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In an effort to illustrate the peculiar nature of the quantum world, Austrian Nobel laureate Erwin 
Schrödinger in 1935 conceived of a thought experiment in which a cat could be simultaneously dead 
and alive. This dichotomy is a direct consequence of so-called “quantum superposition,” which 
keeps track of the finite probability that physical systems assume different states. While 
Schrödinger’s cat represents a paradox in our macroscopic world, the properties of magnetic 
moments on the microscopic scale of carefully designed materials cannot be understood without 
keeping track of quantum superposition.  

In contrast to conventional magnetic materials, such as ferromagnets or antiferromagnets, in which a 
specific direction is associated with the magnetic moment of each atom, quantum-entangled 
magnets fail to develop a preferred direction for any spin to the lowest temperatures and are 
therefore referred to as “spin liquids.”  

Theorists have identified a number of fundamentally different forms of spin liquids that 
experimentalists now seek to realize and probe experimentally. Spin liquids can support exotic low 
energy quasi-particles and provide theoretical and experimental opportunities to explore particles 
presumed to exist in the early universe. Spin liquids might also provide a medium for topologically 
protected quantum computations.  

TOWARDS A TAXONOMY OF QUANTUM-ENTANGLED MAGNETIC STATES 
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Outline
Introduction to spin superfluidity

• Idealized treatment

• Dissipation and detrimental anisotropies

From spin to topological charge hydrodynamics

• Chiral domain walls in 1D

• Skyrmions in 2D

Proposals for realization and utilization of spin superfluids in 
ferromagnetic and antiferromagnetic materials



Superfluidity and superconductivity

(neutral) superfluid fountain (charged) superfluid Meissner effect
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spin superfluidity?

(thermal and electrical controls?)



Super-primer
When bosonic particles condense, their collective dynamics can be 
described by two canonically conjugate variables: particle density       
and condensate phase

• Hamiltonian:

• Hamilton’s equations:

The conservation of particle number is rooted in the gauge 
symmetry (here: invariance under global phase shift)
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Spin superfluidity

m

Sz

' magnetic order

easy-plane ferromagnet

n

Sz

'

a

bB Néel order

Heisenberg antiferromagnet

[', Sz] = i~

Continuum theory:
H =

K⇢2z
2

+
A(r')2

2

(total spin being the generator of the order-parameter rotations)

Halperin and Hohenberg, PR (1969); Sonin, JETP (1978) and AP (2010); König et al., PRL (2001)



Anatomy of spin transport in solid state
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Spin torque/pumping/Hall
Spin transport can be carried across (insulating) interfaces:

An efficient spin-to-charge interconversion by the spin Hall effect:
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Electrical controls of spin superfluids
The spin current can be injected and extracted directly in and out 
of the superflow-carrying magnetic helix:
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Spin-current circuit
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Nonlocal magnetoresistance
Circulating current through two metal films in series (a) spins the 
order, reducing the overall dissipation

In the parallel configuration (b), the torques are balanced, and the 
magnet remains stationary, causing more friction
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A proposed realization in the         graphene⌫ = 0

Fig. 1(a), where the central CAF region is sandwiched by
two ν ¼ −2 QH regions; we ignore the effects of thermal
fluctuations of the spins in the CAF. Spin injection into the
CAF is achieved using the two copropagating edge
channels of the left ν ¼ −2 region. Based on the theory
of QH ferromagnetism [11] these edge channels, away
from the injection region [shaded in green, which includes
the vertices labeled by a and b (represented by red circles in
Fig. 1(a)), and the line junction linking the two vertices],
are in oppositely polarized spin states (labeled ↑;↓)

collinear with the external field (along the z axis). The
two edge channels are expected to undergo very little
equilibration outside the injection region [12], so that they
can be independently biased by the reservoirs from which
they originate, i.e., Vσ .
Figure 1(b) shows a cut across the bold red line in

Fig. 1(a) viewed from the side along the y direction.
Because of an applied field B normal to the graphene
plane and antiferromagnetic correlations induced by elec-
tron interactions, spins SA on sublattice A and SB on
sublattice B in the CAF state lie nearly antiparallel within
the graphene plane with a slight canting out of the plane by
an angle determined by the ratio between the valley isospin
anisotropy and Zeeman energy scales [8]. As shown in
Fig. 1(b), the spin quantization axes of the edge states along
the line junction may deviate away from the "z directions
due to the effective field created by the neighboring CAF.
We label these canted spin states by ⇑ and ⇓.
When V↑ > V↓, interchannel scattering may occur

inside the injection region, entailing redistributed charge
currents I↑ and I↓ emanating from the region and a net loss
of spin (polarized along the z axis) inside the region.
Neglecting any external sources of spin loss in the injection
region (e.g., spin-orbit coupling, magnetic impurities, etc.),
the net spin lost in the edge should be absorbed by the CAF,
leading to the injection of spin current (hereafter always
defined to be the component polarized along the z axis) into
the CAF. This will induce the CAF into a dynamic steady
state, in which the local Néel vector in the CAF rotates
about the z axis with a global frequency Ω (see Fig. 2) [10].
The dynamic Néel texture will, in turn, pump spin current
[13] out into the edge channels in the detection region,
resulting in the transport of spin from the injection to the
detection side [the detection region, involving vertices a0

and b0, is shaded in blue in Fig. 1(a)]. We initially leave the
two detection channels unbiased, i.e., V 0

↑ ¼ V0
↓ such that

the spin current entering the detection region is zero.
However, the injection of spin current from the CAF into

(a)

(b)

FIG. 1. Proposed setup for realizing and detecting superfluid
spin transport through the ν ¼ 0 QH state of graphene. (a) Top
view of the graphene Hall bar. The yellow regions are top gates
and the gray regions denote Ohmic contacts held at their
respective voltages. Two independently biased spin-polarized
edge channels on opposite sides of the ν ¼ 0 region are used to
inject and detect spin current flowing through the CAF. The spin
states of the ν ¼ −2 edge channels are polarized collinearly to the
z axis outside of the injection and detection regions. (b) A cartoon
energy diagram at a ν ¼ 0 to ν ¼ −2 transition region (across the
bold red line). The spin axes are viewed from the side along the y
direction. In the ν ¼ −2 region, the energies of the two spin
states, oppositely polarized along the z axis, are drawn; the
Zeeman effect gives an energetic advantage to the spin-down
state. In the ν ¼ 0 region, the two occupied branches of the CAF
spectrum are shown. There, an external field in the positive z
direction results in a ferromagnetic canting of spins in the
negative z direction inside the antiferromagnet. Spin orientations
of the chiral edge modes are intermediate between the up and
down spin eigenstates within the ν ¼ −2 region (left side) and the
canted spins within the CAF (right side). The black lines are
merely a rough guide for the energies of the spin states in the
transition region. The above illustration does not contain two
other branches of the spectrum that are a part of the zeroth Landau
level but not essential for the edge physics in the transition region.

