com-
mutation relation
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FIG. 11. (a) Relativistic Landau levels as a function of the mag-
netic field. (b) Semiclassical picture of cyclotron motion described
by the cyclotron coordinate !, where the charged particle turns
around the guiding center R. The gray region depicts the uncer-
tainty on the guiding center, as indicated by Eq. (98).
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ν = 0 ground state
• leading Coulomb Hamiltonian for electrons restricted to the zLL is SU(4)-symmetric

• SU(4) quantum Hall ferromagnetism: at integer filling fractions, possible ground state 
lies on a degenerate manifold of states polarized in SU(4)-symmetric isospin space, 
encompassing a variety of different spin and/or valley orders

SU(4) symmetry breaking can occur due to Zeeman effect and various short-ranged interactions. 

Key question: how is the SU(4) symmetry broken in a real system?
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To describe correlations, we use the result for the fully
filled Landau level [14], g0!r" # 1$ e$r2=2‘2

B , setting [15]

g%%!r"#n2
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0g0!r"; g$$!r"#n2

$n2
0g0!r"; n0#

eB
hc
;

where n& are the occupation fractions of the up- and down-
spin states, n% % n$ # 1. We model the Coulomb
interaction-induced correlations of particles with opposite
spin, which are absent for noninteracting electrons, by
g%$ # n%n$n2

0!1$ !e$r
2=2l2B", where !< 1 describes

relative strength of Coulomb and exchange correlations.
This approach yields

Eexchange # $An%n$; A #
!"

2

"
1=2 e2

#lB
!1$ !": (8)

To estimate spin polarization, we consider Gibbs free
energy per particle for the half-filled spin-degenerate
Landau level, G=N # E$ TS, where

S # $T
X
i#&

ni lnni; E # 1

2
EZ!n% $ n$" $ An%n$;

with EZ the Zeeman energy. The ground state, determined
by $G # 0 with n% % n$ # 1, satisfies

T ln!n%=n$" $ EZ % A!n$ $ n%" # 0: (9)

In the absence of exchange interaction, A # 0, this would
give n$=n% # e$EZ=T . The more realistic case of ex-
change A large compared to EZ can be analyzed by setting
EZ # 0. In this case we have a phase transition at Tc # 1

2A.
At low temperature, T ' Tc, the concentrations n& satisfy
n$=n% # e$A=T; i.e., the spin gap at T ' Tc can be
estimated as ! # A.

To obtain the numerical value of !, we use the RPA
estimate of the screening function [13], with e2=@v ( 2:7:

# # 1% 2"e2 1

4@v ( 5:24: (10)

Comparing to the LL separation "0, Eq. (2),

! # "1=2e2

2#@v !1$ !""0 ( 0:456!1$ !""0: (11)

Note that ! is proportional to the Dirac LL energy "0 and
scales as B1=2, in contrast to the Zeeman energy. If we use

! # 0, i.e., ignore correlations of electrons with opposite
spins, we obtain ! ’ 450 K for B ’ 10 T. (This approxi-
mation, while giving correct order of magnitude, may
somewhat overestimate the exchange contribution.)

We now discuss possible experimental tests of the chiral
spin edge states, using the four-terminal device shown in
Figs. 2 and 3. We assume that each contact injects both spin
polarizations with the same voltage Vk; i.e., full spin mix-
ing takes place in the leads. The charge current flowing out
of the kth contact is given by

Ick #
X

k0
gkk0!Vk $ Vk0"; (12)

where gkk0 is the Landauer conductance of the edge chan-
nel connecting contacts k and k0, and Vk are voltages on the
contacts. In the presence of backscattering among the edge
states, the conductance gkk0 can be expressed in terms of
transmission matrix Tkk0 of the edge channels [16], with
gkk0 # Tkk0e2=h. The voltage probes are defined by the
condition Ick # 0 and Eq. (12) is solved for the current
and voltage at each contact [16].

The spin current is then determined as follows. The
spin current flowing from the reservoir k to reservoir k0 is
given by the sum of outgoing current of e2Vk=h, reflected
current !1$ Tkk0"e2Vk=h and the current from k0th reser-
voir, Tkk0e2Vk0=h. We obtain Iskk0 # &)!2$ Tkk0"Vk %
Tkk0Vk0*e2=h (the three contributions to the spin current
are of the same sign, plus if the channel k! k0 is spin-up
and minus if it is spin-down). Thus the total spin current
flowing out of the kth contact is

Isk #
X

k0
Iskk0 #

X

k0
"kk0gkk0!Vk $ Vk0"; (13)

where "kk0 # $"k0k equals%1 ($1) when the current from
k to k0 is carried by spin-up (spin-down) electrons.

The general relations (12) and (13) become more trans-
parent in two simple limiting cases, illustrated in Figs. 2
and 3. First we inspect the clean limit with no backscatter-
ing at the edge (Fig. 2). Applying voltage of 2V between
contacts 1 and 2 we obtain pure spin current across the
sample equal to 2iV , where iV # e2V=h. There is also
charge current of 2iV between 1 and 2 and no Hall voltage,
yielding %xx # h=2e2.
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FIG. 3 (color online). Same as in Fig. 2 with backscattering
between edge states induced by altering local spin-flip rate.
Strong backscattering gives rise to asymmetric current flow
with the current between 1 and 2 fully spin polarized. Inset
shows how Hall voltage probe can be used to detect spin current.
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FIG. 2 (color online). Four-terminal device with chiral spin
edge states (no backscattering). In response to charge current of
Ic # 2iV # 4e2V=h between reservoirs 1 and 2, pure spin cur-
rent of Is # 2iV flows between 4 and 3, while Hall voltage is
zero.
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• possibility of gapless U(1) spin-symmetry protected helical edge states

ν = 0 ground state

!G ¼ 0, "1, and "4 (Zhang et al., 2006; Jiang et al.,
2007b), where the latter corresponds to the LLs "1. Recent
experiments on exfoliated graphene on a h-BN substrate
furthermore revealed quantum Hall states at !G ¼ "3
(Dean et al., 2011), thus completing the full resolution of
the spin-valley quartet, not only in n ¼ 0 but also in "1.

The observed states may generally be understood in the
framework of the quantum Hall ferromagnetism, but the
understanding of the situation at !G ¼ 0 requires an addi-
tional consideration of the subleading external symmetry-
breaking terms discussed in Sec. V.A.4. The two-stage pic-
ture, which we adopt here based on the above discussions,
may be summarized as follows. (a) The quantum Hall ferro-
magnetic states are formed to minimize the leading energy
given by the Coulomb interaction. However, because of the
(approximate) SU(4) symmetry of the interaction, the orien-
tation of the quantum Hall ferromagnets is not fixed: a
polarization in the spin channel is as probable as one in the
valley channel, and this yields the high degeneracy of the
Goldstone modes described in Sec. V.B.1. (b) Therefore, in
spite of the small energy scale of the external fields, the latter
are relevant for the orientation of the ferromagnets and for the
degeneracy lifting of the Goldstone modes.

a. The quantum Hall effect at !G ¼ "1

For !G ¼ #1, only one spin-valley branch is completely
filled by electrons.35 The Zeeman effect would give a small
energetic advantage to spin- # electrons, such that the two
spin Goldstone modes associated with collective excitations
to the spin- " branch acquire a q ¼ 0 gap, given by !Z. In
contrast to the spin excitations, the Goldstone mode, which
couples the two valleys in the spin- # branch of n ¼ 0,
remains gapless, and the ground state may thus be viewed
as a valley-pseudospin ferromagnet in the spin- # branch. The
activation gap would be given by Eq. (233) for pseudospin
skyrmion-antiskyrmion pairs, and its associated scaling
e2="lB /

ffiffiffiffi
B

p
has indeed been observed experimentally

(Jiang et al., 2007b). The residual valley SU(2) symmetry
may be broken by the lattice distortions, which we discussed
in Sec. V.A.4. Whereas an out-of-plane lattice distortion
would yield a gapped valley-pseudospin wave mode, a
Kekulé-type in-plane distortion orients the pseudospin ferro-
magnet in the X # Y plane, associated with a gapless U(1)
superfluid mode (Nomura et al., 2009). Note that the lattice
distortion characterized by the energy scale !kek is not in
competition, at !G ¼ "1, with the Zeeman effect, such that
the resulting ferromagnetic state is the same for !Z >!kek as
for!Z < !kek. In the remainder of this section, we restrict the
discussion of the valley-pseudospin degeneracy lifting to in-
plane distortions that seem to be energetically more relevant
than out-of-plane distortions, but the overall picture remains
unchanged if the latter are more relevant.

b. The quantum Hall effect at !G ¼ 0

The situation is more subtle at !G ¼ 0, where it is not
possible to fully polarize both the spin and the valley

pseudospin and where the Zeeman effect is in competition
with a lattice distortion that orients the valley pseudospin. For
!Z > !kek, it is favorable to fill both valley sublevels of the
spin- # branch and the resulting state is a spin ferromagnet
with gapped spin-wave excitations. For !Z < !kek, a
pseudospin-ferromagnetic ground state is favored with both
spin sublevels completely filled. The two different situations
are depicted in Fig. 27. Most saliently, the two phases reveal
drastically different transport properties as one may see from
their behavior at the sample edges.

The electronic behavior at the edges may be described
within a model of electron confinement, in which the sample
edge is described via amass confinement termMðyÞ"zAB in the
Hamiltonian, which has the symmetry of the term (218) or
else, in n ¼ 0, that of a valley Zeeman term (217), as argued
in Sec. V.A.4. The parameter MðyÞ is zero in the bulk and
increases drastically at the edge at a certain value of the
coordinate y.36 Although the model is a simplification to treat
the graphene edges in the continuum description of the Dirac
equation, a more sophisticated treatment that takes into ac-
count the geometry of the edges yields, apart from a fine
structure of the levels at the edge, qualitatively similar results
(Brey and Fertig, 2006). The mass term MðyÞ modifies the
valley coupling due to the lattice distortion and yields a

y-dependent term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

kek þMðyÞ2
q

, which therefore equally

diverges at the sample edge.37

These preliminary considerations on the gap behavior at
the edges allow us to appreciate the difference in the expected
electronic transport between a spin ferromagnet and a valley-
pseudospin ferromagnet at !G ¼ 0. Indeed, for !Z > !kek,
one obtains a quantum Hall state at !G ¼ 0 that is charac-
terized by a bulk gap associated with two counterpropagating
edge states [Fig. 27(a)]. In the bulk, where MðyÞ ¼ 0, both
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FIG. 27. Possible scenarios for the lifted spin-valley degeneracy at
!G ¼ 0. (a) !Z > !kek in the bulk. When approaching the edge, the
energy difference between the two valleys increases drastically, and
two levels ðK0; "Þ and ðK; #Þ cross the Fermi energy at the edge
depicted by the dashed line (quantum Hall state). (b) !kek > !Z in
the bulk. The K subbranches are already located above the Fermi
energy, and those of K0 below, such that the energy difference is
simply increased when approaching the edge with no states crossing
the Fermi energy (insulator).

