

Spin Nernst Effect of Magnons in Antiferromagnet

(accepted by PRL, preprint arXiv:1606.01952)

Ran Cheng¹, Satoshi Okamoto², and Di Xiao¹

¹ Department of Physics, Carnegie Mellon University ² Oak Ridge National Laboratory

Why Magnonics?

REVIEW ARTICLE PUBLISHED ONLINE: 2 JUNE 2015 | DOI: 10.1038/NPHYS3347

Magnon spintronics

A. V. Chumak^{*}, V. I. Vasyuchka, A. A. Serga and B. Hillebrands

right-handed chirality

- Carry angular momentum
- No Joule heating
- Bose-Einstein statistics

Why Antiferromagnet?

Magnon Spin Current?

Example: Spin Seebeck Effect

S. Seki et al., PRL 115, 266601 (2015)

S. M. Wu et al., PRL 116, 097204 (2016)

Alternative Choice?

Dzyaloshinskii-Moriya Interaction

$$oldsymbol{\mathcal{D}}_{AB}\cdotoldsymbol{S}_A imesoldsymbol{S}_B$$

Effective Spin-orbit Coupling

A Rashba-like spectrum

Example: Magnon Faraday Effect

Cheng, Daniels, Zhu & Xiao, Sci. Rep. 6, 24223 (2016)

2-dimensional Manifestation

Q: can magnon do a similar job ?

Magnon (thermal) Hall Effect

Katsura, Nagaosa, & Lee, PRL (2010); Matsumoto & Murakami, PRL (2011); Onose *et al*, Science (2010); Hirschberger *et al*, PRL (2015); Science (2015)

Magnon Spin Hall Effect

R. Cheng, S. Okamoto, and D. Xiao, accepted by PRL, arXiv:1606.01952

Spin-Chirality Locking

$$S^z = \sum_k S^z_k = \sum_k (-a^{\dagger}_k a_k + b^{\dagger}_k b_k)$$

spin-z is conserved: $[S^z_k, \mathcal{H}_k] = 0$

Bogoliubov transformation

$$\alpha_k = u_k a_k - v_k b_k^{\dagger} \text{ and } \beta_k = u_k b_k - v_k a_k^{\dagger}$$
right-handed mode left-handed mode

$$S^{z} = \sum_{k} (-\alpha_{k}^{\dagger} \alpha_{k} + \beta_{k}^{\dagger} \beta_{k})$$

 $\langle 0|\alpha_k S^z \alpha_k^{\dagger}|0\rangle = -1 \text{ and } \langle 0|\beta_k S^z \beta_k^{\dagger}|0\rangle = +1$

Realization: Honeycomb AF

R. Cheng, S. Okamoto, and D. Xiao, accepted by PRL, arXiv:1606.01952

Realization: Honeycomb AF

 J_1 D_2 •••• **Bosonic normalize** $\langle \Psi | \sigma_z | \Psi \rangle = 1$ $H_{\text{AFM}} = -3J_1 + K + \begin{pmatrix} D_2 A(\boldsymbol{k}) & -J_1 V(\boldsymbol{k}) \\ -J_1 V^*(\boldsymbol{k}) & -D_2 A(\boldsymbol{k}) \end{pmatrix}$ $V(\boldsymbol{k}) = 1 + e^{i\boldsymbol{k}\cdot\boldsymbol{a}_1} + e^{i\boldsymbol{k}\cdot\boldsymbol{a}_2}$ <u>magnon</u> $A(\mathbf{k}) = 2 \sum \sin(\mathbf{k} \cdot \mathbf{a}_i)$ Haldane's model? i∈odd

Valid for both classical (LLG) and quantum (Holstein-Primakoff) models

R. Cheng, S. Okamoto, and D. Xiao, accepted by PRL, arXiv:1606.01952

Hyperbolic Geometry

$$i\sigma_z \frac{d}{dt}\Psi = H\Psi = (dI_2 + a\sigma_x + b\sigma_y + c\sigma_z)\Psi$$

 $d = h \cosh \theta$, $a = h \sinh \theta \cos \phi$, $b = h \sinh \theta \sin \phi$

$$E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \sigma_z | \Psi \rangle} = c + h$$

$$|u_{-}\rangle = \begin{pmatrix} \sinh \frac{\theta}{2} e^{-i\phi} \\ -\cosh \frac{\theta}{2} \end{pmatrix}, \quad |u_{+}\rangle = \begin{pmatrix} \cosh \frac{\theta}{2} e^{-i\phi} \\ -\sinh \frac{\theta}{2} \end{pmatrix}$$

Relation to a spin-1/2 system:

Bloch sphere — pseudo-sphere

Radius R = -1 Hyperbolic geom.