FIG. 2. A cartoon of the CAF in a dynamic superfluid state. The
Néel vector rotates within the graphene plane about the z axis
with a global precession frequency Ω. The static contribution to
spin current Īs ∝ V− ¼ V↑ − V↓ is injected into the CAF while
the dynamic (spin-pumping) contribution is ∝ Ω pumps spin
current back out into the edge. Two analogous contributions exist
on the detection side.
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A possible application
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Detrimental role of (inevitable) anisotropies
A minimal bias is required to overcome pinning by an anisotropy 
within the easy plane

Beyond this (lower) critical bias, the uniform magnetic state is 
unstable against nucleation and propagation of domain walls

At a large enough bias, the train of domain walls coalesce into a 
helical superfluid

For the minimal current to be less than the critical supercurrent, 
the easy-plane anisotropy needs to exceed parasitic anisotropies
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“Type II” boson condensates
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This paper deals vrith ordinary material systems whose elementary constituents are fermions. It is pointed out that
in such systems there can occur two kinds of bosons with quite diferent physical and mathematical characteristics.
Type I bosons are bound complexes of an even number of fermions (such as 'He); and type II bosons are elementary
excitations which are bound complexes of fermions and their holes (such as excitons). When the 6rst type condenses,
a superQuid state results with so-called off-diagonal, long-range order; while when the second type condenses, there is
no super6uidity, but a change in spatial order. Thus both kinds of long-range order are related to Bose condensation.

CONTENTS
1

o. Introduction. o ~ ~ ~ ~ ~ a o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

2. Bosons of Type I. . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . .
3. Bosons of Type II.~. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Condensed States of Type I.. . . . . . . . . . . . . . . . . . . . . . . .
5. Condensed States of Type II. . . . . . . . . . . . . . . . . . . . . . . .
6. Necessary and SufBcient Condition for SuperQuidity. . . .
tp'. Concluding Remarks. . . ~. . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix I. Momentum Properties of the Two Kinds
0f Bosons o ~ ~ a a ~ ~ ~ ~ a ~ ~ o ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ o o ~ a ~ ~ o o ~ ~ ~ ~ ~ ~ ~

Appendix II. Lattice Distortion as Bose Condensation of
honons. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. .. . . .. . . .P
References. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. .. .. . . .

1. INTRODUCTION
Bose condensation is one of the most striking phe-

nomena exhibited by macroscopic systems. The con-
densation of a macroscopic fraction of the particles of
an ideal Bose—Einstein gas into the lowest-energy
single-particle state at suKciently low temperatures
was erst predicted theoretically by Einstein in 1924.
By considering 'He atoms as bosons, London (1938)
showed that the condensed Bose gas provided a model
for the explanation of the remarkable superQuid proper-
ties of helium (II). The work of London and the
pioneering paper of Bogoliubov (1947) on a microscopic
model of a weakly interacting Bose gas, in which again a
single momentum state is macroscopically occupied at
low temperature, have laid the basis for much of our
present theoretical knowledge about liquid helium. f
Penrose and Onsager (Penrose, 1951; Penrose and
Onsager, 1956) generalized the concept of Bose con-

*Supported in part by the U. S. Once of Naval Research and
the National Science Foundation.
[For more recent work on helium II the reader is referred

to articles in the book Quantum Ptuids, D. F. Brewer, Ed. (1966)
and to I.M. Khalatnikov (1965), Theory of SNpergltCity

densation to apply also to strongly interacting Bose
systems. They characterized the Bose condensed state
by the following form of the one-particle density matrix:

p(r, r') =x (r)}r(r')+g(r, r'),
where g(r, r')—4 as I r—r' I

~co and
J'

I x(r) I'«
is a macroscopic number. This Bose condensation gives
rise to superQuidity in helium II.
In real material systems the basic constituent

particles are fermions, but often there exist complexes
of even numbers of fermions and/or fermion holes
which obey Bose-Einstein statistics at least in an
approximate sense. The present paper is concerned with
such composite bosons and related Bose-condensed
states. *
Helium 4 is the most familiar example of a system of

composite bosons and, below the condensation tem-
perature, is a superfluid. Superconductors cannot quite
so easily be regarded from this point of view since, above
the condensation temperature, there exist no welloa

dined composite bosons. Nevertheless, as has been
shown by Yang (1962), below the superconducting
transition temperature, the two-particle density matrix
has a form analagous to Eq. (1.1), so that the super-
conducting state can also be naturally considered as a
Bose-condensed state. (Schafroth, 1954; Schafroth,
1955;Bardeen, Cooper, and Schrieffer, 1957).$ Qualita-
*All particles will be considered in the nonrelativistic limit.
1' For more discussion of metallic superconductivity the reader

is referred to the standard texts; for example:'J. R. Schrie8er
(1964), Theory of SNpercomdlctioity; J.M. Blatt (1964), Theory of
SNpercondkctieity; G. Rickayzen (1965), Theory of SNpercoe
decHoity.
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Thermally-assisted “superfluid”
The spin accumulation biases chirality     dependent thermal 
injection of domain walls:

Chiral domain walls carry this information diffusively along the 
length of the magnetic wire, re-emitting the spin current by spin 
pumping:

Kim, Takei, and YT, PRB (2015)

Topological Spin Transport by Brownian Di↵usion of Domain Walls

Se Kwon Kim, So Takei, and Yaroslav Tserkovnyak
Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

(Dated: October 1, 2015)

We propose thermally-populated domain walls (DWs) in an easy-plane ferromagnetic insulator as
robust spin carriers between two metals. The chirality of a DW, which serves as a topological charge,
couples to the metal spin accumulation via spin-transfer torque and results in the chirality-dependent
thermal nucleation rates of DWs at the interface. After overpopulated DWs of a particular (net)
chirality di↵use and leave the ferromagnet at the other interface, they reemit the spin current by spin
pumping. The conservation of the topological charge supports an algebraic decay of spin transport
as the length of the ferromagnet increases; this is analogous to the decaying behavior of superfluid
spin transport but contrasts with the exponential decay of magnon spin transport. We envision that
similar spin transport with algebraic decay may be implemented in materials with exotic spin phases,
such as spin ices, by exploiting topological characteristics and the associated conserved quantities
of their excitations, as in the case of, e.g., spin-ice monopoles.

PACS numbers: 75.76.+j, 75.78.-n, 66.30.Lw, 75.10.Hk

Introduction.—Spintronics, or spin-transport electron-
ics, exploits spin degrees of freedom in condensed mat-
ter systems to improve information processing technology
that is traditionally based on electric charge [1]. Con-
ducting materials have been used to transport spin by
polarizing the itinerant electrons, which is, however, as-
sociated with undesired energy dissipation due to the
electronic continuum. Magnetic insulators, which are
immune to Joule heating, provide alternative platforms
to seek an e�cient spin transport channel. Superfluid
spin transport [2–4] has been proposed for long-ranged
spin transmission in magnetic insulators with easy-plane
anisotropy. The spin superfluidity, however, can be de-
stroyed by additional anisotropies, which breaks the U(1)
symmetry within the easy plane.

Topological solitons in magnetic materials are non-
linear excitations that are protected by their nontriv-
ial topology [5]. A domain wall (DW) in an easy-axis
magnet is a prototypical topological soliton, which can
store and deliver information as demonstrated in the
racetrack memory [6]. DWs can be driven by various
means, e.g., an external magnetic field [7], an electric
current (in conducting systems) [8], or heat flux [9, 10].
At a finite temperature, DWs with damped dynamics un-
dergo Brownian motion due to a random force dictated
by the fluctuation-dissipation theorem [11–14]; under a
temperature gradient, Brownian motion leads to a di↵u-
sive transport (thermophoresis) of DWs [15].