35For !G ¼ þ1, the same arguments apply in terms of holes due to
particle-hole symmetry.

36For the present argument, we consider translation invariance in
the x direction.
37In the case of an out-of-plane distortion, the term MðyÞ simply

adds up to the energy scale !valley
Z [see Eq. (217)], but the physical

picture remains unaltered.
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Ic = 2gQV
Is = 2gQV

D. Abanin et al., Phys. Rev. Lett. 96, 176803 (2006)

gQ = e2/h

• experiments support an insulating ground state, and inconsistency with a spin-polarized 
ground state

Zero-Energy State in Graphene in a High Magnetic Field

Joseph G. Checkelsky, Lu Li, and N. P. Ong
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

(Received 1 October 2007; published 20 May 2008)

The fate of the charge-neutral Dirac point in graphene in a high magnetic field H has been investigated
at low temperatures (T ! 0:3 K). In samples with small gate-voltage offset V0, the resistance R0 at the
Dirac point diverges steeply with H, signaling a crossover to a state with a very large R0. The approach to
this state is highly unusual. Despite the steep divergence in R0, the profile of R0 vs T in fixed H saturates
to a T-independent value below 2 K, consistent with gapless charge-carrying excitations.

DOI: 10.1103/PhysRevLett.100.206801 PACS numbers: 73.63."b, 73.21."b, 73.43."f

The discovery of the quantum Hall effect (QHE) in
monolayer graphene crystals provides a new system for
investigating relativistic Dirac-like excitations in solids [1–
6]. In a magnetic field H, the system forms Landau Levels
(indexed by n) that are fourfold degenerate. The Hall
conductivity !xy is accurately quantized as the chemical
potential" is changed from the hole part to electron part of
the Dirac spectrum. Considerable attention has focussed on
the n # 0 Landau Level (LL), especially on the nature of
the electronic state at the charge-neutral point (" # 0) in
an intense magnetic field H. Several groups [7–12] have
predicted a high-field state with valley polarization.
Experiments are actively addressing these issues [13–15].
Jiang et al. [14] have inferred that the sublevel gaps at # #
0 and $1 arise from lifting of the spin and sublattice
degeneracies, respectively, and inferred a many-body ori-
gin for the states. We have found that, in samples with
small V0 (the gate voltage needed to align " with the Dirac
point), the value R0 of the resistance Rxx at the Dirac point
diverges steeply with H, i.e., a large H drives the Dirac
point to a high-resistance state. Despite the strong H
dependence, R0 saturates to a T-independent value below
2 K, providing evidence for charged, gapless excitations. In
samples with large V0, this divergence in R0 is shifted to
higher fields.

Following Refs. [1,2,4], we peeled single-layer gra-
phene crystals (3–10 "m in length) from Kish graphite
on a Si-SiO2 wafer. Au=Cr contacts were deposited using
e-beam lithography [Fig. 1(a), inset]. We have found that
the high-field behavior of R0 is strongly correlated with V0
(Table I). All samples (except K22) have " lying in the
electron band (positive V0). Samples in which jV0j< 1 V
(K7 and K22) display a very large R0%14& (resistance
measured at 14 T and 0.3 K), which arises from the strong
divergence mentioned. By contrast, in samples with large
jV0j, R0%14& ' 7 k!.

Figure 1(a) shows the variation of Rxx in K7 plotted vs
the shifted gate voltage V 0g # Vg " V0 withH held at 8, 11,
and 14 T (at T # 0:3 K). The striking feature here is that
the peak corresponding to the n # 0 LL increases to
>100 k! at 14 T, whereas the peaks corresponding to n #
$1 remain below !7 k!. As in Refs. [1–5], the Hall

conductivity !xy (Panel b) displays plateaus given by [12]

 !xy #
#e2

h
# 4e2

h

!
n( 1

2

"
; (1)

where n indexes the fourfold degenerate LL and # indexes

FIG. 1 (color online). The resistance Rxx (a) and Hall con-
ductivity !xy (b) in Sample K7 versus (shifted) gate voltage
V0g # Vg " V0 at 0.3 K with H fixed at 8, 11, and 14 T. Peaks of
Rxx at finite V0g correspond to the filling of the n # 1 and n # 2
LLs. At V0g # 0, the peak in Rxx grows to 190 k! at 14 T. The
inset shows sample K22 in false color (dark red) with Au leads
deposited (yellow regions). The bar indicates 5 "m. Panel (b)
shows the quantization of !xy at the values %4e2=h&%n( 1

2&. At
0.3 K, !xy # 0 in a a 2-V interval around V0g # 0.

PRL 100, 206801 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
23 MAY 2008

0031-9007=08=100(20)=206801(4) 206801-1 © 2008 The American Physical Society

Zero-Energy State in Graphene in a High Magnetic Field

Joseph G. Checkelsky, Lu Li, and N. P. Ong
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

(Received 1 October 2007; published 20 May 2008)

The fate of the charge-neutral Dirac point in graphene in a high magnetic field H has been investigated
at low temperatures (T ! 0:3 K). In samples with small gate-voltage offset V0, the resistance R0 at the
Dirac point diverges steeply with H, signaling a crossover to a state with a very large R0. The approach to
this state is highly unusual. Despite the steep divergence in R0, the profile of R0 vs T in fixed H saturates
to a T-independent value below 2 K, consistent with gapless charge-carrying excitations.

DOI: 10.1103/PhysRevLett.100.206801 PACS numbers: 73.63."b, 73.21."b, 73.43."f

The discovery of the quantum Hall effect (QHE) in
monolayer graphene crystals provides a new system for
investigating relativistic Dirac-like excitations in solids [1–
6]. In a magnetic field H, the system forms Landau Levels
(indexed by n) that are fourfold degenerate. The Hall
conductivity !xy is accurately quantized as the chemical
potential" is changed from the hole part to electron part of
the Dirac spectrum. Considerable attention has focussed on
the n # 0 Landau Level (LL), especially on the nature of
the electronic state at the charge-neutral point (" # 0) in
an intense magnetic field H. Several groups [7–12] have
predicted a high-field state with valley polarization.
Experiments are actively addressing these issues [13–15].
Jiang et al. [14] have inferred that the sublevel gaps at # #
0 and $1 arise from lifting of the spin and sublattice
degeneracies, respectively, and inferred a many-body ori-
gin for the states. We have found that, in samples with
small V0 (the gate voltage needed to align " with the Dirac
point), the value R0 of the resistance Rxx at the Dirac point
diverges steeply with H, i.e., a large H drives the Dirac
point to a high-resistance state. Despite the strong H
dependence, R0 saturates to a T-independent value below
2 K, providing evidence for charged, gapless excitations. In
samples with large V0, this divergence in R0 is shifted to
higher fields.

Following Refs. [1,2,4], we peeled single-layer gra-
phene crystals (3–10 "m in length) from Kish graphite
on a Si-SiO2 wafer. Au=Cr contacts were deposited using
e-beam lithography [Fig. 1(a), inset]. We have found that
the high-field behavior of R0 is strongly correlated with V0
(Table I). All samples (except K22) have " lying in the
electron band (positive V0). Samples in which jV0j< 1 V
(K7 and K22) display a very large R0%14& (resistance
measured at 14 T and 0.3 K), which arises from the strong
divergence mentioned. By contrast, in samples with large
jV0j, R0%14& ' 7 k!.

Figure 1(a) shows the variation of Rxx in K7 plotted vs
the shifted gate voltage V 0g # Vg " V0 withH held at 8, 11,
and 14 T (at T # 0:3 K). The striking feature here is that
the peak corresponding to the n # 0 LL increases to
>100 k! at 14 T, whereas the peaks corresponding to n #
$1 remain below !7 k!. As in Refs. [1–5], the Hall

conductivity !xy (Panel b) displays plateaus given by [12]

 !xy #
#e2

h
# 4e2

h

!
n( 1

2

"
; (1)

where n indexes the fourfold degenerate LL and # indexes

FIG. 1 (color online). The resistance Rxx (a) and Hall con-
ductivity !xy (b) in Sample K7 versus (shifted) gate voltage
V0g # Vg " V0 at 0.3 K with H fixed at 8, 11, and 14 T. Peaks of
Rxx at finite V0g correspond to the filling of the n # 1 and n # 2
LLs. At V0g # 0, the peak in Rxx grows to 190 k! at 14 T. The
inset shows sample K22 in false color (dark red) with Au leads
deposited (yellow regions). The bar indicates 5 "m. Panel (b)
shows the quantization of !xy at the values %4e2=h&%n( 1

2&. At
0.3 K, !xy # 0 in a a 2-V interval around V0g # 0.
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Spin and valley quantum Hall ferromagnetism
in graphene
A. F. Young1*†, C. R. Dean2,3†, L. Wang3, H. Ren1, P. Cadden-Zimansky1, K. Watanabe4, T. Taniguchi4,
J. Hone3, K. L. Shepard2 and P. Kim1*

Electronic systems with multiple degenerate degrees of freedom can support a rich variety of broken symmetry states. In
a graphene Landau level (LL), strong Coulomb interactions and the fourfold spin–valley degeneracy lead to an approximate
SU(4) isospin symmetry. At partial filling, exchange interactions can break this symmetry, manifesting as further Hall
plateaus outside the normal integer sequence. Here we report the observation of a number of these quantum Hall isospin
ferromagnetic (QHIFM) states, which we classify according to their real spin structure using tilted field magnetotransport.
The large activation gaps confirm the Coulomb origin of all the broken symmetry states, but the order depends strongly on
LL index. In the high-energy LLs the Zeeman effect is the dominant aligning field, leading to real spin ferromagnets hosting
skyrmionic excitations at half filling, whereas in the ‘relativistic’ zero LL lattice scale interactions drive the system to a spin
unpolarized state.

