

Technische Universität München

Magneto-Transport

Hans Huebl

Deutsche Forschungsgemeinschaft Walther-Meißner-Institut Bayerische Akademie der Wissenschaften

Bayerische Akademie der Wissenschaften

Technische Universität München

Surf the Wave & Pump the Charge

Hans Huebl

Deutsche Forschungsgemeinschaft Walther-Meißner-Institut Bayerische Akademie der Wissenschaften

Electronics

electronics: only charge degree of freedom

Fairchild integrated circuit

Intel 4004 CPU

6

Þ

First Transistor

Spintronics / Spincurrents

Spin(elec)tronics: (only) spin degree of freedom

6 9

First Transistor

Êverspin

IBM Germany

Outline

pure spin currents spin Hall effect

spin Hall magnetoresistance

Charge transport in magnetic fields

– Hall effect, magnetoresistance

Literature: O'Handley, Modern Magnetic Materials (2014)

 \Rightarrow Hall effect impacts longitudinal resistance

Spin currents

Spin Hall physics

Literature: Tserkovnyak, Rev. of Mod. Phys. **77**, 1375 (2005) Sinova, Rev. of Mod. Phys. **87**, 1213 (2015) M. Wu & A. Hoffmann (eds.), Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications (Elsevier, 2014)

Spin Hall effect (SHE)

spin-orbit coupling: interaction between spin and charge motion

... spin-orientation dependent scattering
 (skew / side-jump / intrinsic (Berry phase) mechanisms)
... acts like a spin-orientation dependent Hall magnetic field
 ⇒ ↑ scattered left, ↓ scattered right

Spin Hall effect: charge current induces transverse spin current

$$\mathbf{J}_{\mathbf{s}} = \alpha_{SH} \, \left(\frac{\hbar}{2e}\right) \mathbf{J}_{\mathbf{c}} \times \mathbf{s}$$

spin Hall angle $\alpha_{SHE} = \sigma_S / \sigma_C$ parameterizes $J_C \leftrightarrow J_S$ conversion efficiency

Spin Hall effect (SHE) and inverse spin Hall effect (ISHE)

spin-orbit coupling: interaction between spin and charge motion

... spin-orientation dependent scattering
 (skew / side-jump / intrinsic (Berry phase) mechanisms)
... acts like a spin-orientation dependent Hall magnetic field
 ⇒ ↑ scattered left, ↓ scattered right

Spin Hall effect (SHE)

$$\mathbf{J}_{\mathbf{s}} = \alpha_{SH} \left(\frac{\hbar}{2e}\right) \mathbf{J}_{\mathbf{c}} \times \mathbf{s}$$

inverse spin Hall effect (ISHE)

$$\mathbf{J}_{\mathbf{c}} = \alpha_{SH} \left(\frac{2e}{\hbar}\right) \mathbf{J}_{\mathbf{s}} \times \mathbf{s}$$

Spin Hall effect & boundary conditions

Spin Hall effect:

charge current induces transverse spin current via SOC

 $\mathbf{J}_{\mathbf{s}} = \alpha_{SH} \left(\frac{\hbar}{2e}\right) \mathbf{J}_{\mathbf{c}} \times \mathbf{s}$

Spin Hall effect & boundary conditions

$$\mathbf{J}_{\mathbf{s}} = \alpha_{SH} \, \left(\frac{\hbar}{2e}\right) \mathbf{J}_{\mathbf{c}} \times \mathbf{s}$$

iSHE in Metallic F/N Nanostructures

Valenzuela & Tinkham, Nature **442**, 176 (2006).

Aluminium:

$$\alpha_{\rm SHE} = \frac{\sigma_{\rm SHE}}{\sigma_{\rm C}} \cong 1 \times 10^{-4}$$

Gold : α_{SHE} =0.0016Platinum : α_{SHE} =0.013 ... 0.11 (0.16)Bi, Bi/Ag, Ta : α_{SHE} =0.1 ... 0.3

22

detection of diffusive spin current via inverse spin Hall effect

-J_{c,drive}

Valenzuela & Tinkham, Nature **442**, 176 (2006). Mosendz *et al.*, Phys. Rev. Lett. **104**, 046601 (2010). Liu *et al.*, Science **336**, 555 (2012). Niimi *et al.*, Phys. Rev. Lett. **109**, 156602 (2012). ...and many more ...

M. Wu & A. Hoffmann (eds.), Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications (Elsevier, 2014)

Spin Hall effect & boundary conditions

 \Rightarrow spin Hall effect impacts longitudinal resistance (= SMR) !