In this Letter, we show that superfluid-like spin trans-
port can be achieved by utilizing thermally-populated
DWs in an easy-plane ferromagnetic insulator with an ad-
ditional easy-axis anisotropy within the easy plane. Long
thin ferromagnetic strips, for example, are endowed with
such anisotropies due to its shape by dipolar interaction
[7, 16]. See Fig. 1 for illustration. A DW is characterized
by its chirality q = ±1, associated with the sense of cir-
culation of the magnetization within the easy plane [5].
The chirality of a DW is protected in the XY ferromag-

ferromagnetic insulatorleft metal
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⦿

right metal

⦿
⦿
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DW transport
by diffusion

DW injection
via spin transfer torque

Spin current injection
via spin pumping

µ

J

s

FIG. 1. (color online). An easy-xy-plane ferromagnetic in-
sulator with an additional easy-axis anisotropy in the x di-
rection is sandwiched between two metals. The spin-transfer
torque caused by the out-of-equilibrium spin accumulation
µ in the positive z direction prefers injection of DWs with
the clockwise-rotating magnetization. The annihilation of
these DWs generates the spin current into the right metal
via spin pumping. In the di↵usive limit of DW motion, the
spin current decays algebraically as the ferromagnet’s length
increases.

net by topology, and we thus refer to it as the topological
“charge.” Suppose the ferromagnet is driven out of equi-
librium by the spin accumulation in the positive z direc-
tion in the left metal. The induced spin-transfer torque
nucleates DWs with the clockwise-rotating magnetiza-
tion. When these DWs leave the ferromagnet toward the
right metal, the magnetization at the interface rotates
counterclockwise, which generates the spin current into
the metal via spin pumping. In the di↵usive regime of
DW motion, the probability that a nucleated DW leaves
the ferromagnet through the right interface rather than
the left interface decays algebraically as a function of fer-
romagnet’s length [17]. The spin current transported by
DWs, therefore, decays algebraically as in superfluid spin
transport [3]. The spin transport by di↵usive motion of
DWs can be inferred by measuring the drag coe�cient
in a magnetoelectric circuit that was proposed in Ref. [3]
for detecting superfluid spin transport.
Main results.—The model system consists of a quasi

chirality-dependent work:

spin emission:

q
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Z
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Z
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Spin texture book-keeping
Four types of domain walls:

Thermally-activated (topologically trivial) texture of zero net charge 
vs positively or negatively charged textures:
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FIG. 2. (color online). (a), (b) The DWs with the topological
charge q = 1. (c), (d) The walls with q = �1.

one-dimensional easy-xy-plane ferromagnetic insulator
with an additional easy-x-axis anisotropy attached on
both sides by nonmagnetic metals. In equilibrium, the
anisotropy lays the local spin density s ⌘ sn in the xy

plane, which allows us to parametrize its direction as
n = (cos �, sin �, 0). A DW is a topologically stable equi-
librium texture that interpolates the two uniform ground
states, � ⌘ 0 or ⇡. Its associated winding is characterized
by the topological charge:

q ⌘ � 1

⇡

Z
dx @

x

� , (1)

where the integral is over the DW along the longitudi-
nal x axis of the ferromagnet. Figure 2 illustrates four
possible DW types.

A finite temperature causes spontaneous nucleation
and annihilation of DWs. In the bulk, DWs are created
and destroyed always in pairs with opposite charges as
shown in Fig. 3(a) [18]. The topological charge density,
⇢ ⌘ ⇢

+ � ⇢

� is, thus, preserved in the bulk [Fig. 3(b)
and (c)], where ⇢

± are the linear densities of DWs with
q = ±1, respectively. A topological charge can be
injected or ejected through the boundaries of the fer-
romagnet. In equilibrium, the DW density is charge-
independent; ⇢

± ! ⇢0 / exp(�E0/T ), where E0 is the
DW energy.

A DW should generally behave as a particle immersed
in a viscous medium due to its coupling to, e.g., lattice vi-
brations [13] or other microscopic degrees of freedom. As
such, it must exhibit Brownian motion at a finite temper-
ature due to random forces, whose existence is dictated
by the fluctuation-dissipation theorem [11]. For a con-
glomerate of DWs that di↵use by Brownian motion, the
dynamics of the topological charge density is described
by the Fokker-Planck equation [15]:
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⇢ + @
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I = 0, I ⌘ �D@

x

⇢ , (2)

in the absence of an external force, where I is the topo-
logical charge current. In equilibrium, the density and
the current of the topological charge are zero; ⇢ = 0 = I

according to the reflection symmetry in the xz plane and
the time reversal symmetry.

The topological charge density can be injected by per-
turbing the ferromagnet by the nonequilibrium z axis

(a)

(b)

(c)
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FIG. 3. (color online). Schematic for the conservation of the
total topological charge. (a) A pair of DWs with opposite
charges, so that the direction of the magnetization does not
wind the circle as shown in the right. The magnetization tex-
ture, therefore, can be continuously deformed to the uniform
state, i.e., it is topologically trivial, which means that this
configuration can be created or destroyed spontaneously. (b),
(c) A pair of DWs with the same charge. The direction of the
magnetization winds around the circle once, which makes the
textured configuration topologically stable from thermal an-
nihilation. The total topological charge, i.e., the net winding
number, is conserved during interactions between DWs.

spin accumulation in the left metal, µ ⌘ µẑ, which
we assume positive, µ > 0, for concreteness. The
spin-transfer torque caused by the spin accumulation is
⌧ = (g0

L

+g

L

n⇥)(µ⇥n)/4⇡, where g

"#
i

⌘ g

i

+ıg

0
i

is the ef-
fective complex spin mixing conductance associated with
the ferromagnet/metal-i interface [19]. The torque does
work on the ferromagnet favoring the nucleation of DWs
with the positive charge: W

q = qg

L

µS/4, where q is
the charge of the wall and S is the cross-sectional area
of the ferromagnet. The resultant nucleation rate of the
topological charge is �

L

�W/T to linear order in the bias,
where �

L

is the equilibrium-nucleation rate of DWs at
the left interface and �W ⌘ W

+ � W

� = g

L

µS/2 is the
di↵erence between the two works.

The injected topological charges di↵use by Brownian
motion and can leave the ferromagnet through the right
boundary. The conservation of the topological charge
leads to the steady-state current (as derived below):

I =
g

L

µ
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, (3)

where
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⇢0DS
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and L is the length of the ferromagnet. We may in-
terpret the topological charge current I as the applied
“voltage” g

L

µ (with units of J/m2) divided by the total
“resistance” R

L

+ R

R

+ R

B

(with units of J · s/m2) of
the series circuit, which is made of the interface resis-
tances, R

L

and R

R

, and the bulk resistance R

B

. Note
that the bulk resistance R

B

is proportional to the ratio
of the length to the cross-sectional area, L/S, which is
analogous to the electrical resistance.
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FIG. 2. (color online). (a), (b) The DWs with the topological
charge q = 1. (c), (d) The walls with q = �1.
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with an additional easy-x-axis anisotropy attached on
both sides by nonmagnetic metals. In equilibrium, the
anisotropy lays the local spin density s ⌘ sn in the xy

plane, which allows us to parametrize its direction as
n = (cos �, sin �, 0). A DW is a topologically stable equi-
librium texture that interpolates the two uniform ground
states, � ⌘ 0 or ⇡. Its associated winding is characterized
by the topological charge:
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where the integral is over the DW along the longitudi-
nal x axis of the ferromagnet. Figure 2 illustrates four
possible DW types.

A finite temperature causes spontaneous nucleation
and annihilation of DWs. In the bulk, DWs are created
and destroyed always in pairs with opposite charges as
shown in Fig. 3(a) [18]. The topological charge density,
⇢ ⌘ ⇢

+ � ⇢

� is, thus, preserved in the bulk [Fig. 3(b)
and (c)], where ⇢

± are the linear densities of DWs with
q = ±1, respectively. A topological charge can be
injected or ejected through the boundaries of the fer-
romagnet. In equilibrium, the DW density is charge-
independent; ⇢

± ! ⇢0 / exp(�E0/T ), where E0 is the
DW energy.