Semiclassical Dynamics

$$i\sigma_{z}\frac{d}{dt}\begin{pmatrix}\Psi_{A}\\\Psi_{B}\end{pmatrix} = H\begin{pmatrix}\Psi_{A}\\\Psi_{B}\end{pmatrix}$$

Common structure of BdG equation

$$\Omega(\mathbf{k}) = -\mathrm{Im}\langle \nabla \Psi_+(\mathbf{k}) | imes \sigma_z | \nabla \Psi_+(\mathbf{k})
angle$$
 Berry curvature

$$\dot{m{r}}_c = rac{\partial \omega(m{k}_c)}{\partial m{k}_c} + rac{1}{\hbar} m{
abla} U(m{r}_c) imes m{\Omega}(m{k}_c)$$

Anomalous velocity

For a review of Berry phase, see Xiao, Chang & Niu, RMP (2010)

Expand the spin Hamiltonian up to <u>quadratic order</u> in spin deviations from the Néel ground state

$$\delta S_A = S_A - \hat{z}$$
 and $\delta S_B = S_B + \hat{z}$

Exchange	$H_J = J_1(1 - \delta S_A^z + \delta S_B^z + \delta S_A \cdot \delta S_B)$
Breaks inversion (I)	
DMI	$H_D = D_2(\delta S^x_A \delta S^y_{A'} - \delta S^y_A \delta S^x_{A'}) - (A \to B)$

Breaks time-reversal (T) + rotation about x in spin-space (c_x)

$$Tc_x: \mathbf{k} \Rightarrow -\mathbf{k} \quad \uparrow \Rightarrow \uparrow$$

acting on EOM

$$\omega_{\sigma}(\boldsymbol{k}) = \omega_{\sigma}(-\boldsymbol{k})$$

DMI will break the degeneracy between $\omega_{\uparrow}(k)$ and $\omega_{\downarrow}(k)$.

 $oldsymbol{\Omega}_{\sigma}(oldsymbol{k}) = -oldsymbol{\Omega}_{\sigma}(-oldsymbol{k})$

Spectrum

Berry curvature

Material Candidates

Experiment: Wildes, Roessli, Lebech & Godfrey, JCM (1998) DFT Study: Sivadas, Daniels, Swendsen, Okamoto & Xiao, PRB (2015)

Magnon Spin Nernst Effect

R. Cheng, S. Okamoto, and D. Xiao, accepted by PRL, arXiv:1606.01952

Analogy

Electrons (fermions)	Magnons (Bosons)
$i\partial_t\psi = H\psi$	$\partial_t oldsymbol{m} = \gamma oldsymbol{H}_{ ext{eff}} imes oldsymbol{m}$
SOC: $ abla V \cdot (oldsymbol{\sigma} imes oldsymbol{p})$	DMI: $oldsymbol{\mathcal{D}}_{ij} \cdot (oldsymbol{S}_i imes oldsymbol{S}_j)$
Electron spin: 🕴 🍦	Magnon chirality: 🍳 🥥
"Spintronics"	"Chiralitronics"

Summary

Easy-axis antiferromagnet: magnon chirality

- Dzyaloshinskii-Moriya interaction: spin-orbit coupling
- I-d: Magnon Faraday Effect
- 2-d: Magnon Spin Nernst Effect

Thermal generation of magnon spin current in antiferromagnet <u>without</u> magnetic field

R. Cheng, S. Okamoto, and D. Xiao, accepted by PRL, arXiv:1606.01952 R. Cheng, M.W. Daniels, J.-G. Zhu, and Xiao, Sci. Rep. 6, 24223 (2016)