Outline

pure spin currents spin Hall effect

spin Hall magnetoresistance

Coherent magnetization dynamics

- (Anti-)ferromagnetic Resonance
- Spin pumping (damping)
- Spin pumping (electrically detected)

Literature: Vonsovskii, Ferromagnetic Resonance (1964) Tserkovnyak, Rev. of Mod. Phys. **77**, 1375 (2005) Sinova, Rev. of Mod. Phys. **87**, 1213 (2015) M. Wu & A. Hoffmann (eds.), Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications (Elsevier, 2014)

Coherent magnetization dynamics

Magnetization dynamics

Magnetization dynamics

Magnetization dynamics

Resonance Frequency

example: no anisotropy, external magnetic field only

Resonance Frequency: Effects of Anisotropy

example: easy plane anisotropy, calculate resonance frequencies

resonator-based CW FMR

 $\frac{\partial \mathbf{W}}{\partial t} = \gamma \mathbf{M} \times \mu_0 (\mathbf{H}_0 + \mathbf{h}_1 + \dots)$

resonator dimensions = $n \lambda_{MW} / 2$ resonator determines MW frequency resonator quality Q > 1000

 \rightarrow experiments @ fixed MW frequency \rightarrow e_1 and h_1 spatially separated

Bruker biospin

Broadband magnetic resonance setup

Vector Network Analyzer

Vector Network Analyzer

Antiferromagnets

 H_{11}

Néel Temperature

antiferromagnet

two compensating sublattices

common antiferromagnets:

- Cr
- NiO
- Fe_2O_3
- MnF₂

Hagiwara et. al., J. Phys.: Condens. Matter 8 (1996) 7349-7354

 $H_C = (H_A^2 + 2H_A H_E)^{1/2}$

gain in Zeeman energy > loss in anisotropy energy

Antiferromagnetic Resonance

very high effective fields, $\lambda M > 100$ T possible \Rightarrow high frequencies

simultaneous precession of magnetisation of both sublattices

MnF₂: A prototypical antiferromagnet

W M M

Only easy axis anisotropy

$$B_{anisoptropy} = 0.8 T$$

 $B_{exchange} = 52 T$

T_N= 67 K

http://www.chem.uwimona.edu.jm:1104/courses/mnf2J.html

Mn²⁺

F-

Hagiwara et. al., J. Phys.: Condens. Matter 8 (1996) 7349-7354

Antiferromagnetic resonance MnF₂

F/N + microwave photons = spin battery

suggested by Tserkovnyak, Brataas & Bauer, PRL (2002)

Tserkovnyak, Phys. Rev. Lett. **88**, 117601 (2002). Brataas, Phys. Rev. B **66**, 060404 (2002). Tserkovnyak, Phys. Rev. B **66**, 224403 (2002). resonantly driven magnetization in F relaxes via the **emission of a spin current** into the adjacent N layer

🔿 spin pumping

$$\mathbf{J}_{\mathrm{s}} = \frac{\mathbf{I}_{\mathrm{s}}}{A} = \frac{\hbar}{4\pi} G_{\mathrm{r}} \left(\mathbf{m} \times \frac{d\mathbf{m}}{dt} \right)$$

 $G_{\rm r}$: spin mixing conductance, units $1/{\rm m}^2$

in F: additional damping

$$\alpha_{\rm SP} = G_r \frac{\gamma \hbar}{4\pi M_{\rm sat}} \frac{1}{t_{\rm F}} \eta$$

$$J_{\rm S}^{\rm circ} = \frac{\hbar}{2} v_{\rm MW} G_r \sin^2 \Theta$$

D. Wei et al., Nature Comm. **5**, 1 (2014)

in N: DC spin current

and

AC spin current ... see

F/N + microwave photons = spin battery

suggested by Tserkovnyak, Brataas & Bauer, PRL (2002)

Tserkovnyak, Phys. Rev. Lett. **88**, 117601 (2002). Brataas, Phys. Rev. B **66**, 060404 (2002). Tserkovnyak, Phys. Rev. B **66**, 224403 (2002). resonantly driven magnetization in F relaxes via the **emission of a spin current** into the adjacent N layer

🔿 spin pumping

$$\mathbf{J}_{\mathrm{s}} = \frac{\mathbf{I}_{\mathrm{s}}}{A} = \frac{\hbar}{4\pi} G_{\mathrm{r}} \left(\mathbf{m} \times \frac{d\mathbf{m}}{dt} \right)$$

 $G_{\rm r}$: spin mixing conductance, units $1/{\rm m}^2$

D. Wei et al., Nature Comm. **5**, 1 (2014)

AC spin current ... see

Spin pumping as a damping mechanism

1.0

M. Wu & A. Hoffmann (eds.), Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications (Elsevier, 2014)

F/N + microwave photons = spin battery

suggested by Tserkovnyak, Brataas & Bauer, PRL (2002)

Tserkovnyak, Phys. Rev. Lett. **88**, 117601 (2002). Brataas, Phys. Rev. B **66**, 060404 (2002). Tserkovnyak, Phys. Rev. B **66**, 224403 (2002). resonantly driven magnetization in F relaxes via the **emission of a spin current** into the adjacent N layer