The low-energy effective theory of nearly neutral graphene
describes two flavours of massless Dirac quasiparticles cen-
tred on the two inequivalent corners of the Brillouin zone,

termed valleys. In a high magnetic field, the valley degeneracy com-
bines with the physical electron spin to produce four component
LLs, leading to the anomalous graphene quantumHall sequence

�xy = ±4e2

h

✓
N + 1

2

◆
(1)

where e is the elementary charge, h is Planck’s constant, the LL index
N is a non-negative integer and the additional factor of one-half
is related to the pseudospin winding number1. The spin–valley
degeneracy makes graphene a prime candidate for observing
the rich physics associated with multicomponent quantum Hall
effects2–4. Graphene is exceptional as compared with its semicon-
ductor counterparts owing to a near-perfect energetic hierarchy
(Fig. 1b). The energy scales characterizing cyclotron motion (EN)
and long-range interparticle Coulomb interactions (EC)—both
of which reflect physics that is independent of spin or valley
flavour—dwarf explicit spin and valley symmetry breaking effects.
The combined four-flavour degeneracy can therefore be thought
of as that of a single SU(4) isospin5,6. As in other multicomponent
quantum Hall systems, exchange interactions can drive the system
through a ferromagnetic instability7, in which the order parameter
corresponds to a finite polarization in a specific direction within
the SU(4) isospin space. At integer fillings within a partially filled
quartet LL, this order parameter is predicted to lead to a finite
gap for charged excitations and a robust quantum Hall effect for
integers outside the sequence described in equation (1). The precise
SU(4) polarization for given experimental conditions depends on
the interplay between anisotropies arising from the Zeeman effect,
lattice scale interactions and disorder. All of these anisotropies are
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small and experimentally tunable, allowing for the possibility of
a variety of distinct ground states across experimentally accessible
ranges of filling factors,magnetic fields and realizations of disorder.

Previous studies have indeed reported observation of the QHE
at several integer filling factors outside the normal sequence8–13;
however, the nature of the (presumably broken symmetry) states
leading to these plateaus remains a matter of intense theoretical
debate7,14–34. In the N = 0 LL, most experimental10,11,35–38 and
theoretical20–34 work has focused on the strongly insulating be-
haviour observed at ⌫ = 0, corresponding to half filling of the zero-
energy LL, which has no analogue in conventional two-dimensional
electron systems. The insulating state has been described variously
as a spin polarized valley singlet, a valley polarized spin singlet or a
lattice scale spin density wave, but experimental resolution of this
discrepancy has been hampered by the absence of any probe of
the spin or valley order. Even less is known about the symmetry
breaking at ⌫ = ±1 (refs 8,9,15,17,18,23,39) or throughout the
N 6= 0 LLs (refs 8,9,11,13). Owing to the anomalous structure of
the N = 0 LL, in which the valley quantum number corresponds
to a real-space sublattice, the symmetry broken states for N = 0
may not resemble those for N 6= 0; however, limitations on sample
quality and geometry in SiO2 supported and suspended devices,
respectively, have precluded a comparative study.

In this article, we address these issues by studying the thermal
activation gaps, ⌫�, associated with the broken symmetry IQHE
states in graphene devices fabricated on hexagonal boron nitride
(hBN) substrates12. This gap is associated with energy cost of the
lowest-lying charged excitations of the ground state. Owing to the
atomic scale confinement of the electronic wavefunctions to the
plane of the graphene, all orbital effects related to electronic inter-
actions depend only on the out-of-plane component of magnetic
field (B?) whereas spins respond directly to the total magnetic field
(BT) independent of its direction. Tilted field measurements of the
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Figure 2 |Activation gaps of half-filled quartet LLs. a, B? dependence of the ⌫ = 0 gap, 0�, for several devices. 0� increases approximately linearly with
applied B?, a feature not associated with any currently proposed theory for ⌫ = 0. The dashed line indicates g? = 23. b, Tilted field dependence of the
resistance of the ⌫ = 0 state. The resistance increases exponentially with field, consistent with a gapped state with 0�/ B?. The resistance at fixed B?
decreases for higher tilt angles, indicating a spin-unpolarized state. c, Candidate QHIFM states for ⌫ = 0. Our experiment rules out the spin ferromagnet,
(i); all other states are marked by lattice scale spin (for the canted antiferromagnet (ii)) or charge (for the charge density wave (iii) or Kekulé distortion
(iv)) order. d, B? dependence of the half-filled quartets for N 6= 0, ⌫ = �4,�8,�12. Like the ⌫ = 0, all gaps scale approximately linearly with B?, with
enhanced g? factors that decrease with increasing LL index. e, Unlike the ⌫ = 0 state, all activation gaps measured for half-filled LLs with N 6= 0 increase
with BT, indicating spin polarized states. For ⌫ = �4 and �8, the enhancement of gk indicates that charged excitations contain multiple flipped spins.
f, Schematic representation of charged excitations at half filling for N 6= 0. Excitations into the spin-reversed conduction band can take the form of single
reversed spin particle–hole pairs or smoothly varying skyrmion–antiskyrmion (S–aS) spin textures, depending on the strength of exchange interactions
relative to disorder and the Zeeman energy. At B? = 15 T in the samples studied in this work, the S–aS scenario prevails at ⌫ = �4 and �8, whereas charge
at ⌫ = �12 is carried by single electron–hole pairs. The error bars on all activation gaps are dominated by the uncertainty in the range of the simply
activated regime, which is much larger than intrinsic scatter in the data.

Half filling of a fourfold-degenerate graphene LL provides
an ideal testing ground for the relative strength of the spin
and valley anisotropies within the SU(4) isospin space. Because
each cyclotron guiding centre is doubly occupied, Pauli exclusion
prevents the half-filled LL from fully polarizing in both spin
and valley simultaneously. As a result, spin and valley polarizing
tendencies necessarily compete, and the resulting ground state
reflects the result of this competition. The fact that different
orders prevail at half filling for N = 0 and N 6= 0 even under
identical experimental conditions (B? and BT, which together
fix the relative magnitude of the real spin anisotropy) suggests
that the difference between LLs is intrinsic to graphene and
originates in the valley sector. A likely origin lies with the unique
structure of the ZLL wavefunctions: whereas for the N 6= 0 LLs
wavefunctions in a single valley are spread equally over the two
real space sublattices, for the ZLL electrons in a single valley
are localized on a single sublattice6. Long-range interactions
do not distinguish between such lattice scale orbital structural
difference, but short-range interactions do, potentially leading to
different ground states in the N = 0 and N 6= 0 LLs (ref. 23).
At ⌫ = 0, the resulting interaction induced valley anisotropies
have been predicted to drive the system to one of a number of
sublattice-ordered ground states20,21,23,24,27,29,30,33,34, some of which
are depicted in Fig. 2c. The experimental data presented here
indicate that, whereas the Zeeman effect wins the competition for
the N 6= 0 LLs, leading to spin polarized states at ⌫ = �12,�8,

and �4, the valley anisotropies dominate the zero LL, leading to
the formation of one of the possible lattice scale density waves
portrayed in Fig. 2c(ii)–(iv). The large size of the measured 0�
gap, and its insensitivity to in-plane fields, suggest that the valley
anisotropies may be more than ten times stronger than their naive
scale, (1/`B) ⇥ EC, in line with renormalization group34,40 and
numerical calculations29.

A further notable feature of the experimental data is the linear
dependence of 0� on B?. The ⌫ = 0 insulating state is not spin
polarized, precluding linear-in-BT Zeeman contributions to the
excitation energy (as in equation (2)); consequently, the linear
dependence must have an orbital origin. Theoretical models based
on Coulomb interactions within the continuum Dirac model,
whereas consistent with the magnitude of the gaps, implicitly
predict a

p
B? scaling of the ⌫ = 0 energy gap, a fact that derives

from the
p
B? dependence of both EC and E0. Theories based

on other mechanisms that do predict a linear dependence18,26 are
unable to account for the large 0� gap sizes observed.

Motivating future work on the ⌫ = 0 state, quantitative data
(Supplementary Information) on the decrease of the gap in applied
parallel field suggest that the real spin ferromagnet, which is
predicted22,25 to be an analog of the quantum spin Hall state41, may
be experimentally accessible in the best samples at high tilt angles in
realistic magnetic fields (BT ⇠< 45 T).

Despite the role of the single-particle Zeeman effect in setting
the order in the higher LLs, tilted field activation gaps demonstrate
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Figure 2 |Activation gaps of half-filled quartet LLs. a, B? dependence of the ⌫ = 0 gap, 0�, for several devices. 0� increases approximately linearly with
applied B?, a feature not associated with any currently proposed theory for ⌫ = 0. The dashed line indicates g? = 23. b, Tilted field dependence of the
resistance of the ⌫ = 0 state. The resistance increases exponentially with field, consistent with a gapped state with 0�/ B?. The resistance at fixed B?
decreases for higher tilt angles, indicating a spin-unpolarized state. c, Candidate QHIFM states for ⌫ = 0. Our experiment rules out the spin ferromagnet,
(i); all other states are marked by lattice scale spin (for the canted antiferromagnet (ii)) or charge (for the charge density wave (iii) or Kekulé distortion
(iv)) order. d, B? dependence of the half-filled quartets for N 6= 0, ⌫ = �4,�8,�12. Like the ⌫ = 0, all gaps scale approximately linearly with B?, with
enhanced g? factors that decrease with increasing LL index. e, Unlike the ⌫ = 0 state, all activation gaps measured for half-filled LLs with N 6= 0 increase
with BT, indicating spin polarized states. For ⌫ = �4 and �8, the enhancement of gk indicates that charged excitations contain multiple flipped spins.
f, Schematic representation of charged excitations at half filling for N 6= 0. Excitations into the spin-reversed conduction band can take the form of single
reversed spin particle–hole pairs or smoothly varying skyrmion–antiskyrmion (S–aS) spin textures, depending on the strength of exchange interactions
relative to disorder and the Zeeman energy. At B? = 15 T in the samples studied in this work, the S–aS scenario prevails at ⌫ = �4 and �8, whereas charge
at ⌫ = �12 is carried by single electron–hole pairs. The error bars on all activation gaps are dominated by the uncertainty in the range of the simply
activated regime, which is much larger than intrinsic scatter in the data.

