

Basic Theory of Antiferromagnets I

Helen Gomonay

Johannes Gutenberg Universität Mainz

September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss

Take-home message

- Antiferromagnets: Neel order parameter, distinguish between **micro** and **macro** description!
- Two types of exchange, exchange enhancement
- Newtonian-like dynamics vs gyrotropic dynamics in FM

Motivation

 $\mathsf{FM} \Rightarrow \mathsf{AFM}$

Application

- High frequencies
- Zero magnetization
- Magnetomechanical coupling
- Combined with
 semiconductors

New physics

- Variety of structures
- Nontrivial dynamics
- Spin-orbit coupling
- Complicated, less studied

Outline

- Basics of antiferromagnetism: exchange interactions, Neel states, magnetic sublattices
- Phenomenological description, spin-flop transitions
- Magneto elastic effects
- Basics of dynamics: equation of motion

Outline

- Basics of antiferromagnetism: exchange interactions, Neel states, magnetic sublattices
- Phenomenological description, spin-flop transitions
- Magneto elastic effects
- Basics of dynamics: equation of motion

Hierarchy of atomic interactions

energy, eV

AF exchange interactions

- Superexchange (insulators)
- RKKY (4-f metals)
- Exchange in 3-d metals
- Double exchange (transition metal oxides) + +
- **DMI** (anisotropic exchange)

7

30

SPIN PHENOMENA INTERDISCIPLINARY CENTER

Quantum state vs Neel state

$$\hat{H} = \sum_{j,k} J_{jk} \hat{\mathbf{S}}_{j} \hat{\mathbf{S}}_{k}$$

Quantum state, T=0

$$|\psi\rangle = \sum_{\{j\}} c_{\{j\}} |S_{z1}\rangle |S_{z2}\rangle \dots |S_{zj}\rangle |S_{zj+1}\rangle$$

Quantum state vs Neel state

$\mathbf{S}_{1} = -\mathbf{S}_{2}$

$$\{\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_j, \mathbf{s}_{j+1}\}$$

Bryan Gallagher: afternoon session

Sublattices

Sublattice magnetizations (Neel, 1948)

$$\mathbf{M}_{k}(\mathbf{r}) = \frac{g}{N} \sum_{\tau_{j}} \mathbf{S}_{k}(\mathbf{r} + \tau_{j})$$

and order parameters

Symmetry relations: $2_{[110]}$: $M_1 \leftrightarrow M_2$

Order parameter (Neel vector):

$$L=M_1-M_2$$

NiO, IrMn

Magnetization: $M_{AF} = M_1 + M_2 \approx 0$

$$L \perp M_{AF}$$
, $|L| \approx 2M_s$

Noncollinear structures

$$2_{[110]}: \mathbf{M}_1 \Leftrightarrow \mathbf{M}_2, \mathbf{M}_3 \Leftrightarrow \mathbf{M}_3 \\ 3_{[111]}: \mathbf{M}_1 \to \mathbf{M}_2 \to \mathbf{M}_3$$

Order parameters (Neel vectors):

 $L_1 = M_1 + M_2 - 2M_3 L_2 = M_1 - M_2$

Magnetization:
$$M_{AF} = M_1 + M_2 + M_3 \approx 0$$

IrMn, Mn₃NiN

Variety of AFM structures

Take-home messages

- AF = variety of exchange mechanisms
- AF = metals, insulators and in between
- AF = variety of structures
- Macroscopic description = sublattice magnetizations

Outline

- Basics of antiferromagnetism: exchange interactions, Neel states, magnetic sublattices
- Phenomenological description, spin-flop transitions
- Magneto elastic effects
- Basics of dynamics: equation of motion

Hierarchy of interactions

Free energy, Landau approach

Low temperature

 $T, H \ll J_{\text{inter}}$

$$M_{\rm AF} \ll L, \quad L = 2M_s \approx const$$

Symmetry-based modeling

$$w = \frac{1}{2} J_{\text{inter}} \mathbf{M}_{\text{AF}}^2 - \mathbf{M}_{\text{AF}} \mathbf{H} + \frac{1}{2} A \left(\nabla \mathbf{L}\right)^2 + \frac{1}{2} K_{\text{anis}}^{(2)} L_z^2 - \frac{1}{4} K_{\text{anis}}^{(4)} \left(L_x^4 + L_y^4\right)$$

Equilibrium state

Principle of energy minimum:

$$\delta F = \delta \int w dV = 0$$

Exchange approximation: excluding **M**_{AF}

$$\mathbf{M} = \frac{1}{4J_{\text{inter}}M_s^2} \mathbf{L} \times (\mathbf{H} \times \mathbf{L})$$

$$w_{\text{Zeeman}} = -\frac{(\mathbf{L} \times \mathbf{H})^2}{8J_{\text{inter}}M_s}$$

$$\mathbf{L} \wedge \mathbf{M}_1 \qquad \mathbf{M}_2$$

$$\mathbf{M}_2 \qquad \mathbf{H}_3$$

Spin-flop transition

$$w = \frac{H_{\text{anis}}^{\|}}{8M_s} L_z^2 - \frac{H_{\text{anis}}^{\perp}}{32M_s} \left(L_x^4 + L_y^4 \right)$$

Possibility for information coding!

