Electrical manipulation of Antiferromagnets by spin-orbit torque (inverse spin galvanic effect and spin Hall effect (if time))

Jörg Wunderlich

Hitachi Cambridge Laboratory. (Cambridge, UK) Institute of Physics, Academy of Sciences of the Czech Republic, Prague. CR

Institute of Physics ASCR, Prague

Tomas Jungwirth

Vit Novák Kamil Olejník Xavi Marti V. Schuler

Helena Reichlová **Dominik Kriegner** Jakub Šeleznð Libor Łmejkal Frantił ek Máca Jan Mał ek

Alexander Shick

Forschungzentrum Jülich

Frank Freimuth Yuriv Mokrousov

University of Mainz **Helen Gomonay** Jairo Sinova

JOHANNES GUTENBERG UNIVERSITÄT MAIN2 University of Nottingham

Pete Wadley Bryan Gallagher **Richard Campion** Tom Foxon **Kevin Edmonds** Andrew Rushforth **Bryn Howells** Victoria Hills Michal Grzybowski

The University of Nottingham

Hitachi & Cavendish Laboratories in Cambridge

Pierre Rov Ruben Otxoa Thomas Wagner

HITACHI Inspire the Next

Chiara Ciccarelli

Transfer from linear momentum to spin angular momentum

Spin Hall Effect

inverse spin-galvanic Effect (Edelstein Effect)

asymmetry

(intuitive picture for intrinsic SHE)

(intuitive picture for iSGE)

Electrical manipulation of antiferromagnets Interfacial SHE Torque in <u>Antiferromagnets</u>

Gomonay & Loktev, Low Temp. Phys. '14, MacDonald & Tsoi, Philos. Trans. A PRL '11

Requires thin AFM (spin absorption at interface)

Electrical manipulation of antiferromagnets Interfacial SHE Torque in <u>Antiferromagnets</u>

Gomonay & Loktev, Low Temp. Phys. '14, MacDonald & Tsoi, Philos. Trans. A PRL '11

Olena Gomonay's 2nd lecture (Monday afternoon)

Antidamping like torque

 $\vec{T}_A^{AD} \sim \vec{M}_A \times (\vec{\sigma}_\perp \times \vec{M}_A)$ $\vec{T}_{R}^{AD} \sim \vec{M}_{R} \times (\vec{\sigma}_{\perp} \times \vec{M}_{R})$

Electrical manipulation of antiferromagnets

Field-like **iSGE torque** in antiferromagnets with local IA

J. Zelezny, et al. PRL '14

Centro-symmetric lattice \rightarrow no net iSGE

Staggeloedikie i Sci Ket of Getion que i fer contifegnets agit et lo dah LAu

Non-centro-symmetric sublattices \rightarrow Néel-order (alternating-sign) $p_{A/B,curr}$

Field-like iSGE torque in Antiferromagnets

Non-centro-symmetric sublattices \rightarrow Néel-order (alternating-sign) $p_{A/B,curr}$

Staggered Field induced switching in bi-axial Mn₂Au

Staggered Field induced switching in bi-axial Mn₂Au

Staggered Field induced domain wall motion in the basal plane of uni-axial Mn₂Au

 $V_{DW} \sim 41$ km/s

Staggered Field induced domain wall motion in the basal plane of uni-axial Mn₂Au

Staggered field-like iSGE torque in CuMnAs

P. Wadley, et al. Science '16

Local inversion asymmetry in CuMnAs:

PEEM X-MLD measurements (Pete Wadley)

on thin CuMnAs (50nm) with uniaxial anisotropy with 180° domain walls

40 μm field-of-view

Uniaxial Domains

Domain Wall Profile

P. Wadley, et al. Science '16

- Switching current density ~10⁶ A cm⁻² comparable to FM ST-MRAM

V. Schuler, et al. arXiv: '16

Incomplete switching → **MEMRISTOR** functionality

→ Talk by Xavi Marti (Thursday afternoon)

Behavior in strong magnetic field (electrical switching up to 12T)

