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Magnon spintronics
A. V. Chumak*, V. I. Vasyuchka, A. A. Serga and B. Hillebrands

Magnon spintronics is the field of spintronics concerned with structures, devices and circuits that use spin currents carried by
magnons. Magnons are the quanta of spin waves: the dynamic eigen-excitations of a magnetically ordered body. Analogous to
electric currents, magnon-based currents can be used to carry, transport and process information. The use of magnons allows
the implementation of novel wave-based computing technologies free from the drawbacks inherent to modern electronics,
such as dissipation of energy due to Ohmic losses. Logic circuits based on wave interference and nonlinear wave interaction
can be designed with much smaller footprints compared with conventional electron-based logic circuits. In this review,
after an introduction into the basic properties of magnons and their handling, we discuss the inter-conversion between
magnon currents and electron-carried spin and charge currents; and concepts and experimental studies of magnon-based
computing circuits.

Adisturbance in local magnetic ordering can propagate in
a magnetic material in the form of a wave. Such a wave
was first predicted by F. Bloch in 1929 (ref. 1) and was

named a spin wave as it is related to the collective excitations of the
electron spin system in ferromagnetic metals and insulators2,3. The
wide variety of linear and nonlinear spin-wave phenomena boosted
interest into the fundamental properties2–4, while spin waves in
the GHz frequency range were of great interest for applications in
telecommunication systems and radars5,6. Nowadays, spin waves
are considered as potential data carriers for computing devices, as
they have nanometre wavelengths, can be in the low-THz frequency
range, provide Joule-heat-free transfer of spin information over
macroscopic distances, and access to wave-based computing
concepts (see Box 1)7–44.

The field of science that refers to information transport and
processing by spin waves is known as magnonics22,45,46. This name
relates to the magnon—the spin-wave quantum associated with
the flip of a single spin. The usage of magnonic approaches in
the field of spintronics, hitherto dealing with electron-carried spin
currents, gave birth to the emerging field of magnon spintronics47.
The scheme of magnon spintronics in Fig. 1 shows that, besides
magnon-based elements operating with analogous and digital data,
this field comprises also converters between the magnon subsystem
and the electron-carried spin and charge currents. These converters
interface the magnonic circuitry with spintronic and electronic
environments. The main building blocks of magnon spintronics
shown in Fig. 1 are discussed here in the light of their advantages,
challenges and perspectives.

Spin-wave basics and toolbox
Two general types of interactions couple electron spins and thus
define the spin-wave characteristics: strong but short-distance
exchange interactions and relatively weak long-range dipole–dipole
interactions. Thewaveswith short wavelength � (roughly, �<1µm),
whose properties are mostly governed by the exchange interaction,
are named exchange spin waves. Correspondingly, the long-
wavelength waves are named dipolar or magnetostatic waves
(MSWs; refs 2,3). Owing to the inherent anisotropy of the
dipolar interaction, the MSWs are classified depending on the
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Figure 1 | The concept of magnon spintronics. Information coded into
charge or spin currents is converted into magnon currents, processed
within the magnonic system and converted back47.

angle between the spin-wave wavevector k and the saturation
magnetization M. In an in-plane magnetized magnetic film, waves
propagating along and transverse toM are named backward volume
magnetostatic waves (BVMSWs) and magnetostatic surface waves
(MSSWs, also known as Damon–Eshbach waves), respectively.
Dipolar waves in a normally magnetized film are named forward
volume magnetostatic waves (FVMSWs). Historically, most of the
magnon-based devices for microwave signals processing5,6 operate
with dipolar spin waves, which can be excited and detected rather
conveniently by inductive antennas. Nowadays, attention is more
focused on the exchange waves that allow usage in nanometre-
sized structures and devices. All these types of waves have di�erent
dispersion characteristics (dependencies of the spin-wave frequency
f on the wavenumber k)48 and nonlinear properties, and thus o�er
specific advantages for data processing22,45,46.

Spin waves are usually excited in thin films and conduits
fabricated in the form of narrow strips of a magnetic material.
The most commonly used materials are polycrystalline metallic
films of Permalloy (Py, Ni81Fe19) (refs 45,46), which combine a
relatively low magnetic damping with good suitability for micro-
sized patterning; and single-crystal films of yttrium–iron–garnet
(YIG, Y3Fe5O12) (refs 21,22), which possess extremely low damping.
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• Carry angular momentum 
• No Joule heating 
• Bose-Einstein statistics 
• Magnon # does not conserve 
• Caveat: only spin-down

right-handed chirality
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Why Antiferromagnet?



Magnon Spin Current?
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• Optical: chirality selective
• Electron: chirality selective 
• Thermal: chirality non-selective!

break the degeneracy
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1996'



Example: Spin Seebeck Effect

S. M. Wu et al., PRL 116, 097204 (2016)S. Seki et al., PRL 115, 266601 (2015)
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Adversity:
Magnetic field is required!



Alternative Choice?
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Faraday’s rotation of antiferromagnetic spin waves and field-e↵ect transistor
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Spin waves are propagating spin precessions in a magnetically ordered medium. They can transfer
spin currents in the absence of electron flow, and are considered to be potential information carriers
with low dissipation. In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates
that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their
opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom
to encode and process information. Here we show that this internal degree of freedom can be
manipulated by an electric field induced Dzyaloshinskii-Moriya interaction, enabling a magnonic
analog of the Faraday e↵ect. We propose a prototype field-e↵ect transistor of antiferromagnetic
spin waves with a gate-tunable Faraday’s rotation, and demonstrate its applications in THz signal
modulation and pure spin wave logic operations. Our findings illuminates the direct projection of
optical computing concepts onto the nanoscale.

The current trend towards device miniaturization has
triggered an intense search for information carriers with
low dissipation. In response to this demand, magnonics
has emerged as a promising technology because the trans-
port of spin information is implemented by spin waves,
or magnons, which completely avoids Joule heating ef-
fect [1–4]. The wave nature of magnons also enables new
device concepts for data processing, such as spin wave
logic gates [5, 6]. As a first step, it is necessary to encode
binary data using spin waves. Similar to electromagnetic
waves, spin waves can be characterized by their ampli-
tude and polarization. In ferromagnets (FMs), however,
the spin wave polarization is always right-handed with re-
spect to the background magnetization, leaving the spin
wave amplitude as the only variable to digitize informa-
tion. This inevitably involves nonlinear magnon-magnon
scattering processes [7].
By contrast, it is well known that the spin wave dynam-

ics of a collinear easy-axis antiferromagnet (AFM) admits
two degenerate modes with opposite circular polariza-
tion [8, 9], as illustrated in Figs. 1(a) and (b). These two
modes may be recombined into an equivalently orthogo-
nal but linearly polarized basis, as shown in Figs. 1(c) and
(d). This two-fold degeneracy suggests that the spin wave
polarization can be harnessed to encode information. In
fact, since the magnon chirality is linked to the photon
polarization, optical methods have been employed to ex-
cite the two circularly polarized modes [10, 11]. Recent
investigations have demonstrated that the two circularly
polarized modes can also be selectively excited and de-
tected by electron spin currents with corresponding po-
larizations [12–14], paving the way to encode information
into the polarization of AFM spin waves.
The next crucial step towards digital magnonics is to

control this degree of freedom via external fields in order
to perform logical operations on the encoded data. Since
the degeneracy is protected by the combined symmetry
of time-reversal (T ) and sublattice exchange (I), a viable
control must resort to interactions that break either or
both of the two symmetries, i.e., the external field should

couple to the Pauli matrices � = {�
1

,�
2

,�
3

} that span
the doubly generate space.
Here we propose that the Dzyaloshinskii-Moriya inter-

action (DMI) [15–17] can be used for such a purpose. The
DMI is expressed generically as D