Spin-flop transition

Spin-flop transition

$$H > H_{\rm sf} = \sqrt{2J_{\rm inter}H_{\rm anis}^{\perp}}$$

Exchange enhancement

S

Take-home messages

- Macroscopic description: order parameters and magnetization vector
- Inter-sublattice exchange exchange enhancement
- Static magnetic field quadratic effects
- Equivalent states- information coding
- Spin-flop transition information control

Outline

- Basics of antiferromagnetism: exchange interactions, Neel states, magnetic sublattices
- Phenomenological description, spin-flop transitions
- Magneto elastic effects
- Basics of dynamics: equation of motion

Hierarchy of atomic interactions

energy, eV

Magnetoelastic interactions

Covalent bonds \Rightarrow spin-orbit coupling \Rightarrow mag.-el.

$$w_{\rm me} = \lambda_{jklm} u_{jl} L_k L_m$$

$$w_{\rm el} = \frac{1}{2} c_{jklm} u_{jl} u_{km}$$

Spontaneous striction:

$$\hat{u}_{ ext{spon}} = -rac{\hat{\lambda}_{ ext{me}}}{c'} \mathbf{L} \otimes \mathbf{L}$$

Spontaneous striction

Magnetoelastic anisotropy

•Additional 4-th order anisotropy

•Variation of potential barrier

Example: domain walls

Elastic dipoles: long-range forces

Shape-induced effects

Inhomogeneous sample, destressing energypy

$$W_{\text{destr}} = K^{\text{shape}} \left(\frac{a}{b}\right) \left\langle L_x^2 - L_y^2 \right\rangle^2$$

Magnetostriction and stress

Take-home message

- Magnetostriction = source of additional anisotropy
- Orientation domains = magnetoelastic
- Shape anisotropy = magnetoelastic
- Different effects in nano and macrosamples

Outline

- Basics of antiferromagnetism: exchange interactions, Neel states, magnetic sublattices
- Phenomenological description, spin-flop transitions
- Magneto elastic effects
- Basics of dynamics: equation of motion

Spin Torques in antiferromagnet

Hierarchy of interactions

Exchange enhancement

Solid-like dynamics

 $T, H << J_{inter}$

Equations of motion

Equation of motion

Take-home messages

- AF: dynamics magnetisation
- AF: inertia due to exchange
- Dynamics = balance equation for magnetizations

Conclusions

- AF different from FM
- Field effects => weak
- Exchange interaction => important for dynamics
- Strong magneto elastic effects

Thank you!

Surface vs bulk anisotropy

Shape-induced effects

Homogeneous sample, shape-induced anisotropy

$$W = V \left[K_{\perp}^{\text{anis}} \left(L_x^4 + L_y^4 \right) + K^{\text{shape}} \left(a / b \right) L_x^2 \right]$$

$$K_{\text{bias}} > K_{\text{shape}}\left(\frac{a}{b}\right) = 0$$
 $K_{\text{bias}} < K_{\text{shape}}\left(\frac{a}{b}\right)$

Magnetoelastic interactions

Covalent bonds \Rightarrow spin-orbit coupling \Rightarrow mag.-el.

$$w_{\rm m-e} = \lambda_{jklm} u_{jk} L_l L_m$$

Spontaneous striction:

V

$$\hat{u}_{
m spon} = -rac{\hat{\lambda}_{
m me}}{c'} {f L} \otimes {f L}$$

Basic Theory of Antiferromagnets II

Helen Gomonay

Johannes Gutenberg Universität Mainz

September 26, 2016 Antiferromagnetic Spintronics Waldhausen Schloss

Take-home message

- Exchange enhancement ⇒ fast antiferromagnetic dynamics
- Antiferromagnetic states can be effectively manipulated by spin and charge current

Motivation

- All-electrical control and manipulation of AF states
- Information and data storage with AF

Outline

- Dynamics: spin-waves
- Dynamics: domain walls
- Current-induced dynamics
- Switching and STO

Outline

- Dynamics: spin-waves
- Dynamics: domain walls
- Current-induced dynamics
- What is beyond?

