

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

Antiferromagnetic Textures II ULRICH K. RÖSSLE IFW DRESDEN

SPICE Workshop Antiferromagnetic Spintronics 26.-30/09/2016 Schloss Waldthausen

u.roessler@ifw-dresden.de

A Skyrmion (in generalized sense) is a

multidimensional, static, topological soliton

a particle-like solution of a non-linear field equation

Here: localized spin-states in certain 2 dimensional non-centrosymmetric magnets

Topology of textures

Topology of textures

Topologically non-trivial texture in XY-ferromagnet or antiferromagnet

Idea of homotopy – much reduced

- Go in loops after loops / how many are there ? – see whether loops are the same or trivial
- Model 1D XY magnet 1 degree of freedom turn angle φ

Physical space R a circle byOrder parameter manifoldstereographic projectioncircle S1

Winding number w

Set of homotopically different loops form the Fundamental group π_1 (S¹) What are the topological invariants counted by w? Which group is π_1 (S¹)?

Charge 1 vortices

charge -1 antivortex

Charge 1 vortices

charge -1 antivortex

No line defects in Heisenberg-like magnets $\pi_1(S^2) = 0$

Skyrmions

Map S^2 to S^2

"Wrapping number" $Q = (1/8 \pi) \iint \varepsilon^{xy} \mathbf{m} \cdot (\partial_x \mathbf{m} \times \partial_y \mathbf{m}) \, dx \, dy$ is quantized / integer *Pontryagin index* 2nd Homotopy group $\pi_2 (S^2) = \mathbb{Z}$ Skyrmion number density topological charge density

 $\mathbf{q} = (1/8 \ \pi) \ \mathbf{\varepsilon}^{xy} \ \mathbf{m} \cdot (\partial_x \ \mathbf{m} \ \times \partial_y \ \mathbf{m})$

a local density !

π_2 (S²) = **Z** corresponding defect ?

Bloch points / monopoles

Feldtkeller 1967

Bloch points

Feldtkeller singularities

Hedgehogs

Required to create a skyrmion in a perpendicularly magnetized film

relevant in magnetism

- $\pi_1(S^1) = \mathbb{Z}$ vortices in XY magnets
- $\pi_1(S^2) = 0$ no line defects in Heisenberg-like magnets
- π_2 (S²) = **Z** skyrmions & Bloch points
- $\pi_1(SO(3)) = \mathbb{Z}_2$ vortices in non-collinear magnets
- π_3 (S²) = **Z** Hopf fibration !

still awaited

Kleman Points, Lines Walls & Mermin RMP

2nd set of conclusions

- Topology is a weak concept
- No statement about stability & geometry

Strength of topological classification Defines countable units in continua defects textures

Skyrmions in condensed matter

Skyrmions in magnets

Topologically non-trivial solutions in 2D Heisenberg magnets "Belavin-Polyakov solitons" – exact solutions

$$w = A \iint (\partial_i \mathbf{m} \cdot \partial_i \mathbf{m}) \, \mathrm{d}x \, \mathrm{d}y$$
, $|\mathbf{m}| = 1$

Indifferent stability -

scale independent finite energy solutions.

Stabilization mechanisms

Classical Skyrme-type models Add higher order gradient terms to the field Lagrangian, e.g.,

$$w = \iint A \left(\partial_i \mathbf{m} \cdot \partial_i \mathbf{m} \right) + K(\Delta \mathbf{m} \cdot \Delta \mathbf{m}) \, \mathrm{d}x \, \mathrm{d}y$$

Abanov, Pokrovskii, PRB 1998

$$w = \iint A (\partial_i \mathbf{m} \cdot \partial_i \mathbf{m}) + B (F_{ij})^2 \, \mathrm{d}x \, \mathrm{d}y$$
$$F_{ij} = \mathbf{m} \cdot (\partial_i \mathbf{m} \times \partial_j \mathbf{m})$$

Faddeev Niemi model 1997

Hubert model

N

i=1

Fig. 1. Helical (a) and fan (b) structures.