AB

· S
A

⇥ S
B

in the
magnetic free energy, where D

AB

is the DMI vector that
couples two spins S

A

and S
B

. In an AFM, S
A

and S
B

are the two antiparallel moments in a magnetic unit cell.
Obviously, the DMI will change sign upon sublattice ex-
change (A $ B), breaking the degeneracy between the
two circular modes. We show that the DMI in AFMs
behaves as an e↵ective field that couples to �

3

in the de-
generate space, leading to opposite phase shifts for the
two circular modes. When a linear mode is subject to the
DMI, the opposing phase shifts of its circular components
give rise to a rotation of the linear polarization direction,
which realizes the magnonic analog of the Faraday rota-
tion of electromagnetic waves. If we identify the x- and
y-polarized modes as 0 and 1 in binary operations, a ro-
tation by ⇡/2 then corresponds to a NOT operation in
magnonic computing.
Basing on the Faraday’s rotation of AFM spin waves,

we propose a gate-tunable field-e↵ect transistor serving
as the magnonic analog of the Datta-Das device of elec-
trons [18]. We demonstrate its functioning in THz signal
modulation and pure spin wave logic gates. Finally, by
including the field-induced anisotropy [19], we can also
realize direct transitions between the two circularly po-
larized modes, which, together with Faraday’s rotation
controlled by DMI, enables a thorough control over the
entire Bloch sphere. Electrical detections of the spin
wave state on the Bloch sphere is discussed.

Results
Spin wave spectrum. Under the continuum descrip-
tion, an AFM is characterized by the staggered field
n = (S

A

� S
B

)/2S and the small magnetization m =
(S

A

+S
B

)/2S. Consider a quasi-one dimensional nanos-
trip with collinear antiferromagnetic order and an easy-
axis along the ẑ-direction, as schematically shown in

Dzyaloshinskii-Moriya Interaction



Exciton Condensation
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I. BOSE-EINSTEIN CONDENSATION

Bose-Einstein condensation as a phenomena in statistical physics is usually presented in terms
of the occupancy of single-particle states. Consider N non-interacting bosons in a box with size L.
For a given state it is occupied according to the Bose factor

nq =
1

e�("q�µ) � 1
, (1)

where "q = h̄2q2/2m. Note that to guarantee a non-negative occupancy nq, µ must be less than or
equal to zero. The total number of particles is given by

N =
X

q

nq =

Z
d"

D(")

e�("�µ) � 1
, (2)

where we have taken the usual step by converting the sum into an integral. In 3D, the density of
states is given by

D(") =
V

4⇡2

⇣2m
h̄

⌘3/2
"1/2 = N3D"

1/2 . (3)

Obviously, the integral reaches its maximum when µ = 0. We have

N = N3D

Z
d"

e��""1/2

1� e��"
= N3D

1X

n=0

Z
d" "1/2e��"(n+1) = N3D

⇣(3/2)
p
⇡

2�3/2
. (4)

The transition temperature thus is

Tc =
⇣ n

⇣(3/2)

⌘2/3 2⇡h̄2

kBm
. (5)

We also draw the conclusion that in 2D there is no BEC for the simple particle-in-a-box situation.

H =
X

ij

JAFSi · Sj +KS2
i,z +Dij · Si ⇥ Sj

A Rashba-like spectrum

Effective Spin-orbit Coupling
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Cheng, Daniels, Zhu & Xiao, Sci. Rep. 6, 24223 (2016)

L ⇠ 10µm

E ⇠ 3⇥ 105V/m

Example: Magnon Faraday Effect

Zhang, Liu, Flatté, Tang, PRL 113, 037202 (2014)



2-dimensional Manifestation

Spin Hall effect
—the most celebrated spin phenomenon

AHE & SHE

I
VH

Anomalous Hall effect 

spin-orbit coupling + spin imbalance

D’Yakonov, M. I. & Perel’, V. I.  ZhETF Pisma Redaktsiiu 13, 657 (1971).
Hirsch, J. E. Spin Hall Effect. Phys. Rev. Lett. 83, 1834 (1999).

Spin Hall effect 

spin-orbit coupling + spin balance

Sci. Technol. Adv. Mater. 9 (2008) 014105 Topical Review

The spin–flip scattering by the spin–orbit interaction
causes a slow relaxation for spin accumulation (µ

"
N � µ

#
N) =

2�µN. By substituting equations (34), (39) and (40) into the
Boltzmann equation (37) and summing over k, one obtains
the spin diffusion equation

r2�µN = 1
�2N

�µN (41)

with �N = p
D⌧sf, D = (1/3)⌧trv2F, and ⌧�1

sf = h⌧�1
sf (✓)iav =

4⌘̄2so/(9⌧ 0tr).
The second-order term in the Boltzmann equation is

X

k0� 0

h
P� 0�
k0k

(1) ⇣
g(2)
k� � g(2)

k0� 0

⌘
� P� 0�

k0k
(2) ⇣

g(1)
k� + g

(1)
k0� 0

⌘i
= 0.

(42)
Making use of equations (32), (33) and (40), the solution

of the second-order ( skew scattering) term becomes

g(2)
k� = �↵SSH ⌧tr

@ f0(⇠k)
⇠k

(��� ⇥ vk) · rµ�
N(r), (43)

where ↵SSH is the dimensionless parameter of skew scattering

↵SSH = (2⇡/3)⌘̄soN (0)Vimp. (44)

4.2. Spin and charge currents induced by SHE

Using the solutions of the Boltzmann equation given in the
preceding sections, the distribution function becomes

fk� ⇡ f0(⇠k) � �
@ f0(⇠k)

@⇠k
�µN(r)+ ⌧tr

@ f0(⇠k)
@⇠k

⇥ ⇥
vk� ↵SSH ��� ⇥ vk

⇤ · rµ�
N(r), (45)

from which the spin and charge currents in equation (29) are
calculated as J0

s = js +↵SSH [ẑ⇥ jq] and J0
q = jq +↵SSH [ẑ⇥ js],

where ẑ is the polarization vector and the second terms are,
respectively, the Hall spin and charge currents induced by the
charge and spin currents:

js = ��N

e
r�µN, (46)

jq = �NE, (47)

where �N = 2e2N (0)D is the electrical conductivity and
�µN = 1

2 (µ
"
N � µ

#
N) is the chemical potential shift. Therefore,

the total spin and charge currents in equations (26) and (27)
are written as

Jq = jq +↵H
⇥
ẑ⇥ js

⇤
, (48)

Js = js +↵H
⇥
ẑ⇥ jq

⇤
, (49)

where ↵H = ↵SJH +↵SSH = ⌘̄so[1/(kFl)+ (2⇡/3)N (0)Vimp].
Equations (48) and (49) indicate that the spin current js
induces the transverse charge current jHq = ↵H[ẑ⇥ js], while
the charge current jq induces the transverse spin current
jHs = ↵H[ẑ⇥ jq], as shown in figure 4.
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(b) Charge-current-induced SHE
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Figure 4. (a) Spin-current-induced SHE in which the spin current js
flowing along the x-direction with the polarization parallel to the
z-axis induces the charge current jHq in the y-direction.
(b) Charge-current-induced SHE in which the charge current jq
along the x-direction induces the spin current jHs in the y-direction
with the polarization parallel to the z-axis.