A DW should generally behave as a particle immersed
in a viscous medium due to its coupling to, e.g., lattice vi-
brations [13] or other microscopic degrees of freedom. As
such, it must exhibit Brownian motion at a finite temper-
ature due to random forces, whose existence is dictated
by the fluctuation-dissipation theorem [11]. For a con-
glomerate of DWs that di↵use by Brownian motion, the
dynamics of the topological charge density is described
by the Fokker-Planck equation [15]:
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in the absence of an external force, where I is the topo-
logical charge current. In equilibrium, the density and
the current of the topological charge are zero; ⇢ = 0 = I

according to the reflection symmetry in the xz plane and
the time reversal symmetry.

The topological charge density can be injected by per-
turbing the ferromagnet by the nonequilibrium z axis
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FIG. 3. (color online). Schematic for the conservation of the
total topological charge. (a) A pair of DWs with opposite
charges, so that the direction of the magnetization does not
wind the circle as shown in the right. The magnetization tex-
ture, therefore, can be continuously deformed to the uniform
state, i.e., it is topologically trivial, which means that this
configuration can be created or destroyed spontaneously. (b),
(c) A pair of DWs with the same charge. The direction of the
magnetization winds around the circle once, which makes the
textured configuration topologically stable from thermal an-
nihilation. The total topological charge, i.e., the net winding
number, is conserved during interactions between DWs.

spin accumulation in the left metal, µ ⌘ µẑ, which
we assume positive, µ > 0, for concreteness. The
spin-transfer torque caused by the spin accumulation is
⌧ = (g0
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is the ef-
fective complex spin mixing conductance associated with
the ferromagnet/metal-i interface [19]. The torque does
work on the ferromagnet favoring the nucleation of DWs
with the positive charge: W

q = qg

L

µS/4, where q is
the charge of the wall and S is the cross-sectional area
of the ferromagnet. The resultant nucleation rate of the
topological charge is �

L

�W/T to linear order in the bias,
where �

L

is the equilibrium-nucleation rate of DWs at
the left interface and �W ⌘ W
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� = g

L

µS/2 is the
di↵erence between the two works.

The injected topological charges di↵use by Brownian
motion and can leave the ferromagnet through the right
boundary. The conservation of the topological charge
leads to the steady-state current (as derived below):
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and L is the length of the ferromagnet. We may in-
terpret the topological charge current I as the applied
“voltage” g

L

µ (with units of J/m2) divided by the total
“resistance” R
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(with units of J · s/m2) of
the series circuit, which is made of the interface resis-
tances, R

L

and R
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, and the bulk resistance R
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. Note
that the bulk resistance R

B

is proportional to the ratio
of the length to the cross-sectional area, L/S, which is
analogous to the electrical resistance.



Diffusive transport theory
Total topological charge:

Continuity relation:

Boundary conditions (chirality-dependent injection rate):

q ⌘ � 1

⇡

Z
dx @

x

�

@
t

⇢+ @
x

I = 0 , I = �D@
x

⇢

derived by solving stochastic Landau-Lifshitz-Gilbert equation

Kim, Takei, and YT, PRB (2015)

subject to the following chirality-dependent work W = ±⇡g"#µs
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(Thermally-activated) DC electron drag

Thermally-activated domain walls coalesce and we recover the 
intrinsic result when 

D0 ⇠ 0.1 - drag in a perfect U(1) superfluid

- domain-wall energy due to parasitic anisotropyE0 = S
p
A

T ⇠ E0

Kim, Takei, and YT, PRB (2015)



High-temperature regime: phase slips
Out-of-plane excursions cause magnetic phase slips, unwinding the 
topological charge, which could be detected as a voltage in the 
following circuit:

Detrimental to the superfluid as it unwinds the helical texture

3

k̄µ < kµ (for positive µ), meaning that there always exists
the unique saddle point between two nearest metastable
states. See Fig. 1(d) for an illustration.
The rate of transitions, respectively increasing or de-

creasing spin-current magnitude, may be written in the
form

�± = ⌦e��F±/T , (5)

where temperature is measured in energy units so that
kB = 1. Here, �F± ⌘ F0 ·�f± is the free-energy barrier
to reach the intermediate saddle point, and ⌦ is the pref-
actor that depend on details of spin fluctuations around
the extrema [16]. Specifically, for the transitions between
the two metastable states [Eq. (3)] with kµ and kµ�1 via
the saddle point [Eq. (4)] with k̄ = k̄µ > 0, the free-
energy barriers can be directly obtained by evaluating
the di↵erences in the free energy f [Eq. (1)]:

�f�(k̄) = 2
p

1� k̄2 � 2k̄ tan�1[
p
1� k̄2/k̄] , (6a)

�f+(k̄) = �f�(k̄) + 2⇡k̄ . (6b)

Since �f�  �f+, fluctuations tend, on average, to re-
duce the spin-current magnitude and thus give rise to
equilibriation. In the limit of zero current, k̄ ! 0, the
free-energy barrier is �F ⌘ 2F0 = 2S⇠K, which roughly
represents the energy cost due to the out-of-easy-plane
component of the order parameter in the phase slip re-
gion localized within the magnetic coherence length ⇠.
Our second main result, which is derived in the sup-

plemental material [17], is the analytical expression of
the prefactor ⌦ for ferromagnets in the zero spin-current
limit:

⌦(T ) =
1

⇡
p
2⇡

↵K

(1 + ↵2)s

L

⇠

r
�F

T
, (7)

which is analogous to the result for the superconduct-
ing wire in the LAMH theory [5], where ↵ is the Gilbert
damping constant and s is the local spin angular mo-
mentum density. Here, ↵K/(1 + ↵2)s is the inverse of
the relaxation time for the perturbed uniform easy-plane
ferromagnet to return to the equilibrium state; L/⇠ rep-
resents the number of possible independent phase-slip lo-
cations;

p
�F/T stems from the breaking of the transla-

tional invariance of the system by the saddle point [18].
The prefactor for antiferromagnets on bipartite lattice
can be obtained by replacing ↵K/(1 + ↵2)s with K/↵s
for overdamped dynamics [19], where s is the local spin
angular-momentum density per each sublattice.
Decay of persistent spin current.—The persistent spin

current in a closed ring will decay via TAPS at a fi-
nite temperature. From Eq. (5), the winding number
µ = ��/2⇡, which characterizes metastable states, de-
cays with the rate

�+ � �� = �4⇡2(⇠F0/LT )⌦(T )e
�2F0/Tµ , (8a)

⌘ �(T )µ (8b)

magnetic wiremetal

x
z

y

⦿

⦿
⦿
⦿

metal

⊗ �

⊗
⊗

�

(a)

V

(b)

: n(t2) = 0

: n(t1) = �1

: n(t3) = �1

FIG. 2. (color online) (a) Schematics of an experimental setup
for detecting TAPS, in which two identical metals, parallel in
the electric circuit, are connected by a magnetic insulator sup-
porting superfluid spin transport. (b) Schematics illustrating
the origin of an electromotive force in the metals. TAPS un-
wind the equilibrium spiraling structure (at t = t1), resulting
in the uniform state (at t = t2). As the magnet returns to the
equilibrium spiraling structure, the magnetization at the left
(right) interface rotates counterclockwise (clockwise), which
in turn induces a detectable electromotive force in the metals.