Exchange frustrated magnetic XY-magnet

$$E = \sum \left[-J_1 \cos(\theta_i - \theta_{i+1}) - J_2 \cos(\theta_i - \theta_{i+2})\right],$$

$$\Phi = \int_{-\infty}^{\infty} \left[\left(\frac{\mathrm{d}\theta}{\mathrm{d}x} \right)^4 + a \left(\frac{\mathrm{d}^2\theta}{\mathrm{d}x^2} \right)^2 - 2b \left(\frac{\mathrm{d}\theta}{\mathrm{d}x} \right)^2 + g(\theta) \right] \mathrm{d}x.$$

Multiply modulated and skyrmionic phases Lattice-based simulations of exchange-frustrated ferromagnets A.O. Leonov, M. Mostovvoy, Nat. Comm. 2015

P.I. Melnichuk, UKR, A.N. Bogdanov, K.-H.Müller, JMMM 248, 142 (2002)

Stabilization of multidimensional solitons by a classical Skyrme – like mechanism

- Theories introduce additional lengths scales
- no systematic expansion in gradient terms
- specific model requirements
- tremendous technical difficulties

Dzyaloshinskii models

A closer look : free energy expansion for modulated states (Dzyaloshinskii 1964)

Expansion of any modulated state

$$w_L = \phi^* \left[\alpha (T - T_0) + \delta (k - k_0) + \omega (k - k_0)^2 + \dots \right] \phi$$

in irreps for the little group G_{k0} and surrounding irreps with the same symmetries in k-space.

Environment of \mathbf{k}_0 has v degrees of freedom. Number μ of different Lifshitz invariants given by coefficients δ

Weak Lifshitz criterion (Michelson 1978)

A few Lifshitz invariants are allowed,

 $\mu \leq \nu$,

not more than degrees of freedom for the irreps of the little group.

Example: exchange J_1-J_2 helimagnets with a unique propagation vector direction along a line of symmetry, $\mu = \nu = 1$ (hexagonal Dy ...) Violation of weak Lifshitz criterion Chiral cubic / isotropic ferromagnets

Generalized (free) energy density

$$f = \eta A (\nabla m)^2 + Am^2 \sum_{i,j} (\partial_i n_j)^2 + f_0(m) + f_D(m)$$

specialized for an isotropic (cubic) ferromagnet
$$f_D = D \mathbf{m} \cdot \nabla \times \mathbf{m}$$

$$f_0 = a(T - T_C)m^2 + bm^4 + \text{h.o.t.}$$

$$\mathbf{v} = \mathbf{0} < \mu = \mathbf{3}$$

Systems with Lifshitz-type invariants

1. Landau theory for structural phase transitions, e.g. Pnma \rightarrow P2₁/m

$$\kappa \left[\zeta_1 \frac{\partial \zeta_2}{\partial x} - \zeta_2 \frac{\partial \zeta_1}{\partial x} \right]$$

2. Dzyaloshinsky-Moriya interactions in magnetic materials

$D\mathbf{m}\cdot\nabla\times\mathbf{m}$

3. Lifshitz invariants in ferroelectrics with noncentrosymmetric parent

$$rac{dP_x}{dz}P_y\,-\,rac{dP_y}{dz}P_x$$

4. Multiferroics – magnetic order + polarization

$$\gamma \mathbf{P} \cdot [\mathbf{M}(\nabla \cdot \mathbf{M}) - (\mathbf{M} \cdot \nabla)\mathbf{M})] + \dots$$

5. Chiral liquid crystals

$$\frac{K_{1}}{2} \left(\nabla \mathbf{n} \right)^{2} + \frac{K_{2}}{2} \left(\mathbf{n} \cdot \nabla \times \mathbf{n} - q_{0} \right)^{2} + \frac{K_{3}}{2} \left(\mathbf{n} \times \nabla \times \mathbf{n} \right)^{2}$$

6. Chern-Simons terms in gauge theories ...

Skyrmions in chiral magnets

Modulated states

Solitonic states in Dzyaloshinskii models

Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets

A. N. Bogdanov and D. A. Yablonskii

Physicotechnical Institute, Donetsk, Academy of Sciences of the Ukrainian SSR (Submitted 20 April 1988) Zh. Eksp. Teor. Fiz. 95, 178–182 (January 1989)

It is shown that in magnetically ordered crystals belonging to the crystallographic classes C_n , C_{nv} , D_n , D_{2d} , and S_4 (n = 3, 4, 6), in a certain range of fields, a thermodynamically stable system of magnetic vortices, analogous to the mixed state of superconductors, can be realized.

$$W = \int \left\{ \frac{1}{2} \alpha \left(\frac{\partial \mathbf{M}}{\partial x_i} \right)^2 - \frac{1}{2} \beta M_z^2 - H M_z - \frac{1}{2} \mathbf{M} \mathbf{H}_{\mathbf{M}} + w' \right\} dV,$$
(1)