The spin Hall conductivity �H = � SJH + � SSH has the
side-jump contribution � SJH = ↵SJH �N and the skew-scattering
contribution � SSH = ↵SSH �N, which are given by

� SJH = e2

h̄
⌘sone = 2

3⇡
e2

h
kF⌘̄so, (50)

� SSH =

2⇡
3
kFlN (0)Vimp

�
� SJH , (51)

with ne ⇠ N (0)"F being the carrier (electron) density. We
note that the side-jump conductivity � SJH is independent
of the impurity concentration. The spin Hall conductivity
is dominated by skew-scattering for (kFl)|N (0)Vimp| � 1
and by side jump for (kFl)|N (0)Vimp| ⌧ 1. The spin Hall
resistivity ⇢H ⇡ �H/� 2N has linear and quadratic terms in
⇢N representing the contributions from side-jump and skew
scatterings, respectively:

⇢H = aSS⇢N + bSJ⇢2N, (52)

where aSS = (2⇡/3)⌘̄soN (0)Vimp and bSJ = (2/3⇡)⌘̄so
(e2/h)kF.

4.3. Spin–orbit coupling parameter

It is worthwhile to note that, if one multiplies the resistivity
⇢N and spin diffusion length �N, one obtains [54, 61, 81]:

⇢N�N =
p
3⇡
2

RK
k2F

r
⌧sf

⌧tr
= 3

p
3⇡
4

RK
k2F

1
⌘̄so

, (53)

8

Q: can magnon do a similar job ?



Magnon (thermal) Hall Effect

Katsura, Nagaosa, & Lee, PRL (2010); 
Matsumoto & Murakami, PRL (2011); 

Onose et al, Science (2010);  
Hirschberger et al, PRL (2015); Science (2015)



Magnon Spin Hall Effect
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Spin-Chirality Locking

spin-z is conserved:

Bogoliubov transformation

right-handed mode left-handed mode
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Haldane’s model?

Valid for both classical (LLG) and 
quantum (Holstein-Primakoff) models

Bosonic normalize
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Realization: Honeycomb AF
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Hyperbolic Geometry

=  c + h

Radius R = -1 
Hyperbolic geom.

Relation to a spin-1/2 system: 

Bloch sphere            pseudo-sphere



Semiclassical Dynamics
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FIG. 1. Left: schematics of the magnon SNE. Right: the J1–
D2 model on a honeycomb AF, the nearest and the second-
nearest links are labeled by di and ai, respectively.

where f(k) =
P
i

exp(ik ·d
i

) and g(k) =
P

i2odd

2 sin(k ·a
i

)

with a

i

the vectors linking second-nearest neighbors (see
Fig. 1). To diagonalize Eq. (1), we perform a Bogoliubov
transformation ↵

k

= u
k

a
k

� v
k

b†
k

and �
k

= u
k

b
k

� v
k

a†
k

that mixes magnons on di↵erent sublattices [21]. The
Heisenberg equation of motion (EOM) i~↵̇

k

= [↵
k

, H
k

]
determines the eigen equations of the Bogoliubov wave
function  =

⇥
uk

vk

⇤
of the ↵-mode as

i~�
z

!
↵

 = (aI + b�
x

+ c�
y

+ d�
z

) , (2)

where a = S(3J
1

� K), b = SJ
1

Ref(k), c = SJ
1

Imf(k),
and d = SD

2

g(k). Eq. (2) is similar to a Schrödinger
equation except the �

z

factor on its left hand side,
which is ascribed to the bosonic commutation relation
[↵

k

, ↵†
k

] = �
kk

0 . This feature enables a hyperbolic pa-
rameterization of Eq. (2): a = ` cosh ✓, b = ` sinh ✓ cos �,
c = ` sinh ✓ sin �. The spectrum is then ~!

↵

= d ± `, and
the corresponding eigenvectors are

 
+

=

✓
cosh ✓

2

� sinh ✓

2

ei�

◆
,  � =

✓ � sinh ✓

2

cosh ✓

2

ei�

◆
, (3)

which respects the generalized orthonormal conditions
h ±|�

z

| ±i = ±1 and h ±|�
z

| ⌥i = 0. In the same
manner, the Heisenberg EOM i~�̇

k

= [�
k

, H
k

] yields an
eigen equation with the �

z

term in Eq. (2) flipping sign.
But the associated eigenvectors are exactly the same as
Eq. (3), since neither ✓ nor � depend on d. However,
regarding the identity Re[S+

i

ei!t] = Re[S�
i

e�i!t] with
S±

i

= (Sx

i

± iSy

i

)/2, the  � solutions are redundant. In
the following, we will keep the positive branch  

+

alone
so that the spectrum becomes

~!
↵/�

= ` ± d =
p

a2 � b2 � c2 ± d, (4)

where the plus (minus) sign corresponds to the ↵-mode
(�-mode). The D

2

term breaks the degeneracy of the two
modes, but it cannot change the wave functions since ✓
and � are both independent of D

2

.
To understand the underlying physics intuitively, we

make an analogy with the semiclassical picture described
by the Landau-Lifshitz equation [6]. Identifying S+

i

and

S�
i

as generating opposite precessions on site i, we see
that both S

A

and S

B

precess in the right-handed (left-
handed) way in the ↵-mode (�-mode), as illustrated in
Fig. 1. Consequently, the two modes can be distinguished
by the reversed chirality even when they are degenerate.
Moreover, since u

k

= cosh ✓/2 and v
k

= �ei� sinh ✓/2
switch roles between ↵

k

and �†
k

, the ratio of sublattice

magnon densities ha†
i

a
i

i/hb†
i

b
i

i associated with the two
modes are reciprocal to each other. This property, again,
coincides with the semiclassical result in which the ratio
of precession angles ✓

A

/✓
B

of the ↵-mode is reciprocal to
that of the �-mode.

While the magnon chirality is not directly observable,
the magnon spin is easy to detect. Regarding that our
J

1

-D
2

model preserves the mirror symmetry with respect
to the honeycomb plane, the z-component of the total
spin Sz =

P
i

(Sz

iA

+ Sz

iB

) is a good quantum number.
By inserting the Holstein-Primako↵ transformation into
Sz, we obtain Sz =

P
k

Sz

k

=
P

k

(�a†
k

a
k

+ b†
k

b
k

). Since
Sz

k

is diagonal in the Nambu basis, it commutes with
the Hamiltonian: [Sz

k

, H
k

] = 0. Invoking the Bogoliubov
transformation, we further obtain

Sz =
X

k

(�↵†
k

↵
k

+ �†
k

�
k

), (5)

thus h0|↵
k

Sz↵†
k

|0i = �1 and h0|�
k

Sz�†
k

|0i = +1 with
|0i denoting the magnon vacuum. This indicates that a
quantum of the ↵-magnon (�-magnon) carriers �1 (+1)
spin angular momentum along the ẑ-direction. In other
words, the spin-z component is locked to the magnon
chirality and is independent of the momentum k. In the
following, we will characterize magnons by their spins
instead of the chirality.