to linear order in the winding number µ [20]. The
spatially-averaged spin current Is ⌘ 2⇡µAS/L decays
with the rate (T )Is. Note that (T ) is independent of
the length of the wire since ⌦(T ) / L.
The dissipation of the spin current dictates the pres-

ence of the e↵ective random force on the spin current to
meet the fluctuation-dissipation theorem [21]. The resul-
tant stochastic dynamics of the spin current is described
by

İs(t) = �(T )Is(t) + ⌫(t), (9)

where the white-noise Langevin term ⌫(t) with the cor-
relator h⌫(t)⌫(t0)i = 2(AS/L)(T )T �(t � t0) is intro-
duced to yield the thermal variance of the spin current,
hI2s i = (AS/L)T , which we obtain from the thermal ex-
pectation value of the free energy.
Discussion.—TAPS in superfluid spin transport can be

detected in an experimental setup proposed in Ref. [11],
in which two identical metals connected parallel in the
external electric circuit are linked by a thin easy-plane
magnetic insulating wire (see Fig. 2). In the presence of
spin-orbit coupling at metal|magnet interface, current in
the metal gives rise to a torque in the magnet, and, as an
Onsager reciprocal e↵ect, dynamics of magnetic moments
induces an electromotive force in the metal [22].
At zero temperature, this configuration supports static

spiraling structure of the magnetization [11], with the left
metal injecting and the right metal draining spin current
[see Fig. 2(a)]. The associated electromotive force is ab-
sent, and the e↵ective resistivity of the circuit, therefore,
is not a↵ected by spin superfluid. At a finite temperature,
however, TAPS unwind the spiraling structure stochas-
tically with the net rate of (T )µ(t), where µ(t) is the
winding number at fixed time t. As the magnetization
rewinds to the equilibrium spiraling structure, the mag-
netic moment at the left (right) interface rotates coun-
terclockwise (clockwise), which induces an electromotive

Kim, Takei, and YT, PRB (2016)
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FIG. 1. (color online) (a)-(c) Extrema of the free energy f

[Eq. (1)] for an easy-xy-plane magnetic wire with periodic
boundary conditions. The metastable state (a) that winds
in the easy plane once will decay to the ground state (c) via
TAPS passing over the saddle point (b), where a few spins
localized within the magnetic coherence length develop sig-
nificant out-of-easy-plane components. (d) A plot of the free
energy f as a function of spin current k (metastable states)
and k̄ (saddle points) for the wire length l = 48. A solid line
is a guide to the eye. A dashed line shows the free energy of
the metastable states for an infinitely long wire: f = k

2
l/2.

Points corresponding to the three configurations, (a)-(c), are
denoted accordingly. A dotted line illustrates transitions be-
tween nearby metastable states (a) and (c).

energy:

f [✓,�] ⌘
Z l/2

�l/2
dx[✓02 + sin2 ✓�02 + cos2 ✓]/2 (1)

measured in units of F0 ⌘ S⇠K (which is the maximum
anisotropy energy that can be stored within the coher-
ence length), where the position variable x is measured
in units of ⇠ and runs over the wire length l ⌘ L/⇠.

Extrema of the free energy are solutions of the time-
independent Landau-Lifshitz equation:

�f/�✓ = �✓00 + sin ✓ cos ✓�02 � sin ✓ cos ✓ = 0 , (2a)

�f/�� = �(sin2 ✓�0)0 = 0 . (2b)

The second equation is the consequence of the invariance
of the free energy under spin rotations about the z axis.
For static configurations, the associated conservation law
describes spatial independence of the z-component of the
spin current, Is ⌘ �AS sin2 ✓�0, so that the dimension-
less constant parameter k ⌘ �Is⇠/AS can be used to

index solutions of Eqs. (2). There are two types of solu-
tions of interest to us. The first is a local minimum of
the free energy:

✓(x) = ⇡/2 , �(x) = �0 + kx (|k| < 1) , (3)

with �0 an arbitrary reference angle. There is a crit-
ical current, |k| = 1, for stable superfluid spin trans-
port according to the Landau criterion [7, 8, 13], above
which spin fluctuations destabilize superfluidity. When
the wire is long enough l � 1 (which is assumed hence-
forth), actual boundary conditions at the ends of the
wire are not important. Imposing periodic boundary
conditions on the order parameter, n(x = �l/2) =
n(x = l/2), quantizes the total azimuthal-angle change:
�� ⌘ �(l/2) � �(�l/2) = 2⇡µ, in terms of integer µ.
The allowed values of k are thus kµ = 2⇡µ/l. Figures 1(a)
and 1(c) show the free-energy minima with winding num-
bers µ = 1 and µ = 0, respectively.
At zero temperature, thermal spin fluctuations are

frozen out. Persistent spin current in a closed magnetic
ring, therefore, can be sustained indefinitely, when dis-
regarding quantum spin fluctuations [14]. Finite tem-
perature, however, agitates spins and opens transition
channels between the metastable states carrying di↵er-
ent spin current [see a dotted line in Fig. 1(d)]. The
total azimuthal-angle change �� = 2⇡µ is quantized and
well defined provided that the order parameter n avoids
the poles, |nz| = 1, where the azimuthal angle � is am-
biguous. In continuous transitions between two minima
with di↵erent winding numbers, µ 6= µ0, the order param-
eter must hit one of the poles; this is analogous to the
vanishing of the superconducting order parameter during
TAPS [3]. Supposing T ⌧ F0, the transitions between
metastable states are rare, which we assume throughout.

The most probable path of the order parameter during
the transition between two metastable states will pass
over the intervening saddle point of the free energy [2, 5],
which is the second kind of solution of Eq. (2) that we
obtain with spatially varying ✓̄(x) [15]:

✓̄(x) = cos�1
hp

1� k̄2 sech(
p
1� k̄2x)

i
, (4a)

�̄(x) = �0 + k̄x+ tan�1

"p
1� k̄2 tanh(

p
1� k̄2x)

k̄

#
,

(4b)

indexed by spin current k̄, and any spatial translation
thereof. This exact saddle-point solution constitutes our
first main result. Periodic boundary conditions on n dis-
cretize allowed values of k̄: �� = k̄µl + 2 tan�1[(1 �
k̄2µ)

1/2/k̄µ] = 2⇡µ, where the quantities exponentially
small for large l are ignored here and hereafter. Fig-
ure 1(b) depicts the saddle-point solution with µ = 1,
which mediates the transition between two minima with
µ = 1 and µ = 0. The spin currents of the metastable
states and the saddle-point solutions interlace: kµ�1 <

T . S
p
A ⌧ S

p
AK

xy



Quantum phase slips (antiferromagnets)
The same (negative) magnetoresistance geometry can be used to 
extract the quantum phase slip rate:

The effective action for a gas of QPS’s in the presence of a spin 
superflow:

3

k̄µ < kµ (for positive µ), meaning that there always exists
the unique saddle point between two nearest metastable
states. See Fig. 1(d) for an illustration.
The rate of transitions, respectively increasing or de-

creasing spin-current magnitude, may be written in the
form

�± = ⌦e��F±/T , (5)

where temperature is measured in energy units so that
kB = 1. Here, �F± ⌘ F0 ·�f± is the free-energy barrier
to reach the intermediate saddle point, and ⌦ is the pref-
actor that depend on details of spin fluctuations around
the extrema [16]. Specifically, for the transitions between
the two metastable states [Eq. (3)] with kµ and kµ�1 via
the saddle point [Eq. (4)] with k̄ = k̄µ > 0, the free-
energy barriers can be directly obtained by evaluating
the di↵erences in the free energy f [Eq. (1)]:

�f�(k̄) = 2
p

1� k̄2 � 2k̄ tan�1[
p
1� k̄2/k̄] , (6a)

�f+(k̄) = �f�(k̄) + 2⇡k̄ . (6b)

Since �f�  �f+, fluctuations tend, on average, to re-
duce the spin-current magnitude and thus give rise to
equilibriation. In the limit of zero current, k̄ ! 0, the
free-energy barrier is �F ⌘ 2F0 = 2S⇠K, which roughly
represents the energy cost due to the out-of-easy-plane
component of the order parameter in the phase slip re-
gion localized within the magnetic coherence length ⇠.
Our second main result, which is derived in the sup-

plemental material [17], is the analytical expression of
the prefactor ⌦ for ferromagnets in the zero spin-current
limit:

⌦(T ) =
1

⇡
p
2⇡

↵K

(1 + ↵2)s

L

⇠

r
�F

T
, (7)

which is analogous to the result for the superconduct-
ing wire in the LAMH theory [5], where ↵ is the Gilbert
damping constant and s is the local spin angular mo-
mentum density. Here, ↵K/(1 + ↵2)s is the inverse of
the relaxation time for the perturbed uniform easy-plane
ferromagnet to return to the equilibrium state; L/⇠ rep-
resents the number of possible independent phase-slip lo-
cations;

p
�F/T stems from the breaking of the transla-

tional invariance of the system by the saddle point [18].
The prefactor for antiferromagnets on bipartite lattice
can be obtained by replacing ↵K/(1 + ↵2)s with K/↵s
for overdamped dynamics [19], where s is the local spin
angular-momentum density per each sublattice.
Decay of persistent spin current.—The persistent spin

current in a closed ring will decay via TAPS at a fi-
nite temperature. From Eq. (5), the winding number
µ = ��/2⇡, which characterizes metastable states, de-
cays with the rate

�+ � �� = �4⇡2(⇠F0/LT )⌦(T )e
�2F0/Tµ , (8a)

⌘ �(T )µ (8b)
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FIG. 2. (color online) (a) Schematics of an experimental setup
for detecting TAPS, in which two identical metals, parallel in
the electric circuit, are connected by a magnetic insulator sup-
porting superfluid spin transport. (b) Schematics illustrating
the origin of an electromotive force in the metals. TAPS un-
wind the equilibrium spiraling structure (at t = t1), resulting
in the uniform state (at t = t2). As the magnet returns to the
equilibrium spiraling structure, the magnetization at the left
(right) interface rotates counterclockwise (clockwise), which
in turn induces a detectable electromotive force in the metals.

to linear order in the winding number µ [20]. The
spatially-averaged spin current Is ⌘ 2⇡µAS/L decays
with the rate (T )Is. Note that (T ) is independent of
the length of the wire since ⌦(T ) / L.
The dissipation of the spin current dictates the pres-

ence of the e↵ective random force on the spin current to
meet the fluctuation-dissipation theorem [21]. The resul-
tant stochastic dynamics of the spin current is described
by

İs(t) = �(T )Is(t) + ⌫(t), (9)

where the white-noise Langevin term ⌫(t) with the cor-
relator h⌫(t)⌫(t0)i = 2(AS/L)(T )T �(t � t0) is intro-
duced to yield the thermal variance of the spin current,
hI2s i = (AS/L)T , which we obtain from the thermal ex-
pectation value of the free energy.
Discussion.—TAPS in superfluid spin transport can be

detected in an experimental setup proposed in Ref. [11],
in which two identical metals connected parallel in the
external electric circuit are linked by a thin easy-plane
magnetic insulating wire (see Fig. 2). In the presence of
spin-orbit coupling at metal|magnet interface, current in
the metal gives rise to a torque in the magnet, and, as an
Onsager reciprocal e↵ect, dynamics of magnetic moments
induces an electromotive force in the metal [22].
At zero temperature, this configuration supports static

spiraling structure of the magnetization [11], with the left
metal injecting and the right metal draining spin current
[see Fig. 2(a)]. The associated electromotive force is ab-
sent, and the e↵ective resistivity of the circuit, therefore,
is not a↵ected by spin superfluid. At a finite temperature,
however, TAPS unwind the spiraling structure stochas-
tically with the net rate of (T )µ(t), where µ(t) is the
winding number at fixed time t. As the magnetization
rewinds to the equilibrium spiraling structure, the mag-
netic moment at the left (right) interface rotates coun-
terclockwise (clockwise), which induces an electromotive
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Topological Effects on Quantum Phase Slips in Superfluid Spin Transport
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We theoretically investigate effects of quantum fluctuations on superfluid spin transport through easy-
plane quantum antiferromagnetic spin chains in the large-spin limit. Quantum fluctuations result in the
decaying spin supercurrent by unwinding the magnetic order parameter within the easy plane, which is
referred to as phase slips. We show that the topological term in the nonlinear sigma model for the spin
chains qualitatively differentiates the decaying rate of the spin supercurrent between the integer versus
half-odd-integer spin chains. An experimental setup for a magnetoelectric circuit is proposed, in which
the dependence of the decaying rate on constituent spins can be verified by measuring the nonlocal
magnetoresistance.

DOI: 10.1103/PhysRevLett.116.127201

Introduction.—One-dimensional quantum magnetism
has been a natural hotbed to seek and study exotic states
that defy classical descriptions [1,2]. A prototypical exam-
ple showing the importance of quantum effects is provided
by Heisenberg antiferromagnetic spin chains. For isotropic
spin-s chains, Haldane suggested in 1983 [3] that integer-s
chains have disordered ground states with gapped excita-
tions unlike half-odd-integer-s chains, which have gapless
excitations [4]. The existence of the gap has been exper-
imentally confirmed for s ¼ 1 [5].

By considering anisotropic antiferromagnetic spin chains
in the large-s limit, Affleck [6] was able to attribute this
distinction between integer and half-odd-integer spin chains
to the topological term in the O(3) nonlinear sigma model
that describes the dynamics of the local Néel order parameter
[3,7,8]. For sufficiently large s, easy-plane spin-s chains are
in the gapless XY phase, where order-destroying excitations
are vortices of the order parameter in the two-dimensional
Euclidean spacetime. It is the Skyrmion charge Q of a
vortex, quantifying how many times the order parameter
wraps the unit sphere, that serves as the topological charge in
the nonlinear sigma model. Figure 1 illustrates vortices with
minimum nonzero Skyrmion charges Q ¼ "1=2, which are
often referred to as merons [9]. Only for half-odd-integer
spin chains, the topological term creates destructive inter-
ference between vortices and, thereby, suppresses effects of
their quantum fluctuations [1,10].