Chiral magnets : Dzyaloshinskii 1964

Generalized (free) energy density

$$f = \eta A (\nabla m)^2 + Am^2 \sum_{i,j} (\partial_i n_j)^2 + f_0(m) + f_D(\mathbf{m})$$

for magnetization

 $\mathbf{m} = m \, \mathbf{n}$

specialized for an isotropic (cubic) ferromagnet near Curie temperature

$$f_0 = a(T - T_C)m^2 + bm^4 + h.o.t.$$

 $f_D = D \mathbf{m} \cdot \nabla \times \mathbf{m}$

Skyrmions near transition temperature – soft modulus

Condensed Skyrmion-phase

Circularly averaged energy densities

Noncentrosymmetric crystal classes

Extended textures

Modulated states

Skyrmion lattices transformed into free "particles"

A.B. Butenko, A.A. Leonov, UKR, A.N. Bogdanov, UKR, Phys. Rev. B 82 (2010) 052403

4th set of conclusions

Chiral magnets

- Condensed phases of 1D and 2D modulated & localized states
- narrow competition between "mesophases"
- close analogy with(chiral) liquid crystal systems

Magnetic ordering transition

Bulk cubic chiral helimagnets

Geometric frustration – orange peel carpet

Sadoc, Kleman P.W. Anderson, Sethna, Kivelson

Magnetic walls near T_C

Transformation of Bloch walls into Ising walls in strong easy axis ferromagnets

low $T \ll T_C$

Confinement of Skyrmions

A.A. Leonov, A.N. Bogdanov, UKR, arXiv:1001.1292

Longitudinal and angular part of magnetization always coupled

A.A. Leonov, Thesis, TU Dresden 2012

5th set of conclusions

Precursor range of chiral magnets

- Harmonic contents / Fourier modes of condensed phases are never trivial
- Iocalized non-linear excitations of paramagnetic background
- Longitudinal & directional parts of orderparameter are intertwined / cannot be separated
- Defect-ordered states exist

Beyond simple magnetic order

A more messy case : Incommensurate (magnetic) phases

OP-textures

Basic 1D incommensurate state twisted by relativistic DM coupling 1D Precursor fluctuation with inhomogeneous magnitude of the OP

Possible textures

Solitonic constituents / molecules of precursor or meso-phases

Ph. Materne, C. Koz, UKR, M. Doerr, T. Goltz, H. H. Klauss, U. Schwarz, S. Wirth , S. Rößler PRL 115, 177203 (2015)

Proper & improper Dzyaloshinskii textures

Proper textures: simple continuum model with Lifshitz invariants affecting a "primary" order parameter.

Best-known examples :

Cholesterics and blue phases of chiral nematics

Chiral spiral states and skyrmionic textures in acentric / gyrotropic cubic crystals

Improper Dzyaloshinskii textures

 Coupling of different order parameters via Lifshitz-type coupling
Lowest-order Lifshitz-type terms only operative near multicritical points

Example :

multisublattice centrosymmetric magnet

L Antiferromagnetic mode odd under inversion

F Ferromagnetic mode axial vector

Lifshitz-type invariant $F_{\alpha}\partial_{\beta}L_{\gamma}$ - $L_{\alpha}\partial_{\beta}F_{\gamma}$

Mechanism for phase coexistence

Impact of Lifshitz-type invariants

"...the fairest universe is but a heap of rubbish piled up at random ..."

MD-simulated metallic glass Ni_{37.5}Zr_{37.5}V₂₅

Many thanks

A.N. Bogdanov, A.A. Leonov, A.B. Butenko, N.S. Kiselev T.L. Monchesky and team U Dalhousie H. Wilhelm, M. Baenitz et al. Diamond & MPI-CPFS Dresden D. Makarov and his team IFW Dresden O. Janson, I. Rouchosatzkis, H. Rosner A A Tsirlin et al A.J. Nayak, S. Chadov et al. C.Felser **MPI-CPFS** Dresden S. Rößler, Ph. Materne. H.H.Klauss et al. S.Blügel, M.Bode, H.Eschrig, I.Keszmarki, A.Möbius, K.-H.Müller, C.Pfleiderer, M.Richter, A.A.Shestakov, R.Schäfer, R.L.Stamps, J. van den Brink, M.Wolf

and support by DFG, DAAD, EU ...