Towards Fast Switching

Towards Fast Switching

Towards Fast Switching

Electrical switching of antiferromagnetic CuMnAs Towards Fast Switching

B. Vermeersch, PRB 88, 214302 (2013) (LT-grown GaAs)

Conventional Auston switches

Electrical switching of antiferromagnetic CuMnAs Towards Fast Switching

Substrate embedded photodiodes

Towards Fast Switching

pulse – pulse correlation measurement (120 ns repetition time)

From the Fit we get:

 $\tau_{\rm R}$ <1ps $\tau_{\rm F}$ = 19.1±0.2 ps

Generation of fast current pulses

$\tau_{\rm R}\,{<}1\text{ps}$, $\tau_{\rm F}\,{=}\,19.1{\pm}0.2$ ps

 $I_0 \approx \frac{1}{2} \times$ (- 34 µA × 120 ns/19 ps) \approx - **100 mA**

($j \sim 10^9 \text{ A/cm}^2$ in 1µm x 10 nm wire)

Generation of fast current pulses

$\tau_{\rm R}\,{<}1\text{ps}$, $\tau_{\rm F}\,{=}\,19.1{\pm}0.2$ ps

 $I_0 \approx \frac{1}{2} \times$ (- 34 µA × 120 ns/19 ps) \approx - **100 mA**

($j \sim 10^9 \text{ A/cm}^2$ in 1µm x 10 nm wire)

pump (fast photogenerated electric pulse) – probe (MLD)

Time resolved MO response on uniaxial CuMnAs

Vit Saidl, Petr Nemec, et al., arXiv:1608.01941(2016)

pump (fast photo-generated electric pulse) – probe (time-depend. MLD)

Time resolved MO response on uniaxial CuMnAs

Vit Saidl, Petr Nemec, et al., arXiv:1608.01941(2016)

Conclusion

- <u>ultrafast switching</u> via electro-optical generated SOT field

- small signals (AMR)

If I have still some time: Interfacial SHE Torque in <u>Antiferromagnets</u>

Antidamping like torque

$$\vec{T}_{A}^{AD} \sim \vec{M}_{A} \times (\vec{\sigma}_{\perp} \times \vec{M}_{A})$$

$$\vec{T}_{B}^{AD} \sim \vec{M}_{B} \times (\vec{\sigma}_{\perp} \times \vec{M}_{B})$$

Interfacial SHE torque in ultrathin IrMn antiferromagnet

H. Reichlova, et al., Phys. Rev. B 92, 16, 165424 (2015)

Interfacial SHE torque in ultrathin IrMn antiferromagnet

H. Reichlova, et al., Phys. Rev. B 92, 16, 165424 (2015)

 $\rightarrow \mathbf{R}^{2\omega} \mathbf{x} \mathbf{x}$ - signal arises from $\sim \partial \mathbf{T}_{\mathbf{Z}}$ (SSE)

 $\rightarrow \mathbf{R}^{2\omega} \mathbf{x} \mathbf{y}$ - signal arises from $\sim \partial \mathbf{T}_{\mathbf{z}}$ (SSE) and <u>antidamping-like SOT field</u>: $\mathbf{H}_{AD} \sim \mathbf{M} \times (\mathbf{j}_{\mathbf{x}} \times \mathbf{z})$ (SHE origin)

Interfacial SHE torque in ultrathin IrMn antiferromagnet

H. Reichlova, et al., Phys. Rev. B 92, 16, 165424 (2015)

 $\rightarrow \mathbf{R}^{2\omega} \mathbf{x} \mathbf{x}$ - signal arises from $\sim \partial \mathbf{T}_{\mathbf{Z}}$ (SSE)

 $\rightarrow \mathbf{R}^{2\omega} \mathbf{x} \mathbf{y}$ - signal arises from $\sim \partial \mathbf{T}_{\mathbf{z}}$ (SSE) and <u>antidamping-like SOT field</u>: $\mathbf{H}_{AD} \sim \mathbf{M} \times (\mathbf{j}_{\mathbf{x}} \times \mathbf{z})$ (SHE origin)

Conclusion

- only indication of torque on AF coupled moments in IrMn thin film