Half filling of a fourfold-degenerate graphene LL provides
an ideal testing ground for the relative strength of the spin
and valley anisotropies within the SU(4) isospin space. Because
each cyclotron guiding centre is doubly occupied, Pauli exclusion
prevents the half-filled LL from fully polarizing in both spin
and valley simultaneously. As a result, spin and valley polarizing
tendencies necessarily compete, and the resulting ground state
reflects the result of this competition. The fact that different
orders prevail at half filling for N = 0 and N 6= 0 even under
identical experimental conditions (B? and BT, which together
fix the relative magnitude of the real spin anisotropy) suggests
that the difference between LLs is intrinsic to graphene and
originates in the valley sector. A likely origin lies with the unique
structure of the ZLL wavefunctions: whereas for the N 6= 0 LLs
wavefunctions in a single valley are spread equally over the two
real space sublattices, for the ZLL electrons in a single valley
are localized on a single sublattice6. Long-range interactions
do not distinguish between such lattice scale orbital structural
difference, but short-range interactions do, potentially leading to
different ground states in the N = 0 and N 6= 0 LLs (ref. 23).
At ⌫ = 0, the resulting interaction induced valley anisotropies
have been predicted to drive the system to one of a number of
sublattice-ordered ground states20,21,23,24,27,29,30,33,34, some of which
are depicted in Fig. 2c. The experimental data presented here
indicate that, whereas the Zeeman effect wins the competition for
the N 6= 0 LLs, leading to spin polarized states at ⌫ = �12,�8,

and �4, the valley anisotropies dominate the zero LL, leading to
the formation of one of the possible lattice scale density waves
portrayed in Fig. 2c(ii)–(iv). The large size of the measured 0�
gap, and its insensitivity to in-plane fields, suggest that the valley
anisotropies may be more than ten times stronger than their naive
scale, (1/`B) ⇥ EC, in line with renormalization group34,40 and
numerical calculations29.

A further notable feature of the experimental data is the linear
dependence of 0� on B?. The ⌫ = 0 insulating state is not spin
polarized, precluding linear-in-BT Zeeman contributions to the
excitation energy (as in equation (2)); consequently, the linear
dependence must have an orbital origin. Theoretical models based
on Coulomb interactions within the continuum Dirac model,
whereas consistent with the magnitude of the gaps, implicitly
predict a

p
B? scaling of the ⌫ = 0 energy gap, a fact that derives

from the
p
B? dependence of both EC and E0. Theories based

on other mechanisms that do predict a linear dependence18,26 are
unable to account for the large 0� gap sizes observed.

Motivating future work on the ⌫ = 0 state, quantitative data
(Supplementary Information) on the decrease of the gap in applied
parallel field suggest that the real spin ferromagnet, which is
predicted22,25 to be an analog of the quantum spin Hall state41, may
be experimentally accessible in the best samples at high tilt angles in
realistic magnetic fields (BT ⇠< 45 T).

Despite the role of the single-particle Zeeman effect in setting
the order in the higher LLs, tilted field activation gaps demonstrate
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applied B?, a feature not associated with any currently proposed theory for ⌫ = 0. The dashed line indicates g? = 23. b, Tilted field dependence of the
resistance of the ⌫ = 0 state. The resistance increases exponentially with field, consistent with a gapped state with 0�/ B?. The resistance at fixed B?
decreases for higher tilt angles, indicating a spin-unpolarized state. c, Candidate QHIFM states for ⌫ = 0. Our experiment rules out the spin ferromagnet,
(i); all other states are marked by lattice scale spin (for the canted antiferromagnet (ii)) or charge (for the charge density wave (iii) or Kekulé distortion
(iv)) order. d, B? dependence of the half-filled quartets for N 6= 0, ⌫ = �4,�8,�12. Like the ⌫ = 0, all gaps scale approximately linearly with B?, with
enhanced g? factors that decrease with increasing LL index. e, Unlike the ⌫ = 0 state, all activation gaps measured for half-filled LLs with N 6= 0 increase
with BT, indicating spin polarized states. For ⌫ = �4 and �8, the enhancement of gk indicates that charged excitations contain multiple flipped spins.
f, Schematic representation of charged excitations at half filling for N 6= 0. Excitations into the spin-reversed conduction band can take the form of single
reversed spin particle–hole pairs or smoothly varying skyrmion–antiskyrmion (S–aS) spin textures, depending on the strength of exchange interactions
relative to disorder and the Zeeman energy. At B? = 15 T in the samples studied in this work, the S–aS scenario prevails at ⌫ = �4 and �8, whereas charge
at ⌫ = �12 is carried by single electron–hole pairs. The error bars on all activation gaps are dominated by the uncertainty in the range of the simply
activated regime, which is much larger than intrinsic scatter in the data.

Half filling of a fourfold-degenerate graphene LL provides
an ideal testing ground for the relative strength of the spin
and valley anisotropies within the SU(4) isospin space. Because
each cyclotron guiding centre is doubly occupied, Pauli exclusion
prevents the half-filled LL from fully polarizing in both spin
and valley simultaneously. As a result, spin and valley polarizing
tendencies necessarily compete, and the resulting ground state
reflects the result of this competition. The fact that different
orders prevail at half filling for N = 0 and N 6= 0 even under
identical experimental conditions (B? and BT, which together
fix the relative magnitude of the real spin anisotropy) suggests
that the difference between LLs is intrinsic to graphene and
originates in the valley sector. A likely origin lies with the unique
structure of the ZLL wavefunctions: whereas for the N 6= 0 LLs
wavefunctions in a single valley are spread equally over the two
real space sublattices, for the ZLL electrons in a single valley
are localized on a single sublattice6. Long-range interactions
do not distinguish between such lattice scale orbital structural
difference, but short-range interactions do, potentially leading to
different ground states in the N = 0 and N 6= 0 LLs (ref. 23).
At ⌫ = 0, the resulting interaction induced valley anisotropies
have been predicted to drive the system to one of a number of
sublattice-ordered ground states20,21,23,24,27,29,30,33,34, some of which
are depicted in Fig. 2c. The experimental data presented here
indicate that, whereas the Zeeman effect wins the competition for
the N 6= 0 LLs, leading to spin polarized states at ⌫ = �12,�8,

and �4, the valley anisotropies dominate the zero LL, leading to
the formation of one of the possible lattice scale density waves
portrayed in Fig. 2c(ii)–(iv). The large size of the measured 0�
gap, and its insensitivity to in-plane fields, suggest that the valley
anisotropies may be more than ten times stronger than their naive
scale, (1/`B) ⇥ EC, in line with renormalization group34,40 and
numerical calculations29.

A further notable feature of the experimental data is the linear
dependence of 0� on B?. The ⌫ = 0 insulating state is not spin
polarized, precluding linear-in-BT Zeeman contributions to the
excitation energy (as in equation (2)); consequently, the linear
dependence must have an orbital origin. Theoretical models based
on Coulomb interactions within the continuum Dirac model,
whereas consistent with the magnitude of the gaps, implicitly
predict a

p
B? scaling of the ⌫ = 0 energy gap, a fact that derives

from the
p
B? dependence of both EC and E0. Theories based

on other mechanisms that do predict a linear dependence18,26 are
unable to account for the large 0� gap sizes observed.

Motivating future work on the ⌫ = 0 state, quantitative data
(Supplementary Information) on the decrease of the gap in applied
parallel field suggest that the real spin ferromagnet, which is
predicted22,25 to be an analog of the quantum spin Hall state41, may
be experimentally accessible in the best samples at high tilt angles in
realistic magnetic fields (BT ⇠< 45 T).

Despite the role of the single-particle Zeeman effect in setting
the order in the higher LLs, tilted field activation gaps demonstrate
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• edge reconstruction in tilted magnetic field shows consistency with the canted 
antiferromagnetic (CAF) ground state scenario

device plane, held constant, the initially low charge-neutrality point
conductance (Gcnp) increases steadily before finally saturating at
G < 1.8e2/h for the largest total field applied (e, electron charge; h,
Planck’s constant). Evidence for a similar transition was recently
reported in bilayer graphene24, where the additional orbital degeneracy

of the zLL leads to a conductance of 4e2/h. We note that although
superficially similar, the structure and transport properties of the
resulting edge modes are likely to be heavily influenced by the addi-
tional degeneracy, particularly when many-body reconstructions of
the edge states are taken into account10,25.