Magnon dynamics.—Since the two modes completely
decouple, we can treat the dynamics of each indepen-
dently as a ferromagnetic insulator [22] so long as the
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factor in Eq. (2) is properly taken care of. Let us
consider a magnon wave packet in the positive branch
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(k)i localized around the center
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whether it represents a spin-up or a spin-down magnon
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FIG. 1. Left: schematics of the magnon SNE. Right: the J1–
D2 model on a honeycomb AF, the nearest and the second-
nearest links are labeled by di and ai, respectively.
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words, the spin-z component is locked to the magnon
chirality and is independent of the momentum k. In the
following, we will characterize magnons by their spins
instead of the chirality.
Magnon dynamics.—Since the two modes completely

decouple, we can treat the dynamics of each indepen-
dently as a ferromagnetic insulator [22] so long as the
�

z

factor in Eq. (2) is properly taken care of. Let us
consider a magnon wave packet in the positive branch
|W i =

R
dkw(k, t)| 

+

(k)i localized around the center
(r

c

, k
c

) in the phase space, where r

c

= hW |r|W i and
k

c

=
R

dk|w(k)|2k. The definition of |W i does not tell
whether it represents a spin-up or a spin-down magnon
because the two modes share the same wave function.
By taking the variational derivative of the Lagrangian
L = hW |i~�

z

d

dt

|W i � hW |H⇤|W i with respect to r

c

and
k

c

, we obtain the phase space EOM as

ṙ
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Introduction.—Magnons, the energy quantization of

spin waves, are collective spin excitations in magneti-
cally ordered systems. Since magnons are charge neu-
tral, they can be exploited to transfer angular momenta
to avoid Joule heating [2–5]. However, this ability alone
does not guarantee that magnons can replace electrons
as useful information carriers. This is because the spin
wave precession in ferromagnets (FMs) always has the
right-handed chirality with respect to the magnetization.
Therefore, magnons in FMs cannot act like electrons
bearing an internal degree of freedom, viz., spin-up and
spin-down.

By contrast, in a collinear antiferromagnet (AF) with
easy-axis anisotropy, symmetry admits two degenerate
magnon modes with opposite chirality [6]. This double
degeneracy introduces an internal space to encode binary
information in a similar fashion as the electron spin [7],
which is manipulatable by the Dzyaloshinskii-Moriya in-
teraction (DMI) [8]. According to recent investigations,
these two degenerate chiral magnons can be selectively
excited [9] and detected [10] via electron spin currents
with matching polarization. This suggests that, beside
their opposing chirality, the two degenerate modes also
carry opposite spins [11, 12], which grants magnons in
AFs similar roles as spin-1/2 electrons. Isn’t magnon
in AF carry opposite spin common knowledge? I don’t
know. But the way it’s written seems to suggest that this
realization is a very recent thing.

Motivated by the above analogy, we explore in this
Letter the magnonic counterpart of the spin Hall ef-
fect [13, 14] in a collinear AF. This formally refers to the
spin Nernst e↵ect (SNE)—generation of transverse pure
spin current through a longitudinal temperature gradi-
ent in the absence of the thermal Hall e↵ect. In collinear
AFs, the SNE coincides with the chirality Hall e↵ect [15]
since magnons with opposite chirality also possess oppo-
site spin, as illustrated in Fig. 1. We attribute the SNE
to the DMI which acts as an e↵ective spin-orbit coupling

for magnons [16]. However, distinct from existing stud-
ies of the magnon Hall e↵ect on non-central-symmetric
lattices [16–18], we consider a simple honeycomb lattice
with an out-of-plane Néel AF ground state. By relating
the SNE to the Berry curvature, we study its fundamen-
tal physics based on general symmetry analyses. Guided
by the symmetry, we propose MnPS

3

monolayer [19] and
its variances [20] as possible material candidates, where
we find that magnons from the �-point and the K-point
contribute oppositely to the spin Hall current. Because
of such a competition, the SNE coe�cient undergoes a
sign change at finite temperature.

[1]

Model.—Consider a collinear AF on a two dimensional
honeycomb lattice with the Néel order perpendicular to
the plane, i.e., spins on the A and B sublattices satisfy
S

A

= �S

B

= Sẑ in the ground state. Since the midpoint
of the A–B link is an inversion center, the nearest neigh-
bor DMI (D

1

) vanishes [8], whereas the second-nearest
neighbor DMI (D

2

) is allowed by symmetry. The spin
Hamiltonian of such a system is

H = J
1

X

hiji

S

i

· S

j

+ D
2

X

hhijii

⇠

ij

· S

i

⇥ S

j

+ K
X

i

S2

iz

,

where J
1

> 0 is the nearest neighbor antiferromagnetic
exchange coupling, K < 0 is the easy-axis anisotropy,
and ⇠

ij

= 2
p

3d

i

⇥ d

j

= ±ẑ with d

i

and d

j

the vec-
tors connecting site i to its nearest neighbor site j as
shown in Fig. 1. We can include the second and the
third nearest neighbor exchange interactions J

2

and J
3

as
well, but that does not alter the essential physics qualita-
tively. Using the Holstein-Primako↵ transformation [21]
up to non-interacting magnon order: S±

iA

=
p

2S
⇥
ai

a

†
i

⇤
and

Sz

iA

= S � n
iA

with n
iA

= a†
i

a
i

for A sublattice, and

S±
iB

=
p

2S
⇥
b

†
i

bi

⇤
and Sz

iB

= n
iB

� S with n
iB

= b†
i

b
i

for
B sublattice, we can express the magnon Hamiltonian
in the Nambu basis  

k

⌘ ⇥
ak

b

†
k

⇤
= 1p

N

P
k e�ik·Ri

⇥
ai

b

†
i

⇤
as

Symmetry:



Symmetry

3

which only has an out-of-plane component ⌦(k) = ⌦(k)ẑ
in two dimensions.

Before turning to any specific transport e↵ect, we first
explore the symmetry of the Berry curvature and find out
what guarantees a nontrivial transport in the transverse
direction. Given the Néel ground state, the spin Hamil-
tonian of a hexagone can be expanded to the quadratic
order in �S

A

= S

A

� ẑ and �S
B

= S

B

+ ẑ (set S = 1)
as H = H

J

+ H
K

+ H
D

, where

H
J

=J
1

(1 � �Sz

A

+ �Sz

B

+ �S
A

· �S
B

), (8a)

H
K

=2K(1 + �Sz

A

� �Sz

B

) + K[(�Sz

A

)2 + (�Sz

B

)2], (8b)

H
D

=D
2

(�Sx

A

�Sy

A

0 � �Sy

A

�Sx

A

0) � (A ! B), (8c)

with A0 standing for second-nearest neighbor A sites.
Now we restrict all symmetry groups to be operating
on the magnon parts �S

A

and �S
B

while leaving the
Néel ground state unchanged. Although H

J

+ H
K

flips
sign under the time reversal operation T , it recovers af-
ter an additional 180� rotation about the x̂-axis in the
spin space, which we denote by c

x

. So the combined Tc
x

symmetry is preserved. When acting on the EOM (6),
the Tc

x

symmetry renders the Berry curvature an odd
function ⌦(k) = �⌦(�k). On the other hand, H

J

+H
K

breaks the inversion symmetry, which, when acting on
the EOM (6), yields ⌦(k) = ⌦(�k). Therefore, only an
odd nonzero ⌦(k) is allowed by symmetry.

The H
D

term apparently breaks the Tc
x

symmetry.
But as mentioned earlier, the wave functions are inde-
pendent of D

2

, hence the Berry curvature should be blind
to the symmetry of H

D

. What H
D

really does is inval-
idating the relation !(k) = !(�k) as can be seen from
Eq. (4), for which a Tc

x

operation on the EOM (6) no
longer imposes the parity of the Berry curvature. In ex-
isting literatures, the actual value of D

2

is not available,
so we will treat it as a tuning parameter in our theory.