Superfluid spin transport, a spin analog of an electrical
supercurrent, has been proposed in magnets with easy-
plane anisotropy, where the direction of the local magnetic
order within the easy plane plays the role of the phase of a
superfluid order parameter [11–14]. Spin supercurrent
therein is sustained by a spiraling texture of the magnetic
order, being proportional to the gradient of the in-plane
components of the order parameter. Under the guidance of
established theories for resistance in superconducting wires
[15], we have recently investigated the intrinsic thermal

dissipation in one-dimensional superfluid spin transport,
which arises via thermally activated phase slips [16] (that
unwind the phase by lifting the magnetic order out of the
easy plane [17]). At sufficiently low temperatures, however,
dissipation is mainly induced by quantum fluctuations via
quantum phase slips (QPS) [18,19]. The QPS in super-
conducting wires correspond to vortices of the phase of the
order parameter in the Euclidean spacetime. Likewise, the
QPS in one-dimensional spin superfluidity correspond to
vortices of the magnetic order parameter. Then, there arises
a natural question regrading the role of the topological
term for the integer-s and half-odd-integer-s chains in the
QPS-induced dissipation of superfluid spin transport.
In this Letter, we theoretically study the QPS in super-

fluid spin transport through easy-plane quantum antiferro-
magnetic spin chains. For an integer s, the topological term
is inoperative, and dissipation arises due to the QPS of
the Skyrmion charges Q ¼ "1=2 that change the winding
number by 2π. For a half-odd-integer s, these QPS are
completely suppressed due to destructive interferences.
Instead, the QPS of twice-larger Skyrmion charges,
Q ¼ "1, give rise to dissipation by unwinding the phase
by 4π. See Fig. 2 for illustrations. Dissipation in superfluid
spin transport can be characterized by the spin-current

FIG. 1. Vortex configurations of the local Néel order parameter
in the Euclidean spacetime ðx; τÞ with Skyrmion charges
(a) Q ¼ 1=2 and (b) Q ¼ −1=2.
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decay rate, κðI; TÞ, which depends on the spin current I
and the ambient temperature T. One of our main findings
is a qualitative difference between the decay rates in the
integer-s and half-odd-integer-s spin chains for large
spin s ≫ 1, which can be summarized as κðI; TÞ ∝
½maxðI; TÞ$2μ−3, where

μ ¼
!
πs=2; for an integer s

2πs; for a half-odd-integer s
: ð1Þ

The exponent μ parametrizes the strength of the interaction
between the QPS, which is proportional to the square of
their Skyrmion charges; μ is thus 4 times larger for the half-
odd-integer s than for the integer s. These spin-dependent
transport exponents can be measured through the voltage or
temperature dependence of the electrical resistance of
the magnetoelectric circuit in Ref. [20] (see Fig. 3 for its
schematics), which we propose for probing superfluid spin
transport, using a quasi-one-dimensional easy-plane anti-
ferromagnetic insulator, e.g., ðCH3Þ4NMnCl3 (s ¼ 5=2)
[21] as a spin transport channel.
Model.—We consider an anisotropic Heisenberg anti-

ferromagnetic spin-s chain that can be described by the
Hamiltonian

H ¼ J
X

n

½Sn · Snþ1 − aSznS
z
nþ1 þ bðSznÞ2$ ð2Þ

with S2
n ¼ sðsþ 1Þ, where small positive constants a ≪ 1

and b ≪ 1 parametrize the anisotropy. In the large-s limit,
neighboring spins are mostly antiparallel, Sn ≈ −Snþ1 in
the low-energy states, and the long-wavelength dynamics
of the chain can be understood in terms of the slowly
varying unit vector n ≈ ðS2n − S2nþ1Þ=2s parametrizing the
direction of the local Néel order parameter. The dynamics
of the field n follows the nonlinear sigma model [3,6–8]

with the Euclidean action S ¼ iθQþ S0 (in units of ℏ),
where θ≡ 2πs is referred to as the topological angle. Here,

Q≡ 1

4π

Z
dx

Z
ℏβ

0
dτn · ð∂xn × ∂τnÞ ð3Þ

is the Skyrmion charge of n that measures how many times
nðx; τÞ wraps the unit sphere as the space and imaginary-
time coordinates, x and τ, vary, and is thus topological.
The nontopological part of the action is given by

S0 ¼
1

2g

Z
dx

Z
ℏβc

0
dðcτÞ

"
ð∂τnÞ2

c2
þ ð∂xnÞ2 þ

n2z
λ2

#
; ð4Þ

where c≡ 2Jsd=ℏ serves as a speed of “light” for the
theory, d is the lattice constant, and λ≡ d=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðaþ bÞ

p
is a

characteristic length scale (providing the ultraviolet cutoff
for our theory) governed by the anisotropy. Here, g≡ 2=s
is the dimensionless coupling constant, which sets the
quantum “temperature” governing the magnitude of quan-
tum fluctuations [3].
The corresponding partition function is given by

Z ¼
Z

Dnðx; τÞδðn2 − 1Þ expð−iθQ − S0Þ: ð5Þ

We consider the fields n that are periodic in the imaginary
time τ, nðx; τÞ ¼ nðx; τ þ ℏβÞ. The partition function Z is
then a periodic function of the topological angle θ. For the
integer and half-odd-integer s, therefore, we can effectively
set θ ¼ 0 and θ ¼ π, respectively [1].
Spin superfluidity.—The classical action for nðx; tÞ can

be obtained from the above quantum action S0 by a Wick
rotation, τ↦it. Its invariance under spin rotations about the
z axis implies conservation of spin angular momentum
(polarized along the z axis) and leads us to parametrize n
in spherical coordinates, ψ and ϕ, defined by n ¼
ðsinψ cosϕ; sinψ sinϕ; cosψÞ. The density and current

FIG. 2. Elementary vortices, which control the winding number
Δϕ, with Skyrmion charges (a)Q ¼ 1=2 and (b)Q ¼ 1. For half-
odd-integer spin chains, 2π phase slips are prohibited by
destructive interference between vortices with Skyrmion charges
Q ¼ '1=2. See the main text for a detailed discussion.

FIG. 3. A change in the electrical resistance jδρj of the
magnetoelectric circuit as a function of an applied voltage V
on a logarithmic scale. The circuit consists of a quasi-one-
dimensional antiferromagnet (a 3D stack of parallel spin chains)
and two platinum layers. See the main text for a detailed
discussion.
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A 2D scenario of topo-transport: Skyrmion diffusion

Continuity equation for skyrmion density:

PHYSICAL REVIEW B 94, 024431 (2016)

Topological spin-transfer drag driven by skyrmion diffusion
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We study the spin-transfer drag mediated by the Brownian motion of skyrmions. The essential idea is illustrated
in a two-terminal geometry, in which a thin film of a magnetic insulator is placed in between two metallic
reservoirs. An electric current in one of the terminals pumps topological charge into the magnet via a spin-transfer
torque. The charge diffuses over the bulk of the system as stable skyrmion textures. By Onsager’s reciprocity,
the topological charge leaving the magnet produces an electromotive force in the second terminal. The voltage
signal decays algebraically with the separation between contacts, in contrast to the exponential suppression of the
spin drag driven by nonprotected excitations like magnons. We show how this topological effect can be used as
a tool to characterize the phase diagram of chiral magnets and thin films with interfacial Dzyaloshinskii-Moriya
interactions.

DOI: 10.1103/PhysRevB.94.024431

I. INTRODUCTION

Magnetic insulators stand out as promising platforms for
spintronics devices due to the lack of energy dissipation by
Joule heating. Nevertheless, the transmission of information
encoded in the collective dynamics of localized spins is not
immune to losses due to the exchange of angular momentum
with itinerant electrons and the lattice. In condensed matter
systems, dissipationless transport is either sustained by a
superfluid ground state or driven by topological excitations.
Spin superfluidity has been extensively discussed in the
context of easy-plane magnetic insulators [1]. Long-ranged
spin transmission is supported by the coherent precession of
the order parameter within the easy plane of the magnet, which,
on the other hand, is not robust under perturbations breaking
the U(1) spin symmetry. Dissipationless spin transport can be
mediated also by the Brownian motion of solitons like, for
example, domain walls [2]. In that case, however, thermally
activated phase slip events [3] invalidate the topological
protection of domain walls’ chirality, imposing restrictions
on the geometry of the device. The aim of this paper is to
generalize the idea of spin transport mediated by solitons,
focusing on skyrmion textures in order to overcome these
limitations.