To distinguish the roles of the edges and the bulk in this conduc-
tance transition, we also measure the capacitance between the graphene
and the graphite back gate under similar conditions. Capacitance (C)
measurements serve as a probe of the bulk density of states (D) via
C{1~C{1

G z Ae2Dð Þ{1, where CG is the geometric capacitance and A
is the sample area. Simultaneous capacitance and transport measure-
ments from a second graphene device show that quantized Hall states
within the zLL at n 5 0 and n 5 61 are associated with minima in the
density of states (Fig. 1b, c). As the total field is increased, the capacit-
ance dip at n 5 0 remains unaltered even as the conductance increases
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Figure 1 | QSH state in monolayer graphene in extreme tilted magnetic
fields. a, Conductance of device A at BH 5 1.4 T for different values of BT. As
BT increases, the insulating state at n 5 0 is gradually replaced by a high-
conductance state, with an accompanying inversion of the sign of hGcnp/hT
(additional data in Extended Data Figs 2 and 3). Inset, Gcnp as a function of BT
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b, Capacitance (opaque lines) and dissipation (semi-opaque lines) of device B at

BH 5 2.5 T. The low dissipation confirms that the measurements are in the
low-frequency limit, such that the dips in capacitance can be interpreted as
corresponding to incompressible states. c, Conductance under the same
conditions. The absence of a detectable change in capacitance, even as the two-
terminal conductance undergoes a transition from an insulating state to a
metallic state (Extended Data Fig. 6), suggests that the conductance transition is
due to the emergence of gapless edge states.
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number of segments on each path, indicated by black edges. b, Two-terminal
conductance measurements of device A for BH 5 1.4 T, colour-coded to match
the four different measurement configurations. Dashed curves correspond to
BT 5 1.4 T; solid curves correspond to BT 5 34.5 T (QSH regime). In the QSH
regime, Gcnp depends strongly on the number of floating contacts (see Extended
Data Fig. 4 for similar data for device C). Inset, atomic force microscope (AFM)
phase micrograph of device A; scale bar, 1mm. c, Gcnp for eighteen different
contact configurations based on cyclic permutations of the topologies shown in
a. Data are plotted against two model fits. In a numerical simulation based on a
diffusive model (black circles), the graphene flake was assumed to be a bulk
conductor with the conductivity left as a fitting parameter (s 5 3.25e2/h for the
best fit). The QSH model (red circles) is equation (1) and has no fitting
parameters. The dashed line indicates a perfect fit of data to model. We note
that the measured Gcnp never reaches the value predicted by the QSH model,
indicating either contact resistance or finite backscattering between the helical
edge states. d, Schematic diagram of bulk order and edge-state spin texture in
the fully polarized QSH regime. Arrows indicate the projection of the electron
spin on a particular sublattice, with the two sublattices indicated by open and
filled circles. The edge-state wavefunctions are evenly distributed on the two
sublattices and have opposite spin polarizations, at least for an idealized
armchair edge14.
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by several orders of magnitude. This implies that the high-field n 5 0
state has an incompressible bulk, consistent with the hypothesis of a
ferromagnetic QSH state with conducting edge states and a bulk gap.

We probe the nature of the edge states through non-local transport
measurements in which floating contacts are added along the sample
edges26. Unlike the chiral edge of a quantum Hall state, which carries
current in only one direction, the QSH edge can carry current either
way, with backscattering suppressed by the conservation of spin within
the helical edge states. Because the carriers do not maintain their spin
coherence within a metal contact, contacts equilibrate the counterpro-
pagating states such that each length of QSH edge between contacts
must be considered a single resistor of resistance h/e2. The two-terminal
conductance results from the parallel addition of the two edges con-
necting the measurement probes:

G~
e2

h
1

N1z1
z

1
N2z1

! "
ð1Þ

Here N1 and N2 are the respective numbers of floating contacts along
each edge. Figure 2b shows the results of non-local two-terminal con-
ductance measurements for the four distinct two-terminal measurement
geometries available in a four-terminal device (Fig. 2a). Repeating the
measurement for 18 cyclic permutations of the available contact con-
figurations, we find that the results are well fitted by the simple model
of equation (1) (Fig. 2c), despite large variations in the effective bulk
aspect ratio. Notably, Gcnp is always less than the value expected from
the QSH model, suggesting some small but finite amount of backscat-
tering or contact resistance. The combination of bulk incompressibility
and non-local transport signatures of counterpropagating edge states
leads us to conclude that the high-field metallic state observed indeed
displays a QSH effect.

The QSH state realized here is equivalent to two copies of the quantum
Hall effect, protected from mixing by the U(1) symmetry of spin rotations
in the plane perpendicular to the magnetic field. As such, it constitutes

a topologically non-trivial state that is clearly distinct in its edge-state
properties from the insulating state at fully perpendicular field. Capa-
citance measurements in the intermediate conductance regime reveal
that the bulk gap does not close as the total field is increased (Fig. 3a).
This rules out a conventional topological phase transition, in which
case the bulk gap is required to close27; the transition must thus occur
by breaking the spin symmetry on which the QSH effect relies. In fact, a
canted antiferromagnetic (CAF) state (Fig. 3b) that spontaneously breaks
this symmetry is among the theoretically allowed n 5 0 states11–13. In
this scenario, the canting angle is controlled by the ratio of the Zeeman
energy, gmBBT (g 5 2, bare gyromagnetic ratio; mB, Bohr magneton),
and the antiferromagnetic exchange coupling, which depends only on
BH. The observed conductance transition results from the edge gap
closing (Fig. 3c) as the spins on the two graphene sublattices are slowly
canted by the in-plane magnetic field, with the fully polarized QSH
state emerging above a critical value of BT (ref. 14). In the language of
SPT insulators, the antiferromagnetic instability breaks the spin sym-
metry below this critical field, allowing the counterpropagating edge
states to backscatter and acquire a gap28.

Experimentally, the subcritical field regime is characterized by high-
conductance peaks appearing symmetrically between n 5 0 and n 5 61.
We observe G . e2/h peaks in many samples with widely varying aspect
ratios (Extended Data Fig. 5), which is inconsistent with diffusive bulk
transport in a compressible Landau level29. Measurements at different
temperatures indicate that the peaks are metallic, even when the state at
n 5 0 is still strongly insulating (Fig. 4a). Moreover, the peaks exhibit
the non-local transport behaviour of counterpropagating edge states
(Fig. 4b); in particular, the peak conductance is always strictly less than
e2/h when the two edges are each interrupted by a floating contact.
These results indicate that the conductance peaks are due to edge-state
transport in the CAF state. The high conductance of these edge states,
despite proximity to the strongly disordered etched graphene edge, implies
that backscattering is at least partly suppressed. This is consistent with
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Figure 3 | Symmetry-driven quantum phase transition. a, Capacitance (top)
and conductance (bottom) of device A at BH 5 1.1 T. The central dip in
capacitance does not change with BT at any point during the transition,
implying that the bulk gap does not close. b, Bulk spin order in the three
transition regimes. The balls and arrows are respectively schematic
representations of the spin and sublattice textures of the ground-state
wavefunctions and do not represent individual electrons; the electron density
within the zLL at n 5 0 is two electrons per cyclotron guiding centre. Insets,
details of the relative alignment of the electron spins on the two sublattices. At
large BT, the bulk electron spins are aligned with the field (top panel), resulting
in an emergent U(1) spin-rotation symmetry in the plane perpendicular to BT.
As the total magnetic field is reduced below some critical value (with BH held
constant), the spins on opposite sublattices cant with respect to each other while

maintaining a net polarization in the direction of BT (middle panel). This state
spontaneously breaks the U(1) symmetry, rendering local rotations of the
electron spins energetically costly. For pure perpendicular fields (bottom
panel), the valley isospin anisotropy energy overwhelms the Zeeman energy
and the canting angle, h, is close to 90u, defining a state with antiferromagnetic
order. c, Low-energy band structure in the three phases14. e is the energy and x is
the in-plane coordinate perpendicular to the physical edge of the sample. The
intermediate CAF phase smoothly interpolates between the gapless edge states
of the QSH phase (top panel; FM, ferromagnetic) and the gapped edge of the
perpendicular-field phase (bottom panel; AF, antiferromagnetic) without
closing the bulk gap. Colour indicates the spin texture of the bands projected
onto the magnetic field direction: red, aligned; blue, antialigned; black, zero net
spin along the field direction.
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ν = −2 / ν = −1 edges
• degeneracy lifting of zLL in the bulk and at an edge

!G ¼ 0, "1, and "4 (Zhang et al., 2006; Jiang et al.,
2007b), where the latter corresponds to the LLs "1. Recent
experiments on exfoliated graphene on a h-BN substrate
furthermore revealed quantum Hall states at !G ¼ "3
(Dean et al., 2011), thus completing the full resolution of
the spin-valley quartet, not only in n ¼ 0 but also in "1.

The observed states may generally be understood in the
framework of the quantum Hall ferromagnetism, but the
understanding of the situation at !G ¼ 0 requires an addi-
tional consideration of the subleading external symmetry-
breaking terms discussed in Sec. V.A.4. The two-stage pic-
ture, which we adopt here based on the above discussions,
may be summarized as follows. (a) The quantum Hall ferro-
magnetic states are formed to minimize the leading energy
given by the Coulomb interaction. However, because of the
(approximate) SU(4) symmetry of the interaction, the orien-
tation of the quantum Hall ferromagnets is not fixed: a
polarization in the spin channel is as probable as one in the
valley channel, and this yields the high degeneracy of the
Goldstone modes described in Sec. V.B.1. (b) Therefore, in
spite of the small energy scale of the external fields, the latter
are relevant for the orientation of the ferromagnets and for the
degeneracy lifting of the Goldstone modes.

a. The quantum Hall effect at !G ¼ "1

For !G ¼ #1, only one spin-valley branch is completely
filled by electrons.35 The Zeeman effect would give a small
energetic advantage to spin- # electrons, such that the two
spin Goldstone modes associated with collective excitations
to the spin- " branch acquire a q ¼ 0 gap, given by !Z. In
contrast to the spin excitations, the Goldstone mode, which
couples the two valleys in the spin- # branch of n ¼ 0,
remains gapless, and the ground state may thus be viewed
as a valley-pseudospin ferromagnet in the spin- # branch. The
activation gap would be given by Eq. (233) for pseudospin
skyrmion-antiskyrmion pairs, and its associated scaling
e2="lB /

ffiffiffiffi
B

p
has indeed been observed experimentally

(Jiang et al., 2007b). The residual valley SU(2) symmetry
may be broken by the lattice distortions, which we discussed
in Sec. V.A.4. Whereas an out-of-plane lattice distortion
would yield a gapped valley-pseudospin wave mode, a
Kekulé-type in-plane distortion orients the pseudospin ferro-
magnet in the X # Y plane, associated with a gapless U(1)
superfluid mode (Nomura et al., 2009). Note that the lattice
distortion characterized by the energy scale !kek is not in
competition, at !G ¼ "1, with the Zeeman effect, such that
the resulting ferromagnetic state is the same for !Z >!kek as
for!Z < !kek. In the remainder of this section, we restrict the
discussion of the valley-pseudospin degeneracy lifting to in-
plane distortions that seem to be energetically more relevant
than out-of-plane distortions, but the overall picture remains
unchanged if the latter are more relevant.

b. The quantum Hall effect at !G ¼ 0

The situation is more subtle at !G ¼ 0, where it is not
possible to fully polarize both the spin and the valley

pseudospin and where the Zeeman effect is in competition
with a lattice distortion that orients the valley pseudospin. For
!Z > !kek, it is favorable to fill both valley sublevels of the
spin- # branch and the resulting state is a spin ferromagnet
with gapped spin-wave excitations. For !Z < !kek, a
pseudospin-ferromagnetic ground state is favored with both
spin sublevels completely filled. The two different situations
are depicted in Fig. 27. Most saliently, the two phases reveal
drastically different transport properties as one may see from
their behavior at the sample edges.

