
Theory	of	spin	transport	in	disordered	antiferromagnets
Aurelien	Manchon,	Collins	Akosa,	Sumit Ghosh

مانشوناوریلین
King	Abdullah	University	of	Science	and	Technology

Thuwal,	Saudi	Arabia



I. Premises:	G-type	antiferromagnet

II. Drift-diffusion	in	antiferromagnets

III. Topological	transport	in	textures

IV. Antiferromagnetic	topological	insulators



I. Premises:	G-type	antiferromagnet

II. Drift-diffusion	in	antiferromagnets

III. Topological	transport	in	textures

IV. Antiferromagnetic	topological	insulators



∂t
!mA = −γ

!mA ×
!
H + γ / 2( )HE

!mA ×
!mB +α

!mA ×∂t
!mA +τ⊥

!mA ×
!p+τ ||

!mA ×
!p× !mA( )

∂t
!mB = −γ

!mB ×
!
H − γ / 2( )HE

!mA ×
!mB +α

!mB ×∂t
!mB −τ⊥

!mB ×
!p+τ ||

!mB ×
!p× !mB( )

Staggered	
field-like

Damping-likeMagnetic	Field Exchange

Let	us	consider	a	bipartite	collinear	antiferromagnet

I. G-type antiferromagnet
Current-driven dynamics
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SA+SB:	uniform spin	accumulation->ac Torque
SA-SB:	staggered spin	accumulation->dc Torque
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Gomonay and	Letkov,	Low	Temperature	Physics	2014
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I. G-type antiferromagnet
Band structure and eigenstates
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Let’s	take	the	simplest-minded	antiferromagnet

A-B

See	also	Cheng	&	Niu,	PRB	86,	245118	(2012)
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Polarization	of	the	local	density	of	states,	but	no	spin	current	out	of	an	antiferromagnet!!

I. G-type antiferromagnet
Band structure and eigenstates
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NiO (Mott	insulator)

I. G-type antiferromagnet
Band structure and eigenstates

MnPt3 (metal)FeRh (metal)
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II. Drift-diffusion spin transport
From quantum kinetics to drift-diffusion

Drift-diffusion	theory	in	metals

Quantum	kinetic	equation

Manchon,	arXiv:1608.00140v1	

Ĥ = γNτ̂ x ⊗ 1̂+Δτ̂ z ⊗ σ̂ ⋅
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Antiferromagnets ??

Objective:	derive	the	drift-diffusion	equation	in	a	G-type	AF



Site	A Site	B Current Coupling

A-B	Coupling	

Manchon,	arXiv:1608.00140v1	

II. Drift-diffusion spin transport
From quantum kinetics to drift-diffusion



II. Drift-diffusion spin transport
“Valet-Fert” Theory for antiferromagnets

SA+SB:	uniform	spin	accumulation
SA-SB:	staggered	spin	accumulation

SA SBA B

Ø In	the	diffusive	regime,	an	antiferromagnet behaves	like	an	anisotropic	normal	metal
Ø The	source	of	uniform spin	accumulation	is	the	spin	current
Ø The	staggered	spin	accumulation	is	a	correction	to	the	uniform one

We	obtain	the	drift-diffusion	equation	for	the	uniform	spin	density

dephasing relaxation

Lifetime/precession	time

Manchon,	arXiv:1608.00140v1	



II. Drift-diffusion spin transport
Antiferromagnetic spin-valves and bilayers

AF
F

np

Spin	Torque	in	F/AF	spin-valve

Everything	works	like	Valet-Fert theory
The	torque	is	robust	and	damping-like

Spin di↵usion and torques in disordered antiferromagnets 11

third terms in Eq. (36)]. This means that, in principle, due to the spin relaxation

anisotropy in the antiferromagnet, a torque can be exerted from the antiferromagnet on

the ferromagnet. Finally, we also note that the components of the spin density that are

proportional to ⌘k�
R

? � ⌘?�
R

k are also proportional to cos ✓, i.e. they vanish when the

ferromagnetic order parameter is orthogonal to the antiferromagnetic order parameter,

a feature already noticed by Haney and MacDonald [19].

Let us now address the torque exerted by the ferromagnet on the antiferromagnet.