The role of D
2

in magnon dynamics is remarkably dif-
ferent between AFs and FMs. In a honeycomb FM, both
Tc

x

and the inversion symmetries are kept by H
J

+ H
K

so that the Berry curvature is identically zero without in-
voking the DMI to break the Tc

x

. Correspondingly, D
2

opens a finite gap at the K- and K0-points in a similar
sense as the gap opening through spin-orbit coupling in
electronic systems [23, 24]. By contrast, the gap opening
in our honeycomb AF occurs at the �-point due to the
easy-axis anisotropy, whereas the DMI does not a↵ect the
band topology. On the other hand, as shown by Eq. (4),
the D

2

term shifts the spectrum of the two modes in
opposite directions by an odd function d(k) = �d(�k).
Since ⌦(k) is also odd in k, we expect that magnons
of opposite spins will be delivered to opposite transverse
edges, forming a pure spin Hall current.

Spin Nernst e↵ect.—Magnons are charge neutral, so
they cannot be driven by an electric field. Nevertheless,
by introducing an in-plane temperature gradient rT ,
one can create a longitudinal magnon current. Because
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FIG. 2. Dispersion and Berry curvature of the spin-down
(right-handed) magnon mode with J1 = 0.77, J2 = 0.07, J3 =
0.18, and K = �0.0086 taken from MnPS3 [19], assuming
D2 = 0.18. Numbers are in units of meV.

of the Berry curvature, a magnon Hall current is induced
for each individual spin species [22, 25] as

j

�

=
k

B

~ ẑ ⇥ rT

Z
dk]⌦(k) {⇢

�

(k) ln ⇢
�

(k)

�[1 + ⇢
�

(k)] ln[1 + ⇢
�

(k)]} , (9)

where � =# (") refers to the ↵-mode (�-mode), k
B

is
the Boltzmann constant, and ⇢

�

= 1/(e~!�/kBT � 1) is
the Bose-Einstein distribution function with the chemical
potential taken to be zero (as the magnon number is not
conservative). As can be anticipated from the symmetry
argument shown earlier, j" = j# = 0 if D

2

vanishes.
This is because when D

2

= 0, !"(k) = !#(k) = !
0

(k) is
even, so is ⇢

�

(k); but ⌦(k) is odd, thus the integration
of Eq. (9) vanishes. At this point, it worths mentioning
again that a finite D

2

leads to an opposite change of the
spectrum !"/#(k) = !

0

(k) ⌥ d(k) with d(k) = �d(�k),
whereas the Berry curvature remains unchanged. This
fact is in sharp contrast to the ferromagnetic case where
D

2

is responsible for a non-zero Berry curvature.
In the linear response regime, the SNE current can be

written as jSN = ~(j" � j#) ⌘ ↵s

xy

ẑ ⇥ rT , where ↵s

xy

is
the SNE coe�cient. In general, an analytic expression of
↵s

xy

= ↵s

xy

(D
2

, T ) is not available, but we can derive an
approximate form of ↵s

xy

for D
2

⌧ J
1

. Expanding ⇢
�

to
linear order in D

2

, we obtain from Eq. (9) that

↵s

xy

⇡ 2~D
2

k
B

T 2

Z
d!

!e~!/kBT

(e~!/kBT�1)2
D(!)⌦(!), (10)

where D(!) is the density of states (DOS) and ⌦(!) is
the density of the Berry curvature. While Eq. (10) seems
to be useless for a numerical calculation, it does help
explaining the qualitative pattern of the SNE coe�cient,
which will become clear soon.

Material realization.—Our theoretical proposal on the
SNE in a collinear AF could be experimentally tested
using Mn-based trichalcogenide, such as MnPS

3

and
MnPSe

3

. In these compounds, the Mn ions are half filled
with the high spin state S = 5/2, so the quantum fluctu-
ation in these materials is not as important as spin-1/2
systems. In addition, the magnetic moments of Mn irons

Expand the spin Hamiltonian up to quadratic order 
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Eq. (4), for which a Tc
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is not available,
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in our honeycomb AF occurs at the �-point due to the
easy-axis anisotropy, whereas the DMI does not a↵ect the
band topology. On the other hand, as shown by Eq. (4),
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~ ẑ ⇥ rT

Z
dk]⌦(k) {⇢

�

(k) ln ⇢
�

(k)

�[1 + ⇢
�

(k)] ln[1 + ⇢
�

(k)]} , (9)

where � =# (") refers to the ↵-mode (�-mode), k
B

is
the Boltzmann constant, and ⇢

�

= 1/(e~!�/kBT � 1) is
the Bose-Einstein distribution function with the chemical
potential taken to be zero (as the magnon number is not
conservative). As can be anticipated from the symmetry
argument shown earlier, j" = j# = 0 if D

2

vanishes.
This is because when D

2

= 0, !"(k) = !#(k) = !
0

(k) is
even, so is ⇢

�

(k); but ⌦(k) is odd, thus the integration
of Eq. (9) vanishes. At this point, it worths mentioning
again that a finite D

2

leads to an opposite change of the
spectrum !"/#(k) = !

0

(k) ⌥ d(k) with d(k) = �d(�k),
whereas the Berry curvature remains unchanged. This
fact is in sharp contrast to the ferromagnetic case where
D

2

is responsible for a non-zero Berry curvature.
In the linear response regime, the SNE current can be

written as jSN = ~(j" � j#) ⌘ ↵s

xy

ẑ ⇥ rT , where ↵s

xy

is
the SNE coe�cient. In general, an analytic expression of
↵s

xy

= ↵s

xy

(D
2

, T ) is not available, but we can derive an
approximate form of ↵s

xy

for D
2

⌧ J
1

. Expanding ⇢
�

to
linear order in D

2

, we obtain from Eq. (9) that

↵s

xy

⇡ 2~D
2

k
B

T 2

Z
d!

!e~!/kBT

(e~!/kBT�1)2
D(!)⌦(!), (10)

where D(!) is the density of states (DOS) and ⌦(!) is
the density of the Berry curvature. While Eq. (10) seems
to be useless for a numerical calculation, it does help
explaining the qualitative pattern of the SNE coe�cient,
which will become clear soon.
Material realization.—Our theoretical proposal on the

SNE in a collinear AF could be experimentally tested
using Mn-based trichalcogenide, such as MnPS

3

and
MnPSe

3

. In these compounds, the Mn ions are half filled
with the high spin state S = 5/2, so the quantum fluctu-
ation in these materials is not as important as spin-1/2
systems. In addition, the magnetic moments of Mn irons

Exchange

Breaks inversion (I)

time-reversal (T) + rotation about x in spin-space (cx)

3

which only has an out-of-plane component ⌦(k) = ⌦(k)ẑ
in two dimensions.