Hierarchy of interactions

Spin waves as "classical" excitations

Circular polarised modes

Magnetoelastic gap

Large sample: "frozen" lattice

$$\tau_{\text{sound}} \propto \frac{d}{s} \qquad d = 1 \text{ mm}, \tau_{\text{sound}} \propto 10^{-6} \text{ sec}, \quad \tau_{\text{mag}} \propto 10^{-12} \text{ sec}$$
$$\hat{u}^{\text{spon}} = -\frac{\hat{\lambda}}{c} \mathbf{L} \otimes \mathbf{L} = const$$
$$H_{\text{anis}} \rightarrow H_{\text{anis}} + 2M_s \lambda u^{\text{spon}}$$
$$\omega_{\text{AFMR}} = \gamma \sqrt{J_{\text{inter}} \left(H_{\text{anis}} + 2M_s \lambda u^{\text{spon}}\right)}$$

Magnetoelastic waves

Take-home messages

- Spin-wave spectra: many modes
- Spin waves transfer magnetization
- Exchange enhancement
- Magneto elastic gap, size effects

Outline

- Dynamics: spin-waves
- Dynamics: domain walls
- Current-induced dynamics
- Switching and STO

Below Walker breakdown in FM

13

Anatomy of FM DW motion

Above Walker breakdown in FM

Velocity

Field

No Walker breakdown in AFM

16

Anatomy of AF DW motion

Dynamics of DW in AF and FM

Field

Velocity

18

DW motion: "relativistic" dynamics

Take-home messages

- No Walker breakdown
- Small mass and exchange enhancement
- Relativistic dynamics

Ulrich Rössler: today and tomorrow session

Outline

- Dynamics: spin-waves
- Dynamics: domain walls
- Current-induced dynamics
- Switching and STO

Hierarchy of interactions

Spintronic: sd-exchange in FM

$$\hat{H}_{sd} = -J_{sd} \sum_{j} \hat{\mathbf{s}}_{j} \cdot \mathbf{S}_{j} \Rightarrow -J_{sd} \delta \mathbf{m} \cdot \mathbf{M}$$
Polarization:

$$\delta \mathbf{m} \propto \langle \hat{\mathbf{s}}_{j} \rangle \| \mathbf{M}$$

$$\mathbf{S}_{cattering:}$$

$$\hat{\Pi}_{in} - \hat{\Pi}_{out} \propto f(J_{sd}) \delta \mathbf{m} \otimes \mathbf{j}_{e}$$

$$\mathbf{f} \qquad \mathbf{f} \qquad \mathbf{f}$$

AF: sd-exchange?

$$\hat{H}_{sd} = -J_{sd} \sum_{j} \hat{\mathbf{s}}_{j} \cdot \mathbf{S}_{j} \Rightarrow -J_{sd} \delta \mathbf{m} \cdot \mathbf{M}_{AF}$$
Polarization:

$$\delta \mathbf{m} \propto \langle \mathbf{s}_{j} \rangle \| \mathbf{M}_{AF} \to 0$$
Scattering:

$$\hat{\Pi}_{in} - \hat{\Pi}_{out} \propto f(J_{sd}) \delta \mathbf{m} \otimes \mathbf{j}_{e}$$
Effective field:

$$\mathbf{H}_{sd} = J_{sd} \delta \mathbf{m}$$

$$\hat{\mathbf{J}} \quad \hat{\mathbf{J}} \quad \hat{\mathbf{J$$

Equations of motion

Magnetization \Rightarrow rotation

Spin transfer in AF and spin balance

$$\frac{d\mathbf{M}_{AF}}{dt} = \left(\hat{\mathbf{\Pi}}_{in} - \hat{\mathbf{\Pi}}_{out}\right)\mathbf{N} + \operatorname{sink}$$
$$\ddot{\mathbf{L}} - \gamma^2 J_{\text{inter}} \mathbf{H}_L = \left(\beta \frac{dI}{dt} + J_{\text{inter}} I\sigma\right)\mathbf{s} \times \mathbf{L} - \gamma \alpha_G J_{\text{inter}} \mathbf{L} \times \dot{\mathbf{L}}$$
H.Gomonay, V.Loktev,2008

$$m\ddot{x} + 2\gamma\dot{x} + \frac{dU}{dx} = F_{diss}$$

Outline

- Dynamics: spin-waves
- Dynamics: domain walls
- Current-induced dynamics
- Switching and STO

Dynamics in the dc spin current

$$\ddot{\mathbf{L}} - \gamma^2 J_{\text{inter}} \mathbf{H}_L = J_{\text{inter}} I \sigma \mathbf{s} \times \mathbf{L} - \gamma \alpha_G J_{\text{inter}} \mathbf{L} \times \dot{\mathbf{L}}$$

Critical current

Critical current

$$H_{\rm STT}^{\rm AF} = \sqrt{\alpha_G^2 H_{\rm an} J_{\rm inter} + \left(H_{\rm an}^{\parallel} - H_{\rm an}^{\perp}\right)^2}$$

FM vs AFM, possible dynamics near the critical current

Take-home messages

- Spin transfer = magnetisation = dynamics
- Exchange enhancement of spin
- Different dynamics of FM and AF

- Quantum fluctuations, quantum excitations
- Large fields ~ intersublattice exchange
- Ultrafast dynamics, magnetooptics
- Small AF particles (mesoscales)

Welcome to AF spintronics!