By definition, the torque arising from the staggered spin density reads
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Again, the torque is dominated by an in-plane component and possesses a small out-

of-plane component, the latter vanishing when the order parameters are orthogonal to

each other. In the limit where the spin relaxation is isotropic in the antiferromagnet
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The current-driven dynamics of the in-plane torque has been investigated by Gomonay

[36, 37] and we refer the reader to these works for further details.

3.3. Antiferromagnetic bilayer

In the previous section, we showed that the spin torque arising from a ferromagnetic

polarizer in a spin-valve configuration is e�cient in manipulating the order parameter

of an antiferromagnet. Yet, the fabrication of such a device remains challenging and

a much simpler configuration is a magnetic bilayer that consists of an antiferromagnet

deposited on top of a heavy metal [46, 47]. In the heavy metal, spin-orbit coupling is

large enough to enable spin Hall e↵ect. This configuration has been recently investigated

experimentally by Reichlová et al. [18]. In the heavy metal, the uniform spin density

fulfills the following transport equations [48, 49]
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where the second term in Eq. (40) stands for the spin Hall e↵ect induced by the charge

gradient (or equivalently, an electric field). In the configuration depicted on Fig. 2(c),
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where the second term in Eq. (40) stands for the spin Hall e↵ect induced by the charge

gradient (or equivalently, an electric field). In the configuration depicted on Fig. 2(c),

Antiferromagnet/normal	metal	bilayer

Again,	the	torque	is	damping-like	and	
resemble	the	one	in	ferromagnetic	bilayers

Manchon,	arXiv:1608.00140v1	



2 for two configurations of the magnetic order, n
y

= 1
(solid line) and n

y

= 0 (dashed line). In the normal metal
(N), µ

y

is driven by spin Hall e↵ect, while in the anti-
ferromagnet (AF) µ

y

simply relaxes with di↵erent decay
rates depending on the direction of the Néel order pa-
rameter. Therefore, the change in spin-dependent elec-
trochemical potential is associated with the anisotropy
of the spin relaxation length characteristic of collinear
antiferromagnets.

FIG. 2. (Color online) Spatial profile of the spin-dependent
electrochemical potential µy when the Néel order parameter
lies normal (solid line) and along (dashed line) to the current
direction. In these calculations, dN = 10 nm, and dAF = 5
nm.

Injecting Eq. (8) into Eq. (13), one obtains the ex-
pression of the spin Hall magnetoresistance,
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Equation (14) presents striking similarities with the one
derived in ferromagnetic bilayers15. In the language of
the mixing conductance37, one can identify the real part
of the interfacial spin mixing conductance,

2ReG"# = �AF
? tanh

dAF
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?
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?

. This relation is revealing as the spin Hall magnetore-
sistance in ferromagnetic and antiferromagnetic bilayers
arise from the same source, i.e. the di↵erent interfacial

spin resistance when the (ferro or antiferro) magnetic or-
der lies along the direction z⇥ j

c

or normal to it. Recent
theories have computed the spin mixing conductance for
special cases of antiferromagnets41,42. In our theory, this
spin mixing conductance is associated with the transverse
spin dephasing in antiferromagnets. With our set of pa-
rameters, we obtain 2ReG"# ⇡ 1.7⇥ 1015 ⌦�1· m�2 (for
dAF � �AF

? ), a value comparable to that of ferromagnets.
Figure 3(a,b) represents the spin Hall magnetoresis-

tance as a function of the thickness of (a) the normal
metal and (b) the antiferromagnet. The dependence
as a function of the normal metal thickness shows a
peak, which reveals a competition between the progres-
sive build-up of the spin Hall e↵ect in the normal metal
(for dN . �N

sf) and the shunting of the current (for
dN > �N

sf). The dependence as a function of the anti-
ferromagnet thickness shows a similar behavior with a
sharp increase at small thicknesses, corresponding to the
quenching of the transverse spin-dependent electrochem-
ical potential in the antiferromagnet (for dAF . �AF

? ),
and a slow decay corresponding to the shunting of the
current through the antiferromagnet (for dAF > �AF

? ).

FIG. 3. (Color online) Spin Hall magnetoresistance ratio as a
function of the thickness of (a) the normal metal (with dAF =
5 nm) and (b) the antiferromagnet (with dN = 10 nm). In
these calculations, the spin relaxation length of the normal
metal has been taken at �N

sf = 2 (black), 5 (red) and 10 nm
(blue), respectively.