Before turning to any specific transport e↵ect, we first
explore the symmetry of the Berry curvature and find out
what guarantees a nontrivial transport in the transverse
direction. Given the Néel ground state, the spin Hamil-
tonian of a hexagone can be expanded to the quadratic
order in �S

A

= S

A

� ẑ and �S
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with A0 standing for second-nearest neighbor A sites.
Now we restrict all symmetry groups to be operating
on the magnon parts �S

A

and �S
B

while leaving the
Néel ground state unchanged. Although H

J

+ H
K

flips
sign under the time reversal operation T , it recovers af-
ter an additional 180� rotation about the x̂-axis in the
spin space, which we denote by c

x

. So the combined Tc
x

symmetry is preserved. When acting on the EOM (6),
the Tc
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symmetry renders the Berry curvature an odd
function ⌦(k) = �⌦(�k). On the other hand, H

J

+H
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breaks the inversion symmetry, which, when acting on
the EOM (6), yields ⌦(k) = ⌦(�k). Therefore, only an
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symmetry.
But as mentioned earlier, the wave functions are inde-
pendent of D
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, hence the Berry curvature should be blind
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. What H
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in magnon dynamics is remarkably dif-
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K

so that the Berry curvature is identically zero without in-
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x
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2
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sense as the gap opening through spin-orbit coupling in
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in our honeycomb AF occurs at the �-point due to the
easy-axis anisotropy, whereas the DMI does not a↵ect the
band topology. On the other hand, as shown by Eq. (4),
the D
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term shifts the spectrum of the two modes in
opposite directions by an odd function d(k) = �d(�k).
Since ⌦(k) is also odd in k, we expect that magnons
of opposite spins will be delivered to opposite transverse
edges, forming a pure spin Hall current.
Spin Nernst e↵ect.—Magnons are charge neutral, so

they cannot be driven by an electric field. Nevertheless,
by introducing an in-plane temperature gradient rT ,
one can create a longitudinal magnon current. Because
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FIG. 2. Dispersion and Berry curvature of the spin-down
(right-handed) magnon mode with J1 = 0.77, J2 = 0.07, J3 =
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of the Berry curvature, a magnon Hall current is induced
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j

�

=
k

B
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whereas the Berry curvature remains unchanged. This
fact is in sharp contrast to the ferromagnetic case where
D
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is responsible for a non-zero Berry curvature.
In the linear response regime, the SNE current can be

written as jSN = ~(j" � j#) ⌘ ↵s
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ẑ ⇥ rT , where ↵s
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is
the SNE coe�cient. In general, an analytic expression of
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, T ) is not available, but we can derive an
approximate form of ↵s
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for D
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where D(!) is the density of states (DOS) and ⌦(!) is
the density of the Berry curvature. While Eq. (10) seems
to be useless for a numerical calculation, it does help
explaining the qualitative pattern of the SNE coe�cient,
which will become clear soon.
Material realization.—Our theoretical proposal on the

SNE in a collinear AF could be experimentally tested
using Mn-based trichalcogenide, such as MnPS

3

and
MnPSe

3

. In these compounds, the Mn ions are half filled
with the high spin state S = 5/2, so the quantum fluctu-
ation in these materials is not as important as spin-1/2
systems. In addition, the magnetic moments of Mn irons
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Introduction.—Magnons, the energy quantization of

spin waves, are collective spin excitations in magneti-
cally ordered systems. Since magnons are charge neu-
tral, they can be exploited to transfer angular momenta
to avoid Joule heating [? ? ? ? ]. However, this ability
alone does not guarantee that magnons can replace elec-
trons as useful information carriers. This is because the
spin wave precession in ferromagnets (FMs) always has
the right-handed chirality with respect to the magneti-
zation. Therefore, magnons in FMs cannot act like elec-
trons bearing an internal degree of freedom, viz., spin-up
and spin-down.

By contrast, in a collinear antiferromagnet (AF) with
easy-axis anisotropy, symmetry admits two degenerate
magnon modes with opposite chirality [? ]. This double
degeneracy introduces an internal space to encode binary
information in a similar fashion as the electron spin [? ],
which is manipulatable by the Dzyaloshinskii-Moriya in-
teraction (DMI) [? ]. According to recent investigations,
these two degenerate chiral magnons can be selectively
excited [? ] and detected [? ] via electron spin currents
with matching polarization. This suggests that, beside
their opposing chirality, the two degenerate modes also
carry opposite spins [? ? ], which grants magnons in
AFs similar roles as spin-1/2 electrons. Isn’t magnon
in AF carry opposite spin common knowledge? I don’t
know. But the way it’s written seems to suggest that this
realization is a very recent thing.

Motivated by the above analogy, we explore in this Let-
ter the magnonic counterpart of the spin Hall e↵ect [? ? ]
in a collinear AF. This formally refers to the spin Nernst
e↵ect (SNE)—generation of transverse pure spin current
through a longitudinal temperature gradient in the ab-
sence of the thermal Hall e↵ect. In collinear AFs, the
SNE coincides with the chirality Hall e↵ect [? ] since
magnons with opposite chirality also possess opposite
spin, as illustrated in Fig. ??. We attribute the SNE
to the DMI which acts as an e↵ective spin-orbit coupling

for magnons [? ]. However, distinct from existing stud-
ies of the magnon Hall e↵ect on non-central-symmetric
lattices [? ? ? ], we consider a simple honeycomb lattice
with an out-of-plane Néel AF ground state. By relating
the SNE to the Berry curvature, we study its fundamen-
tal physics based on general symmetry analyses. Guided
by the symmetry, we propose MnPS

3

monolayer [? ] and
its variances [? ] as possible material candidates, where
we find that magnons from the �-point and the K-point
contribute oppositely to the spin Hall current. Because
of such a competition, the SNE coe�cient undergoes a
sign change at finite temperature.

[? ]

Model.—Consider a collinear AF on a two dimensional
honeycomb lattice with the Néel order perpendicular to
the plane, i.e., spins on the A and B sublattices satisfy
S

A

= �S

B

= Sẑ in the ground state. Since the mid-
point of the A–B link is an inversion center, the nearest
neighbor DMI (D

1

) vanishes [? ], whereas the second-
nearest neighbor DMI (D

2

) is allowed by symmetry. The
spin Hamiltonian of such a system is

H = J
1

X

hiji

S

i

· S

j

+ D
2

X

hhijii

⇠

ij

· S

i

⇥ S

j

+ K
X

i

S2

iz

,

where J
1

> 0 is the nearest neighbor antiferromagnetic
exchange coupling, K < 0 is the easy-axis anisotropy,
and ⇠

ij

= 2
p

3d

i

⇥ d

j

= ±ẑ with d

i

and d

j

the vectors
connecting site i to its nearest neighbor site j as shown
in Fig. ??. We can include the second and the third
nearest neighbor exchange interactions J

2

and J
3

as well,
but that does not alter the essential physics qualitatively.
Using the Holstein-Primako↵ transformation [? ] up
to non-interacting magnon order: S±

iA

=
p

2S
⇥
ai

a

†
i

⇤
and

Sz

iA

= S � n
iA

with n
iA

= a†
i

a
i
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=
p

2S
⇥
b

†
i

bi

⇤
and Sz

iB

= n
iB

� S with n
iB

= b†
i

b
i

for
B sublattice, we can express the magnon Hamiltonian
in the Nambu basis  

k

⌘ ⇥
ak
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†
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⇤
= 1p
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P
k e�ik·Ri
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Introduction.—Magnons, the energy quantization of
spin waves, are collective spin excitations in magneti-
cally ordered systems. Since magnons are charge neu-
tral, they can be exploited to transfer angular momenta
to avoid Joule heating [? ? ? ? ]. However, this ability
alone does not guarantee that magnons can replace elec-
trons as useful information carriers. This is because the
spin wave precession in ferromagnets (FMs) always has
the right-handed chirality with respect to the magneti-
zation. Therefore, magnons in FMs cannot act like elec-
trons bearing an internal degree of freedom, viz., spin-up
and spin-down.

By contrast, in a collinear antiferromagnet (AF) with
easy-axis anisotropy, symmetry admits two degenerate
magnon modes with opposite chirality [? ]. This double
degeneracy introduces an internal space to encode binary
information in a similar fashion as the electron spin [? ],
which is manipulatable by the Dzyaloshinskii-Moriya in-
teraction (DMI) [? ]. According to recent investigations,
these two degenerate chiral magnons can be selectively
excited [? ] and detected [? ] via electron spin currents
with matching polarization. This suggests that, beside
their opposing chirality, the two degenerate modes also
carry opposite spins [? ? ], which grants magnons in
AFs similar roles as spin-1/2 electrons. Isn’t magnon
in AF carry opposite spin common knowledge? I don’t
know. But the way it’s written seems to suggest that this
realization is a very recent thing.