Magnetic skyrmions are characterized by a topological
index that labels the number of times that the local order
parameter wraps the unit sphere in spin space. This integer—
the skyrmion charge—remains unchanged as long as the
texture varies slowly. Due to its robustness, skyrmions are
promising candidates as building blocks for information
storage [4]. The observation of skyrmions in bulk [5,6] and
thin films [7,8] of chiral magnets, or in systems with interfacial
Dzyaloshinskii-Moriya interaction [9], together with the low
spin-polarized currents that are needed to move them [10] has
boosted the field in recent years.

Let us consider the two-terminal geometry depicted in
Fig. 1. A current in the left contact exerts a torque on the
order parameter of the film, favoring the injection of skyrmion
charge. The charge is topologically protected, so it diffuses
without losses over the bulk of the system as stable skyrmion
solitons, which eventually reach the right terminal. By the
reciprocal effect to the spin-transfer torque, the topological

charge leaving the system pumps itinerant spins into the right
metal, generating an electromotive force. The drag of spin
current is negative, contrary to frictional effects based on
linear momentum transfer. In the steady state and neglecting
boundary effects, the drag coefficient Cd ≡ IR/IL reduces to

Cd = −µρ0σ

(
2π!P

e

)2
d

L
. (1)

Here ρ0 is the concentration of skyrmions at the equilibrium, µ
is the longitudinal skyrmion mobility, and σ is the conductivity
of the metal contacts. The term between brackets must be
interpreted as the conversion factor between charge and spin
current, where P is a dimensionless parameter measuring the
efficiency of this conversion. The last factor is geometrical, d
and L being the thickness of the film and the distance between
terminals, respectively. Its origin is the following: On one
hand, the spin transfer and pumping effects are more efficient
as the surface of the interface grows; on the other, the drag
effect decays algebraically with the distance between contacts
due to the diffusion of the skyrmion charge. The latter is a

IL

MAGNETIC INSULATOR
METAL

CONTACT METAL
CONTACT

VIR

diffusion
x

yz

L

d

FIG. 1. Scheme for electrical injection and detection of
skyrmions. The electric current in the left terminal pumps skyrmion
charge into the magnet, which diffuses as stable solitons over the
system. The skyrmion charge leaving the system sustains a voltage
signal in the second terminal.

2469-9950/2016/94(2)/024431(7) 024431-1 ©2016 American Physical Society

Ochoa, Kim, and YT, PRB (2016)

⇢
s

⌘ n · (@
x

n⇥ @
y

n)/4⇡

@t⇢s + ~r ·~js = 0

~js = n ·
h
@tn⇥ (ẑ ⇥ ~r)n
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Skyrmion diffusion
Work by the torque                          on the thermally injected 
skyrmions:

Onsager-reciprocal motive force at the detection (right) side:
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FIG. 2. (a) Sketch of the injection of a skyrmion through one of the leads. The nonequilibrium torque favors the nucleation of skyrmion
charge, which diffuses into the bulk of the film as a metastable soliton. (b) Dynamics of the localized spins at the edge. According to Eqs. (6)
and (7), the skyrmion number of the texture in the (y,t) plane equals the skyrmion charge of the injected soliton.

where

Dxx ≡ D = kBT ηyy

ηxxηyy − η2
xy + 16π2s2Q2

. (20)

B. Nucleation theory

Next, we evaluate the rate of skyrmion charge pumping.
In the spirit of the reaction-rate theory [23], we can write the
skyrmion charge current at the boundaries of the film as

jx(I ) = γ (T ,I ) − γ̄ (T )ρ . (21)

Here γ (T ,I ) represents the nucleation rate and γ̄ (T ) is the
annihilation rate per unit density. The condition jx(I = 0) = 0
defines the skyrmion charge density at equilibrium,

ρ0 ≡ γ (T )
γ̄ (T )

∝ e
− E0

kB T . (22)

The annihilation rate can be interpreted as the characteristic
escape velocity of skyrmions, which is a bulk property and
therefore is expected not to depend on the current at the leads.
For the nucleation rate, we can write in general

γ (T ,I ) = ν(T )e− E
kB T , (23)

where E is the energy barrier for the nucleation of a skyrmion
and ν(T ) represents the attempt frequency. The latter does not
depend on the current to the leading order [24], whereas the
former can be written as E = E0 − W , where W is the work
carried out by the spin-transfer torque, Eq. (9). We conclude
that, to the lowest order in the current, the nucleation rate at
the left boundary of the film is just

γ (T ,IL) ≈ γ (T )
(

1 + 2πP!ILQ
ekBT

)
. (24)

C. Stability

The results of the preceding sections rely on the energy
stability of skyrmion textures in the bulk of the thin film.
Notice that skyrmion solutions are found in the Heisenberg
Hamiltonian [15], whose energy—E0 = 4πA|Q|,A being the
magnetic stiffness—does not depend on their size given the
scale invariance of the exchange interaction in 2D. Thus, there
is no energy barrier that prevents their collapse into atomic-size
defects. A Dzyaloshinskii-Moriya coupling term [25] selects

one of the chiralities, introducing a characteristic length scale
below which the shrinking of the texture is energetically
penalized.

For the sake of concretion, we consider the following energy
functional [26]:

U[n(r)] =
∫

d2r
(
A ∂in · ∂in − κ n2

z

)
/2 + HDM, (25)

where κ > 0 is an easy-plane magnetic anisotropy and the last
term is an interfacial Dzyaloshinskii-Moriya interaction of the
form

HDM = D
∫

d2r(nz∇ · n − n · ∇nz). (26)

This functional is general for thin films with Cnv point group
symmetry. The mirror symmetry z → −z is expressly broken
by the last term, which can be induced by proximity with a
metallic substrate with large spin-orbit coupling.

The magnetic anisotropy makes the spins be oriented along
the ẑ axis in the ground state, whereas the Dzyaloshinskii-
Moriya term stabilizes skyrmion textures connecting the two
possible orientations. We consider minimal energy solutions
on top of the ordered ground state pointing along the positive
ẑ axis. From now on, we assume D > 0 [27]. If we write the
order parameter as

n =
(√

1 − n2
z cos φ,

√
1 − n2

z sin φ,nz

)
,

then the functional in Eq. (25) hosts solutions of the form
nz(r) = nz(r),φ = ϕ, where (ϕ,r) are polar coordinates with
respect to the center of mass of the skyrmion. The polarization
nz(r) satisfies the following equation:

1
1 − n2

z

(
∂2
r + 1

r
∂r

)
nz + nz

(
1 − n2

z

)2 (∂rnz)2

+ nz

(
1
λ2

κ

+ 1
r2

)
− 2

rλD

√
1 − n2

z = 0, (27)

with boundary conditions nz(r → 0) = −1, nz(r → ∞)
= 1. We have introduced length scales associated with the
anisotropy and Dzyaloshinskii-Moriya interactions,

λκ ≡
√

A

κ
, λD ≡ A

D
.
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Summary
Superfluid spin flow is a collective low-dissipation phenomenon 
responsible for an efficient long-ranged transport of spin angular 
momentum

The superfluid, which is tied to the phase winding, is topologically 
stable (barring phase slips); however, the spin flow is easily 
quenched at low temperatures by parasitic anisotropies

Chirality diffusion of thermally-activated domain walls in 1D and 
skyrmion transport in 2D take over spin transport, restoring the 
superfluid phenomenology in linear response