The electronic behavior at the edges may be described
within a model of electron confinement, in which the sample
edge is described via amass confinement termMðyÞ"zAB in the
Hamiltonian, which has the symmetry of the term (218) or
else, in n ¼ 0, that of a valley Zeeman term (217), as argued
in Sec. V.A.4. The parameter MðyÞ is zero in the bulk and
increases drastically at the edge at a certain value of the
coordinate y.36 Although the model is a simplification to treat
the graphene edges in the continuum description of the Dirac
equation, a more sophisticated treatment that takes into ac-
count the geometry of the edges yields, apart from a fine
structure of the levels at the edge, qualitatively similar results
(Brey and Fertig, 2006). The mass term MðyÞ modifies the
valley coupling due to the lattice distortion and yields a

y-dependent term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

kek þMðyÞ2
q

, which therefore equally

diverges at the sample edge.37

These preliminary considerations on the gap behavior at
the edges allow us to appreciate the difference in the expected
electronic transport between a spin ferromagnet and a valley-
pseudospin ferromagnet at !G ¼ 0. Indeed, for !Z > !kek,
one obtains a quantum Hall state at !G ¼ 0 that is charac-
terized by a bulk gap associated with two counterpropagating
edge states [Fig. 27(a)]. In the bulk, where MðyÞ ¼ 0, both
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FIG. 27. Possible scenarios for the lifted spin-valley degeneracy at
!G ¼ 0. (a) !Z > !kek in the bulk. When approaching the edge, the
energy difference between the two valleys increases drastically, and
two levels ðK0; "Þ and ðK; #Þ cross the Fermi energy at the edge
depicted by the dashed line (quantum Hall state). (b) !kek > !Z in
the bulk. The K subbranches are already located above the Fermi
energy, and those of K0 below, such that the energy difference is
simply increased when approaching the edge with no states crossing
the Fermi energy (insulator).

35For !G ¼ þ1, the same arguments apply in terms of holes due to
particle-hole symmetry.

36For the present argument, we consider translation invariance in
the x direction.
37In the case of an out-of-plane distortion, the term MðyÞ simply

adds up to the energy scale !valley
Z [see Eq. (217)], but the physical

picture remains unaltered.
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Selective Equilibration of Spin-Polarized Quantum Hall Edge States in Graphene
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We report on transport measurements of dual-gated, single-layer graphene devices in the quantum Hall
regime, allowing for independent control of the filling factors in adjoining regions. Progress in device
quality allows us to study scattering between edge states when the fourfold degeneracy of the Landau level
is lifted by electron correlations, causing edge states to be spin and/or valley polarized. In this new regime,
we observe a dramatic departure from the equilibration seen in more disordered devices: edge states with
opposite spins propagate without mixing. As a result, the degree of equilibration inferred from transport can
reveal the spin polarization of the ground state at each filling factor. In particular, the first Landau level is
shown to be spin polarized at half filling, providing an independent confirmation of a conclusion of Young
et al. [Nat. Phys. 8, 550 (2012)]. The conductance in the bipolar regime is strongly suppressed, indicating
that copropagating edge states, even with the same spin, do not equilibrate along PN interfaces. We
attribute this behavior to the formation of an insulating ν ¼ 0 stripe at the PN interface.

DOI: 10.1103/PhysRevLett.112.196601 PACS numbers: 72.80.Vp, 73.43.-f

At low magnetic fields, the electronic properties of
graphene are well described by a noninteracting Dirac
Hamiltonian [1,2], with fourfold degeneracy associated
with spin and valley isospin, an additional degree of freedom
due to the hexagonal crystal lattice of graphene. As a result,
graphene exhibits an anomalous quantum Hall effect with a
transverse conductance quantized as 4ðnþ 1

2Þe
2=h, where n

is an integer [3–5]. At higher fields, Zeeman coupling and
electron correlations can lift the fourfold degeneracy of the
energy spectrum, resulting in spin- and valley-polarized
Landau levels [6]. The nature of the ground state for each
Landau level at partial filling depends on which symmetry-
breaking energy dominates, a controversial topic over the
years [6–19]. While progress has been made in our under-
standing of the symmetry-breaking of partially filled Landau
levels, direct observation of their polarization remains
difficult. Previous work focused on the in-plane and
perpendicular field dependence of the bulk 2D quantum
Hall gaps [7,19,30], but an alternative approach would be to
directly study edge transport.
To this end, we measured the conductance of eight dual-

gated graphene devices in the quantum Hall regime, at
temperature T ¼ 250 mK and for magnetic field B up to
14 T. Our samples use a hexagonal boron-nitride substrate
(h-BN), which greatly improves the electronic perfor-
mance of graphene devices [20], and a suspended top gate
(TG) [21–23]. The resulting quality of our devices allows
us to study bipolar transport where the spin and valley
fourfold degeneracies of the Landau levels are fully lifted.
When the filling factors under and outside the top gate
differ, the two-terminal conductance of such devices
strongly depends on scattering between edge states, with

new plateaus resulting from their mixing. The values of
these plateaus suggest that edge states with different spin
polarization do not equilibrate at the scale of our devices.
This contrasts with the valley polarization, since inter-
valley scattering along the disordered edges of these
samples causes edge states with different valley polariza-
tion—but same spin—to equilibrate. The pattern of
equilibration for each pair of filling factors depends on
the ground states at quarter and half filling for the zeroth
and first Landau levels. In particular, our measured
conductance plateaus at filling factor ν ¼ 4 are consistent
with a spin-polarized first Landau level at half filling. The
conductance in the bipolar regime becomes vanishingly
small as B increases, contrary to previous observations
[22,26,27], suggesting the formation of a narrow ν ¼ 0
insulating stripe along the PN interface.
Here, we present a unified data set from a single device,

called device A; additional data from similar devices are
available in Ref. [24]. Device A is a 3 μm long, 1 μm wide
graphene stripe, with a metallic top-gate suspended
∼90 nm above the middle third of the device [Fig. 1(d)].
Details of the fabrication are described in Ref. [21,24]. The
two-terminal conductance g is measured in a 3He cryostat
using a conventional lock-in setup with a 100 μV voltage-
bias excitation at 137 Hz. Resistance R≡ 1=g at B ¼ 0 as a
function of the back-gate (BG) voltage VBG shows residual
doping δn ∼ 1011 cm−2, peak resistance 30 kΩ and mobil-
ity 120000 cm2=Vs at T ¼ 2 K [Fig. 1(e)], demonstrating
the high quality of this sample. RðVTGÞ shows the usual
electron-hole asymmetry characteristic of graphene PN
junctions. The back-gate capacitance extracted from
magneto-transport measurements is 5.9 × 1010 cm−2=V,
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spin superfluidity in the canted antiferromagnet state
• classical dynamics for standard bipartite Heisenberg antiferromagnet in a magnetic field

A. F. Andreev and V. I. Marchenko, Sov. Phys. Uspekhi 23, 21 (1980)

|n| = 1, |m| ⌧ 1
sṅ = ��1m⇥ n+ b⇥ n

sṁ = An⇥r2n+ b⇥m

• one gapless mode: (azimuthal) Néel rotations within the plane normal to the field

SUPERFLUID SPIN TRANSPORT THROUGH . . . PHYSICAL REVIEW B 90, 094408 (2014)

shown in Fig. 1. A large interface in the yz plane with full
translational symmetry and periodic boundary conditions is
assumed. The temperature is taken to be constant (and low)
across the entire heterostructure, so that spin transport is driven
purely by a spin bias in the absence of any thermal gradients.
Each metallic reservoir is modeled as a Fermi liquid made
up by spin-up and spin-down electrons. The nonequilibrium
spin accumulation, fomented, e.g., by the spin Hall effect, is
introduced in the left reservoir by assigning different chemical
potentials to the two spin species, µL↑ and µL↓, such that
each species occupies the single-particle states according to
the respective Fermi-Dirac distribution, nLσ (ε) = [eβ(ε−µLσ ) +
1]−1. In the right reservoir, the absence of spin accumulation
implies µR↑ = µR↓. The spin quantization axis is taken to be
parallel to the z axis, and so the vectorial spin accumulation is
defined as µs = (µL↑ − µL↓)ez ≡ µsez.

A. Classical dynamics for magnetic bulk

Let us first consider an isolated AF. Undamped Landau-
Lifshitz dynamics for the Néel unit vector n and the total
(normalized) spin density m can be obtained from Eq. (2)
by minimizing the action subject to the nonlinear constraints
|n| = 1 and n · m = 0. The resultant dynamics are given by

sṅ = χ−1m × n + b × n, (4)

sṁ = An × ∇2n + b × m. (5)

The nonlinear constraints are evidently obeyed in these
equations. These equations can be obtained by parametriz-
ing the Néel vector with two angles θ (relative to the
xy plane) and φ (relative to the x axis), i.e., n =
(cos θ cos φ, cos θ sin φ, sin θ ), and by defining two com-
ponents of the total magnetization transverse to the Néel
vector, mθ and mφ , such that m = (−mθ sin θ cos φ −
mφ sin φ,−mθ sin θ sin φ + mφ cos φ,mθ cos θ ).