Motivated by the above analogy, we explore in this Let-
ter the magnonic counterpart of the spin Hall e↵ect [? ? ]
in a collinear AF. This formally refers to the spin Nernst
e↵ect (SNE)—generation of transverse pure spin current
through a longitudinal temperature gradient in the ab-
sence of the thermal Hall e↵ect. In collinear AFs, the
SNE coincides with the chirality Hall e↵ect [? ] since
magnons with opposite chirality also possess opposite
spin, as illustrated in Fig. ??. We attribute the SNE
to the DMI which acts as an e↵ective spin-orbit coupling
for magnons [? ]. However, distinct from existing stud-

ies of the magnon Hall e↵ect on non-central-symmetric
lattices [? ? ? ], we consider a simple honeycomb lattice
with an out-of-plane Néel AF ground state. By relating
the SNE to the Berry curvature, we study its fundamen-
tal physics based on general symmetry analyses. Guided
by the symmetry, we propose MnPS

3

monolayer [? ] and
its variances [? ] as possible material candidates, where
we find that magnons from the �-point and the K-point
contribute oppositely to the spin Hall current. Because
of such a competition, the SNE coe�cient undergoes a
sign change at finite temperature.

[? ]

Model.—Consider a collinear AF on a two dimensional
honeycomb lattice with the Néel order perpendicular to
the plane, i.e., spins on the A and B sublattices satisfy
S

A

= �S

B

= Sẑ in the ground state. Since the mid-
point of the A–B link is an inversion center, the nearest
neighbor DMI (D

1

) vanishes [? ], whereas the second-
nearest neighbor DMI (D

2

) is allowed by symmetry. The
spin Hamiltonian of such a system is

H = J
1
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where J
1

> 0 is the nearest neighbor antiferromagnetic
exchange coupling, K < 0 is the easy-axis anisotropy,
and ⇠

ij

= 2
p

3d

i

⇥ d

j

= ±ẑ with d

i

and d

j

the vectors
connecting site i to its nearest neighbor site j as shown
in Fig. ??. We can include the second and the third
nearest neighbor exchange interactions J

2

and J
3

as well,
but that does not alter the essential physics qualitatively.
Using the Holstein-Primako↵ transformation [? ] up
to non-interacting magnon order: S±
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Introduction.—Magnons, the energy quantization of

spin waves, are collective spin excitations in magneti-
cally ordered systems. Since magnons are charge neu-
tral, they can be exploited to transfer angular momenta
to avoid Joule heating [2–5]. However, this ability alone
does not guarantee that magnons can replace electrons
as useful information carriers. This is because the spin
wave precession in ferromagnets (FMs) always has the
right-handed chirality with respect to the magnetization.
Therefore, magnons in FMs cannot act like electrons
bearing an internal degree of freedom, viz., spin-up and
spin-down.

By contrast, in a collinear antiferromagnet (AF) with
easy-axis anisotropy, symmetry admits two degenerate
magnon modes with opposite chirality [6]. This double
degeneracy introduces an internal space to encode binary
information in a similar fashion as the electron spin [7],
which is manipulatable by the Dzyaloshinskii-Moriya in-
teraction (DMI) [8]. According to recent investigations,
these two degenerate chiral magnons can be selectively
excited [9] and detected [10] via electron spin currents
with matching polarization. This suggests that, beside
their opposing chirality, the two degenerate modes also
carry opposite spins [11, 12], which grants magnons in
AFs similar roles as spin-1/2 electrons. Isn’t magnon
in AF carry opposite spin common knowledge? I don’t
know. But the way it’s written seems to suggest that this
realization is a very recent thing.

Motivated by the above analogy, we explore in this
Letter the magnonic counterpart of the spin Hall ef-
fect [13, 14] in a collinear AF. This formally refers to the
spin Nernst e↵ect (SNE)—generation of transverse pure
spin current through a longitudinal temperature gradi-
ent in the absence of the thermal Hall e↵ect. In collinear
AFs, the SNE coincides with the chirality Hall e↵ect [15]
since magnons with opposite chirality also possess oppo-
site spin, as illustrated in Fig. 1. We attribute the SNE
to the DMI which acts as an e↵ective spin-orbit coupling

for magnons [16]. However, distinct from existing stud-
ies of the magnon Hall e↵ect on non-central-symmetric
lattices [16–18], we consider a simple honeycomb lattice
with an out-of-plane Néel AF ground state. By relating
the SNE to the Berry curvature, we study its fundamen-
tal physics based on general symmetry analyses. Guided
by the symmetry, we propose MnPS

3

monolayer [19] and
its variances [20] as possible material candidates, where
we find that magnons from the �-point and the K-point
contribute oppositely to the spin Hall current. Because
of such a competition, the SNE coe�cient undergoes a
sign change at finite temperature.

[1]

Model.—Consider a collinear AF on a two dimensional
honeycomb lattice with the Néel order perpendicular to
the plane, i.e., spins on the A and B sublattices satisfy
S

A

= �S

B

= Sẑ in the ground state. Since the midpoint
of the A–B link is an inversion center, the nearest neigh-
bor DMI (D

1

) vanishes [8], whereas the second-nearest
neighbor DMI (D

2

) is allowed by symmetry. The spin
Hamiltonian of such a system is

H = J
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where J
1

> 0 is the nearest neighbor antiferromagnetic
exchange coupling, K < 0 is the easy-axis anisotropy,
and ⇠

ij

= 2
p

3d
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j

= ±ẑ with d

i

and d

j

the vec-
tors connecting site i to its nearest neighbor site j as
shown in Fig. 1. We can include the second and the
third nearest neighbor exchange interactions J

2

and J
3

as
well, but that does not alter the essential physics qualita-
tively. Using the Holstein-Primako↵ transformation [21]
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Introduction.—Magnons, the energy quantization of

spin waves, are collective spin excitations in magneti-
cally ordered systems. Since magnons are charge neu-
tral, they can be exploited to transfer angular momenta
to avoid Joule heating [2–5]. However, this ability alone
does not guarantee that magnons can replace electrons
as useful information carriers. This is because the spin
wave precession in ferromagnets (FMs) always has the
right-handed chirality with respect to the magnetization.
Therefore, magnons in FMs cannot act like electrons
bearing an internal degree of freedom, viz., spin-up and
spin-down.

By contrast, in a collinear antiferromagnet (AF) with
easy-axis anisotropy, symmetry admits two degenerate
magnon modes with opposite chirality [6]. This double
degeneracy introduces an internal space to encode binary
information in a similar fashion as the electron spin [7],
which is manipulatable by the Dzyaloshinskii-Moriya in-
teraction (DMI) [8]. According to recent investigations,
these two degenerate chiral magnons can be selectively
excited [9] and detected [10] via electron spin currents
with matching polarization. This suggests that, beside
their opposing chirality, the two degenerate modes also
carry opposite spins [11, 12], which grants magnons in
AFs similar roles as spin-1/2 electrons. Isn’t magnon
in AF carry opposite spin common knowledge? I don’t
know. But the way it’s written seems to suggest that this
realization is a very recent thing.