The spin Hall magnetoresistance predicted in this
work should be observable in any multilayers involv-
ing collinear antiferromagnets. The experimental ob-
servation of this e↵ect requires manipulating the Néel
order parameter, which can be achieved using ex-
change bias with a proximate ferromagnet27, field-cooling
procedure25,43, or spin-orbit torque in the case of non-
centrosymmetric antiferromagnets17. Noticeably, this ef-
fect is not limited to metals and should be observable in
multilayers comprising insulating antiferromagnets such
as NiO, CoO, Cr2O3 etc. In this case, the interfacial mix-
ing conductance is associated with the absorption the
spin current mediated by (coherent or incoherent) spin
waves inside the antiferromagnetic insulator42,44. Re-
cent experiments suggest that the absorption length can
be quite large45–47 (Wang et al. have reported a decay
length of 10 nm in NiO45), and the associated mixing
conductance can be much larger than their ferromagnetic

3

Manchon,	arXiv:1609.06521
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II. Drift-diffusion spin transport
Spin Hall Torque and Magnetoresistance

Ø Not	limited	to	collinear	AF!
Ø Also	expected	in	NiO,	CoO etc.



n AF

Let	us	finally	consider	a	thin	antiferromagnet embedded	between	dissimilar	interfaces

Js

The	antiferromagnet
possesses	spin	Hall	effect

S=0

Js=0

Again,	we	obtain	the	torque	

Precession
(uniform-to-staggered

Spin	conversion)

Spin	Hall	effect

Spin	relaxation Damping-like

II. Drift-diffusion spin transport
Self-torque in single antiferromagnet
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III. Topological transport in textures
Antiferromagnetic domain walls

C.A.	Akosa

Tight-binding	calculations	using	KWANT*

*Kwant-project.org
Vanishing	DW-MR

Humongous	DW-MR
Vanishing	DW-MR
Enhanced	DW-MR
Vanishing	DW-MR



III. Topological transport in textures
Antiferromagnetic skyrmions
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Gigantic	topological	spin	Hall	effect!

qTH=0.5%

qTSH=10%!!

See	also	Ndiaye,	Akosa,	Manchon	arXiv:1609.05480	

Spin	current	2D	map



III. Topological transport in textures
Antiferromagnetic skyrmions

“Emergent	magnetic	field”	model

Torque	in	ferro-skyrmion Torque	in	antiferro-skyrmion

Ez
aw

a,
	N
at
	C
om

.	2
01
5

Ø F-skyrmion:	topological	torque	induces	transverse	motion
Ø AF-skyrmion:	topological	torque	induces	longitudinal	motion
Ø The	smaller the	AF-skyrmion,	the	larger the	velocity

Spin	current

Torque

AF-skyrmion velocity
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Courtesy	of	Hyunsoo Yang,	NUS
Spin-Orbit	Torques	with	Topological	Insulators

IV. Antiferromagnetic topological insulators
The new frontier?



Dirac	surface	state
+	Rashba surface	state
+SOC-coupled	bulk	states

IV. Antiferromagnetic topological insulators
The new frontier?

Spin-Orbit	Torques	with	Topological	Insulators

Wray,	Nature	Physics	7,	32	(2011)

Ø What	is	the	nature	of	the	
torque	in	F/TI?

Ø Can	we	have	magnetic	
order	while	keeping	the	
topological	protection

Chang,	Science	2013;	Nat.	Mat.	2015
Kou,	PRL	2013;	Nat.	Comm.	2015

The	“true”	signature	of	topological	states
Quantum	Anomalous	Hall	effect



IV. Antiferromagnetic topological insulators
The new frontier?

Ferromagnetic	surface

Antiferromagnetic	surface



Ghosh and	Manchon,	arXiv:1609.01174	

IV. Antiferromagnetic topological insulators
Robustness against disorder

S.	Ghosh



Ghosh and	Manchon,	arXiv:1609.01174	

IV. Antiferromagnetic topological insulators
Spin-Orbit Torques

Ø Spin-polarized	edge	states	are	robust
Ø Onset	of	staggered	spin	density	upon	disorder
Ø Now…3D	AF-TI
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