🔿 spin pumping

$$\mathbf{J}_{\mathrm{s}} = \frac{\mathbf{I}_{\mathrm{s}}}{A} = \frac{\hbar}{4\pi} G_{\mathrm{r}} \left(\mathbf{m} \times \frac{d\mathbf{m}}{dt} \right)$$

 $G_{\rm r}$: spin mixing conductance, units $1/{\rm m}^2$

Tserkovnyak et al., Phys. Rev. Lett. 88, 117601 (2002). Saitoh et al., Appl. Phys. Lett. 88, 182509 (2006)

Typical sample dimensions $L \times W \times t = 3mm \times 1mm \times (10nm/10nm)$

Different materials

- works for many different F/platinum bilayers
- same sign of V_{DC} for φ=0° for all bilayers
- not MW rectification [MW-induced $J_c(t) \times m(t) \rightarrow V_{DC}$] but spin pumping!
- Similar spin-mixing conductance for all systems

Czeschka, Phys. Rev. Lett 107, 046601 (2011)

AFMR vs ED spin pumping MnF₂

Ross, J. Appl. Phys., 118 233907 (2015)

Spin pumping in MnF_2

difference signal under field inversion

Main spin pumping signal not due to spin pumping

Small difference signal indicates spin current injected into Pt

Ross, J. Appl. Phys., 118 233907 (2015)

Spin Hall magnetoresistance

– Spin Hall magnetoresistance

Literature: Sinova, Rev. of Mod. Phys. **87**, 1213 (2015) Nakayama, Phys. Rev. Lett. **110**, 206601 (2013) Althammer, Phys. Rev. B **87**, 224401 (2013) Chen, Phys. Rev. B **87**, 144411 (2013) Vlietstra Phys. Rev. B **87**, 184421 (2013)

....

YIG

YIG

if $\tau_{\text{STT}} \propto \mathbf{M} \times (\mathbf{M} \times \mathbf{s})$ is finite

 \rightarrow outflow of J_s into YIG

enhanced dissipation in Pt → larger Pt resistance

YIG

if $\tau_{\text{STT}} \propto \mathbf{M} \times (\mathbf{M} \times \mathbf{s})$ is finite

 \rightarrow outflow of J_s into YIG

enhanced dissipation in Pt → larger Pt resistance $\tau_{\text{STT}} \propto \mathbf{M} \times (\mathbf{M} \times \mathbf{s}) = 0$

 \rightarrow open boundary conditions for J_s

reduced dissipation → smaller Pt resistance

SMR mechanism J_{s,back} Ρt JS S J_{s,YIG} Μ YIG Μ

Spin Hall MR (SMR): *R* smallest for M | | s , larger otherwise

$$R = R_0 - R_1 (\mathbf{m} \cdot \mathbf{s})^2$$
$$= R_0 - R_1 \cos^2(\alpha)$$

PRL 110, 206601 (2013)

Spin Hall MR (SMR): *R* smallest for M | | s , larger otherwise

$$R = R_0 - R_1 (\mathbf{m} \cdot \mathbf{s})^2$$
$$= R_0 - R_1 \cos^2(\alpha)$$

PRL **110**, 206601 (2013)

Measuring resistance

 $R = \frac{V}{I}$

Lead resistance influences results

Measuring resistance

 $R = \frac{V}{I}$

Lead resistance influences results

4 wire method probes device physics

Measuring resistance — switching techniques

$$R = \frac{V}{I}$$

$$V_{\rm res}(I) = \frac{1}{2} \left(V(+I) - V(-I) \right)$$

Contains all odd terms in I: ightarrow resistive effects $\,\propto I$

$$V_{\text{therm}}(I) = \frac{1}{2} \left(V(+I) + V(-I) \right)$$

Contains all even terms in I: \rightarrow thermal effects $\propto I^2$

Schreier et al., Appl. Phys. Lett. 103, 242404 (2013)

SMR fingerprint

Spin Hall MR (SMR): R smallest for M||s (viz. M||t) , larger otherwise

SMR amplitude: $\Delta R/R \cong 4 \times 10^{-4}$

Extraction of spin Hall angle from SMR

Pt thickness dependence \rightarrow spin Hall angle and spin diffusion length in Pt

Acknowledgements

"Magnetiker"

Sebastian T. B. Goennenwein **Rudolf Gross** Matthias Althammer Mathias Weiler Stephan Geprägs Kathrin Ganzhorn **Stefan Klingler** Matthias Pernpeintner **Richard Schlitz Tobias Wimmer** Sybille Meyer Hannes Maier-Flaig Franz Czeschka Andreas Brandlmayer

Gerrit Bauer Akash Kamra Yunshan Cao Joe Barker Y.-T. Chen

Summary

pure spin currents spin Hall effect

spin Hall magnetoresistance