In the presence of a uniform external field in the negative z
direction, i.e., b = −bez, the equilibrium solution to Eqs. (4)
and (5) is given by θ (0) = 0, m

(0)
θ = χb, and m

(0)
φ = 0. The

classical moments form a uniform staggered order with a slight
canting of spins out of the xy plane in the positive z direction,

x
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SBφ
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φφφ

mmm

FIG. 2. (Color online) A pictorial representation of the classical
antiferromagnetic ground state in the presence of a magnetic field in
the negative z direction. SA and SB are the sublattice A and B spins,
respectively. n and m are the corresponding Néel order and the net
spin density (normalized by s). n is taken to lie in the xy plane, such
that θ = 0.

which minimizes the Zeeman term in energy. The azimuthal
angle φ can be arbitrary. This equilibrium state is represented
pictorially in Fig. 2.

B. Spin waves and spin current

Coupling the AF to the external reservoirs perturbs this
uniform static equilibrium state. In anticipation of this, we
consider small deviations ϑ , ξθ , and ξφ of θ , mθ , and mφ ,
respectively, from the equilibrium solution obtained above:
mθ = χb + ξθ , mφ = ξφ , and θ = ϑ , while allowing the
zero-mode coordinate φ to vary smoothly over space-time.
The precession of the Néel vector about the z axis will be
involved eventually in the collective (superfluid) spin transport
of interest. Writing Lagrangian (2) in terms of θ , φ, mθ , and
mφ , and expanding up to quadratic order in ϑ , ξθ , and ξφ , as
well as φ̇ and ∇φ, it becomes

LAF ≈ s(ξθ φ̇ − ξφϑ̇) − A

2
[(∇ϑ)2 + (∇φ)2]

−
ξ 2
θ + ξ 2

φ

2χ
− χb2

2
ϑ2. (6)

This gives the linearized Euler-Lagrange equations

sφ̇ = χ−1ξθ , sξ̇θ = A∇2φ, (7)

sϑ̇ = −χ−1ξφ, sξ̇φ = −A∇2ϑ + χb2ϑ, (8)

which approximate Eqs. (4) and (5). For small-amplitude
fluctuations relative to a homogeneous equilibrium state,
the two pairs of variables, (φ,ξθ ) and (ϑ,ξφ), describe two
independent spin-wave branches of the AF: the former gapless
with linear dispersion ω = cq, in terms of the spin-wave speed
c = s−1√A/χ ; and the latter gapped with dispersion ω =√

(b/s)2 + (cq)2. The direction of the applied field defines
the axis of cylindrical symmetry of the system [with the
gapless spin-wave branch corresponding to the associated U(1)
Goldstone mode]. Therefore, in the absence of damping, the
total spin angular momentum polarized along the z axis is a
conserved quantity. The associated spin-supercurrent density
in the AF bulk can then be extracted from the continuity
equation sṁz = −∇ · J s as

J s(x) = −A∇φ, (9)

since ṁz = ξ̇θ , in our linearized treatment. Throughout this
work, we are interested only in this spin-current component,
which is polarized along the z axis.

C. Magnetic damping

Damping of the magnetic dynamics can be phenomeno-
logically incorporated by endowing Eqs. (4) and (5) with
appropriate dissipative terms. Adding viscous damping terms
that are first order in time derivative, are zeroth order in spatial
derivative, are time-reversal-symmetry breaking, obey a space-
group symmetry flipping n → −n while m → m, and satisfy
the constraints |n| = 1 and n · m = 0, the Landau-Lifshitz
equations (4) and (5) are modified to

s(ṅ + αn × ṁ) = χ−1m × n + b × n, (10)

s(ṁ + αm × ṁ + α′n × ṅ) = An × ∇2n + b × m. (11)

094408-3
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• projected dynamics only in terms of the variables in the gapless sector

s�̇ = ��1⇠z, s⇠̇z = Ar2� Js (x, t) = �Ar�(x, t)

spin supercurrent

Superfluid of spin component antiparallel to the field

B. I. Halperin and P. Hohenberg, Phys. Rev. 188, 898 (1969)
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linear response theory for spin injection/detection

• injected spin current is carried by dynamically precessing Néel texture within graphene 
plane, i.e., spin superfluid.

ST, A. Yacoby, B. Halperin, Y. Tserkovnyak, Phys. Rev. Lett. 116, 216801 (2016)

• spin current ejected into edges by a collinear antiferromagnet with Néel vector rotating 
within the xy plane R. Cheng et al., Phys. Rev. Lett. 113, 057601 (2014)
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n⇥ ṅ =

~�0

4⇡
⌦



edge equilibration

• scattering at vertices arises due to:

Ŝ =

✓
t 1� t

1� t t

◆
t = 0.5

t = 1

full vertex mixing
no vertex mixing

- slight misalignment of spin states between the regions inside and outside the injection 
region

- any source of momentum non-conservation, e.g., disorder, sharp change in current 
direction, etc.

ST, A. Yacoby, B. Halperin, Y. Tserkovnyak, Phys. Rev. Lett. 116, 216801 (2016)

• inter-channel tunneling conductance g per unit length depends on:
- spatial proximity of the two edge channels

- elastic impurities: gives momentum non-conservation necessary to overcome mismatch of 
Fermi momenta

- spin-flip mechanism: provided by the neighboring CAF
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edge equilibration
• line junction equilibration length scale

ST, A. Yacoby, B. Halperin, Y. Tserkovnyak, Phys. Rev. Lett. 116, 216801 (2016)
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• current exiting the line junction
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FIG. 4. The injection region. Charge currents entering vertices
a and b redistribute according to scattering probability matrix Ŝ .
The strength of inter-channel scattering inside the line junction is
quantified by an e↵ective conductance per unit length g(y).

tices a and b, the relative spin misalignment between the
(", #) and (*, +) states, together with sources of momen-
tum non-conservation there (e.g., edge disorder and the
sharp directional change of the edge) can give rise to inter-
channel charge scattering. The redistribution of charges
at these vertices must obey charge conservation, and can
be parameterized by an energy-independent transmission
probability t 2 [0, 1] (under the assumed symmetry S , the
two vertices are characterized by an identical probability)
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where I�(y) (with � =*, +) is the local charge current
flowing along the line junction in edge channel �, Ŝ =
t�̂0 + (1 � t)�̂x is the scattering probability matrix at the
vertices, and �̂0 and �̂x are the 2 ⇥ 2 identity matrix and
the x component of the Pauli matrices, respectively.

The occurrence of inter-channel scattering within the
line junction requires: (i) spatial proximity of the two
channels, such that there is su�cient overlap of their or-
bital wave functions; (ii) elastic impurities, providing the
momentum non-conserving mechanism necessary to over-
come the mismatch in Fermi momenta of the two chan-
nels; and (iii) a spin-flip mechanism, assumed here to be
provided by the neighboring CAF. All three factors go into
defining the inter-channel tunneling conductance g(y) per
unit length, which we treat phenomenologically here. In
terms of g(y), the change in current on channel � is given
by �I*,+(y) = ⌥g(y)[V*(y) � V+(y)]�y, where V� is the lo-
cal voltage on edge channel � [we assume that the edges
are always locally equilibrated at all points y such that the
voltage at each point is related to the local current through
V�(y) = I�(y)/gQ]. Then, the currents inside the line junc-
tion satisfy

@I*
@y
= �@I+
@y
= �g(y)

gQ
[I*(y) � I+(y)]. (8)

Assuming a position-independent tunneling conductance g
and defining the edge equilibration length ` ⌘ gQ/2g, the
currents entering vertex b is then given by
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FIG. 5. E↵ective spin conductance Gs
e↵ ⌘ I0s/eV� as a function

of the aspect ratio ⇢ ⌘ W/L. We fix the edge equilibration length
` and the system length L so that l ⌘ L/` = 10. The red and
blue curves are, respectively, for full (t = 1/2) and no (t = 1)
inter-channel mixing at the vertices, and e↵ective Gilbert damp-
ing ↵e↵ = 0.05 is used. The solid and dashed black lines, respec-
tively, correspond to the weak (↵e↵ = 0.05) and strong (↵e↵ = 5)
Gilbert damping with a transmission probability at the vertices of
t = 0.9.

Combining Eqs. (7) and (9), the parameter � (on the injec-
tion side) reads

� = 1 � (1 � 2t)2e�W/`. (10)

A fully analogous consideration on the detection side leads
to �0 = 1�(1�2t0)2e�W/`0 , where t0 is the transmission prob-
ability at vertices a0 and b0, and `0 is the edge equilibration
length associated with the line junction on the detection
side.

The results are now discussed for the symmetric case, in
which the injection and detection sides are characterized
by an identical transmission probability and edge equili-
bration length, i.e., t = t0 and ` = `0. Recall that `
describes the length scale over which the two relatively-
biased edge channels in the line junctions chemically equi-
librate via inter-channel scattering; we fix ` and the length
of the CAF region L to the ratio l ⌘ L/` = 10. The e↵ec-
tive spin conductance through the CAF, Gs

e↵ ⌘ I0s/eV� [see
Eq. (6)], can then be expressed in terms of two variables:
the aspect ratio ⇢ ⌘ W/L and the e↵ective Gilbert damping
↵e↵ ⌘ ↵sL2/~ in the bulk CAF.