Motivated by the above analogy, we explore in this
Letter the magnonic counterpart of the spin Hall ef-
fect [13, 14] in a collinear AF. This formally refers to the
spin Nernst e↵ect (SNE)—generation of transverse pure
spin current through a longitudinal temperature gradi-
ent in the absence of the thermal Hall e↵ect. In collinear
AFs, the SNE coincides with the chirality Hall e↵ect [15]
since magnons with opposite chirality also possess oppo-
site spin, as illustrated in Fig. 1. We attribute the SNE
to the DMI which acts as an e↵ective spin-orbit coupling

for magnons [16]. However, distinct from existing stud-
ies of the magnon Hall e↵ect on non-central-symmetric
lattices [16–18], we consider a simple honeycomb lattice
with an out-of-plane Néel AF ground state. By relating
the SNE to the Berry curvature, we study its fundamen-
tal physics based on general symmetry analyses. Guided
by the symmetry, we propose MnPS

3

monolayer [19] and
its variances [20] as possible material candidates, where
we find that magnons from the �-point and the K-point
contribute oppositely to the spin Hall current. Because
of such a competition, the SNE coe�cient undergoes a
sign change at finite temperature.

[1]

Model.—Consider a collinear AF on a two dimensional
honeycomb lattice with the Néel order perpendicular to
the plane, i.e., spins on the A and B sublattices satisfy
S

A

= �S

B

= Sẑ in the ground state. Since the midpoint
of the A–B link is an inversion center, the nearest neigh-
bor DMI (D

1

) vanishes [8], whereas the second-nearest
neighbor DMI (D

2

) is allowed by symmetry. The spin
Hamiltonian of such a system is

H = J
1

X
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where J
1

> 0 is the nearest neighbor antiferromagnetic
exchange coupling, K < 0 is the easy-axis anisotropy,
and ⇠

ij

= 2
p

3d
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⇥ d

j

= ±ẑ with d

i

and d

j

the vec-
tors connecting site i to its nearest neighbor site j as
shown in Fig. 1. We can include the second and the
third nearest neighbor exchange interactions J

2

and J
3

as
well, but that does not alter the essential physics qualita-
tively. Using the Holstein-Primako↵ transformation [21]
up to non-interacting magnon order: S±
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B sublattice, we can express the magnon Hamiltonian
in the Nambu basis  

k

⌘ ⇥
ak

b

†
k

⇤
= 1p

N

P
k e�ik·Ri

⇥
ai

b

†
i

⇤
as

!"(k)

!#(k)

Kim, Ochoa, Zarzuela, &Tserkovnyak
arXiv:1603.04827

Antiferromagnet Ferromagnet

• Without D2: I        Tcx        

• D2 opens the gap!
• Without D2: I        Tcx        

• D2 lifts the degeneracy



Material Candidates

Experiment: Wildes, Roessli, Lebech & Godfrey, JCM (1998) 
DFT Study: Sivadas, Daniels, Swendsen, Okamoto & Xiao, PRB (2015)

SIVADAS, DANIELS, SWENDSEN, OKAMOTO, AND XIAO PHYSICAL REVIEW B 91, 235425 (2015)

[27,28]. One possible reason for this discrepancy is discussed,
but the actual mechanism for ferromagnetism in bulk CrSiTe3
remains an open question.

II. CRYSTAL AND MAGNETIC STRUCTURE

Transition-metal trichalcogenides with the chemical for-
mula ABX3 are layered compounds with the structural space
group of R3, except MnPS3, which forms monoclinic crystals
with the C2/m space group. In all compounds, the different
layers are held together by weak van der Waals force. It has
been predicted that the monolayer form of these materials are
indeed stable [30,33], making them attractive candidates for
2D magnets. Figures 1(a) and 1(b) show the crystal structure of
TMTC monolayers. The magnetic ions (A) form a honeycomb
lattice within each layer, and each of them is octahedrally
coordinated by six X atoms from its three neighboring (B2X6)
ligands, with the centers of the hexagons occupied by the B2
groups.

Similar to the crystal structure, the magnetic structure of
bulk TMTC also shows 2D characteristics. It can be understood
as FM or AF coupled 2D magnetic layers. To describe the 2D

(c) (d)FM

(e) AF-zigzag AF-Stripy(f)

(a)

z

y

xxy

z

(b)

AF-Neel

A

X
B

FIG. 1. (Color online) Crystal and magnetic structure of
transition-metal trichalcogenides ABX3. The crystal structure (a)
and the top view (b) of monolayers of ABX3. The transition-metal
A atoms form a honeycomb structure with B2X6 ligand occupying
the interior of the honeycomb. Top view of the different spin
configurations: the FM ordered (c), AF-Néel ordered (d), AF-zigzag
ordered (e), and AF-stripy ordered (f), with only the transition-metal
ions shown. Up (down) spins are represented by black filled-in (open)
circles. The crystal structure is drawn using VESTA [32].
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FIG. 2. (Color online) The ground-state magnetic phase diagram
for our spin model as a function of J1/J3 and J2/J3. Since our
calculation finds J3 to be always AF, only J3 > 0 is considered.
Spins are treated as classical degrees of freedom. All compounds
studied are located at corresponding parameter values. Open symbols
are positions under tensile strains with arrows indicating the change
from the unstrained cases.

magnetic structure, we consider the Heisenberg model on a
honeycomb lattice,

H =
∑

⟨ij⟩
J1S⃗i · S⃗j +

∑

⟨⟨ij⟩⟩
J2S⃗i · S⃗j +

∑

⟨⟨⟨ij⟩⟩⟩
J3S⃗i · S⃗j , (1)

where J1,2,3 are the exchange interactions between NN, second
NN, and third NN spins. Previous studies have shown that
it is necessary to include both J2 and J3 to fit the spin
wave dispersion from inelastic neutron scattering data [18,24].
In addition, considering only J1 would yield either FM or
AF-Néel order, while other magnetic ground states have been
found experimentally. To compute the exchange interactions,
we consider the following four possible magnetic ground
states: FM, AF-Néel, AF-zigzag, and AF-stripy, as shown in
Figs. 1(c)–1(f). The ground-state phase diagram for our model
in Eq. (1) is shown in Fig. 2 as a function of J1/J3 and J2/J3.
Here J3 is assumed to be positive, as it turns out to be the
case for all the compounds we studied. It is clear that not only
J1, but also J2 and J3, play an important role in deciding the
magnetic ground state.

III. EXCHANGE INTERACTIONS

A. Computation details

With the above observation, the magnetic ground states of
ABX3 compounds are examined using DFT employing the
projector augmented wave [34–36] method encoded in the
Vienna ab initio simulation package [36] with the generalized
gradient approximation in the parametrization of Perdew,
Burke, and Enzerhof [37,38]. We use Hubbard U terms (4 eV
for Cr and 5 eV for Mn) [39,40] to account for strong
electronic correlations as suggested by Dudarev et al. [41].
Our results were qualitatively insensitive to the different U ′s
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Analogy

Electrons (fermions) Magnons (Bosons)

         SOC:       DMI:

      Electron spin:     Magnon chirality:

“Datta-Das” device     Antiferromagnetic spin-FET

rV ·(� ⇥ p) Dij · (Si ⇥ Sj)

!! !!
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“Spintronics” “Chiralitronics”



Summary

• Easy-axis antiferromagnet: magnon chirality         spin

• Dzyaloshinskii-Moriya interaction: spin-orbit coupling

• 1-d: Magnon Faraday Effect

• 2-d: Magnon Spin Nernst Effect

Thermal generation of magnon spin current 
in antiferromagnet without magnetic field 

R. Cheng, S. Okamoto, and D. Xiao, accepted by PRL, arXiv:1606.01952
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