The e↵ective spin conductance is plotted as a function
of the aspect ratio ⇢ for di↵erent t and ↵e↵ . Full mixing of
the edge channels at the vertices, i.e., t = 1/2, entails spin
current injection only at vertex a. In this case, increasing
⇢ only increases the e↵ects of Gilbert damping, since the
latter is a bulk e↵ect of the CAF, and the spin conductance
monotonically decreases essentially as Gs

e↵ / ⇢�1 (see the
red line). We call this “damping-dominated” behavior. If
no scattering occurs at the vertices, i.e., t = 1, spin cur-
rent is only injected within the line junction. For widths
much smaller than the equilibration length, i.e., ⇢l ⌧ 1,

• inter-channel scattering parameter:

� = 1� (1� 2t)2e�w

• total edge transport
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• transmitted spin current
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effective spin conductance

parameters γ and γ0. On the injection side, γ quantifies the
extent to which the two edge channels equilibrate inside the
injection region. Within linear response, γ can be evaluated
for the (static) CAF in equilibrium. At vertices a and b, the
relative spin misalignment between the ð↑;↓Þ and ð⇑;⇓Þ
states together with sources of momentum nonconservation
there (e.g., edge disorder and the sharp directional change
of the edge) can give rise to interchannel charge scattering.
The redistribution of charges at these vertices must obey
charge conservation, and can be parametrized by an energy-
independent transmission probability t ∈ ½0; 1$ (under the
assumed symmetry S, the two vertices are characterized by
an identical probability)

! I⇑ð0Þ
I⇓ð0Þ

"
¼ gQŜ

!
V↑
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"
;

!
I↑
I↓

"
¼ Ŝ
! I⇑ðWÞ
I⇓ðWÞ

"
; ð6Þ

where IσðyÞ (with σ ¼ ⇑;⇓) is the local charge current
flowing along the line junction in edge channel σ, Ŝ ¼ tσ̂0 þ
ð1 − tÞσ̂x is the scattering probability matrix at the vertices,
and σ̂0 and σ̂x are the 2 × 2 identity matrix and the x
component of the Pauli matrices, respectively (see Fig. 3).
The occurrence of interchannel scattering within the line

junction requires (i) spatial proximity of the two channels,
such that there is sufficient overlap of their orbital wave
functions, (ii) elastic impurities, providing the momentum
nonconserving mechanism necessary to overcome the
mismatch in Fermi momenta of the two channels, and
(iii) a spin-flip mechanism, assumed here to be provided by
the neighboring CAF. All three factors go into defining the
interchannel tunneling conductance gðyÞ per unit length,
which we treat phenomenologically here. In terms of gðyÞ,
the change in current on channel σ is given by δI⇑;⇓ðyÞ ¼
∓ gðyÞ½V⇑ðyÞ − V⇓ðyÞ$δy, where Vσ is the local voltage
on edge channel σ [we assume that the edges are always
locally equilibrated at all points y such that the voltage at
each point is related to the local current through
VσðyÞ ¼ IσðyÞ=gQ]. Then, the currents inside the line
junction satisfy

∂I⇑
∂y ¼ −

∂I⇓
∂y ¼ −

gðyÞ
gQ
½I⇑ðyÞ − I⇓ðyÞ$: ð7Þ

Assuming a position-independent tunneling conductance g
and defining the edge equilibration length l≡ gQ=2g, the
currents entering vertex b are then given by (see Fig. 3)

! I⇑ðWÞ
I⇓ðWÞ
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¼ 1

2

!
1þ e−w 1 − e−w

1 − e−w 1þ e−w

"! I⇑ð0Þ
I⇓ð0Þ

"
; ð8Þ

where w ¼ W=l. Combining Eqs. (6) and (8), we obtain
γ ¼ 1 − ð1 − 2tÞ2e−w. A fully analogous consideration on
the detection side leads to γ0 ¼ 1 − ð1 − 2t0Þ2e−w0

, where
w0 ¼ W=l0, t0 is the transmission probability at vertices a0

and b0, and l0 is the edge equilibration length associated
with the line junction on the detection side.
The results are now discussed for the symmetric case, in

which t ¼ t0 and l ¼ l0. In Fig. 4, we plot the effective spin
conductance through the CAF,Gs

eff ≡ I0s=eV− [see Eq. (5)],
as a function of w for different t. Full mixing of the edge
channels at the vertices, i.e., t ¼ 0.5, entails local spin
injection at vertex a. Therefore, increasing the width of the
sample has no effect on the effective spin conductance. If
no scattering occurs at the vertices, i.e., t ¼ 1, spin current
is injected only along the line junction. For widths smaller
than the equilibration length, i.e., w < 1, increasing the
width gives an enhancement in the injected spin current,
and a linear increase in Gs

eff ∝ w is obtained (see the dotted
line). However, as the width increases beyond the equili-
bration length, spin injection no longer increases and the
conductance saturates at a value 1=8π. For partial inter-
channel mixing at the vertices, 0.5 < t < 1, some spin
current is injected at vertex a so a finite conductance entails
even in the limit of w → 0 (see the dashed line). With
increasing width, the conductance also increases until the
width, again, reaches of order the edge equilibration length.
Conclusions.—In this work, we present a proposal to

detect spin superfluidity in the ν ¼ 0 quantum Hall state of
graphene. An observation of long-ranged (superfluid) spin
transport through the ν ¼ 0 state will constitute direct
evidence for the CAF ground state purported recently.

FIG. 3. The injection region. Charge currents entering vertices
a and b redistribute according to the scattering probability matrix
Ŝ. The interchannel scattering inside the line junction is quanti-
fied by an effective conductance gðyÞ per unit length.

FIG. 4. Effective spin conductance Gs
eff ≡ I0s=eV− as a function

of the aspect ratio w ¼ W=l. The solid, dashed, and dotted curves
are, respectively, for full (t ¼ 0.5), partial (t ¼ 0.75), and no
(t ¼ 1) interchannel mixing at the vertices.
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• transmitted spin current with no bulk Gilbert damping:

effective spin conductance
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effects of Gilbert damping
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In the Supplementary Material, we discuss how Gilbert
damping in the CAF bulk modifies the results presented in the
main text. In the presence of Gilbert damping, the amount of
spin current lost in the bulk is given by Is � I0s = ↵s⌦LW [1],
where ↵ is the bulk Gilbert damping parameter (whose mi-
croscopic origin is discussed below), and s ⌘ ~S/V is the
saturated spin density, with V denoting the area per spin of
the CAF. The global frequency is then given by

~⌦ =
�

� + �0 + �↵
eV� , (S1)

where �↵ = 4⇡↵sLW/~, and the amount of spin current gen-
erated on the detection side by the superfluid spin transport
reads

I0s =
1

4⇡
��0

� + �0 + �↵
eV� . (S2)

Since �↵ is proportional to L, while � and �0 are independent
of the length, one finds that for a fixed sample width W Gilbert
damping leads to an algebraic decay of the spin current with
the length L of the CAF region.

The results are discussed for the symmetric case, in which
we take t = t0 and ` = `0. In Fig. 1, the e↵ective spin con-
ductance, Gs

e↵ ⌘ I0s/eV� [see Eq. (S2)], is plotted as a function
of w = W/` for di↵erent t and the e↵ective Gilbert damping
↵e↵ ⌘ ↵sL`/~ in the bulk CAF. Full mixing of the edge chan-
nels at the vertices, i.e., t = 1/2, entails spin current injec-
tion only at vertex a. In this case, increasing w only increases
the e↵ects of Gilbert damping, since the latter is a bulk ef-
fect of the CAF, and the spin conductance monotonically de-
creases essentially as Gs

e↵ / w�1 (see the red line). We call
this “damping-dominated” behavior. If no scattering occurs
at the vertices, i.e., t = 1, spin current is only injected within
the line junction. For widths smaller than the equilibration
length, i.e., w < 1, increasing the width gives an enhance-
ment in the injected spin current that overcomes losses due to
Gilbert damping, and a linear increase Gs

e↵ / w (see the blue
line) is obtained. However, as the width increases beyond the
equilibration length, spin injection no longer increases while
Gilbert losses continue to increase. This leads to the eventual
decay Gs

e↵ / w�1 for large w. We call this “weak-damping”
behavior.

For partial inter-channel mixing at the vertices, 0 < t < 1,
Gs

e↵ has a qualitatively di↵erent dependence on w for di↵erent
Gilbert damping strengths. Let us consider the regime of w <
1 (the shaded region in Fig. 1). Here, the Gilbert damping
e↵ects are small as long as the e↵ective spin conductance in

G
s e�

w = W/`

/ w�1

/ w�1

w < 1

FIG. 1. (color online) E↵ective spin conductance Gs
e↵ ⌘ I0s/eV� as a

function of w = W/`. The red and blue curves are, respectively, for
full (t = 1/2) and no (t = 1) inter-channel mixing at the vertices, and
e↵ective Gilbert damping ↵e↵ = 0.005 is used. The solid and dashed
black lines, respectively, correspond to the weak (↵e↵ = 0.005) and
strong (↵e↵ = 0.5) Gilbert damping with a transmission probability
at the vertices of t = 0.9.

the lossless regime, characterized by �, is much larger than �↵.
For � � �↵, Gs

e↵ exhibits the weak-damping behavior where
an enhancement in the spin conductance is observed for w < 1
(see the solid black curve). Damping-dominated behavior is
restored for stronger Gilbert damping, i.e., � ⌧ �↵, where
the e↵ective spin conductance monotonically decreases with
w (see the dashed black curve).

The Gilbert damping parameter ↵ quantifies macroscopic
relaxation of spin angular momentum polarized along the z
axis, arising only in the presence of both spin-orbit interac-
tions and microscopic degrees of freedom for energy dissipa-
tion. For a perfect graphene membrane, the spin-orbit cou-
pling is known to be weak, while energy dissipation may be
provided by phonons and magnons. Gilbert damping should
vanish in this case as one approaches zero temperature, as
phonons and magnons freeze out. Magnetic or heavy-element
impurities and/or enhanced spin-orbit interactions due to sub-
strate can increase the spin relaxation rate. It is known, for
instance, that spin-orbit interactions in graphene can be en-
hanced, e.g., by hydrogenation [2] or interfacing it with a
heavy-element�based semiconductor [3]. Additional dissipa-
tion channels, furthermore, can stem from substrate phonons
or an ensemble of two-level systems (rooted in, e.g., crys-
talline defects either in graphene or the substrate). The lat-
ter could lead to energy relaxation (and thus finite ↵) even as
T ! 0 [4]. In a flat graphene membrane, U(1) symmetry-
breaking magnetocrystalline anisotropies, which, in principle,

• transmitted spin current with Gilbert damping

�, �0 ⌧ 4⇡↵sWL/~

�, �0 � 4⇡↵sWL/~
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summary and conclusions
• showed how (long-ranged) superfluid spin transport can be realized in the ν = 0 quantum 

Hall state of graphene
• linear-response/Onsager reciprocity to understand spin injection/detection using quantum 

Hall edge states.
• superfluid spin transport will constitute a direct evidence for the canted antiferromagnetic 

scenario.
• microscopic approaches are necessary to determine the dependence of edge 

equilibration length on the disorder along the edge and on the profile of the electrostatic 
potential between the ν = 0 and ν = -2 regions

• further detailed theories of the injection and detection regions are necessary to 
understand the effects of external sources of spin loss along the edge on spin transport


