New Zealand INSTITUTE for Advanced Study

Dynamics of solitons and vortices in strongly-correlated and topological superfluids

Joachim Brand

SPICE workshop Nonequilibrium Quantum Matter, Mainz, May 30 – June 2, 2017

ATOMIC DARK SOLITONS Quantum canaries learn to fly

Dark solitons in Bose–Einstein condensates have been made to live long enough for their dynamical properties to be observed. They might serve as a sensitive probe of the rich physics at the mesoscale.

James Anglin

is at the Technische Universität Kaiserslautern, OPTIMAS Research Centre and Fachbereich Physik, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany.

e-mail: janglin@physik.uni-kl.de

iners once carried canaries down the mineshaft to warn of poisonous fumes; the birds are especially susceptible to toxic gases, and they quickly died if any were present. Writing on page 496 of this issue, Christoph Becker and colleagues¹ report experiments with 'creatures' that are sensitive not to subtle changes in the atmosphere, but to the elusive physics of the frontiers between classical and quantum mechanics, and between dynamics and thermodynamics. Their 'quantum canaries' are dark solitons in a Bose-Einstein condensate (BEC): narrow pulses of sharply reduced density, travelling slowly back and forth through the background condensate cloud.

Solitons are isolated waves that manage, through a dynamic balance between dispersion and nonlinearity, to keep their form intact as they move. John Scott Russell made the first reported observation of a soliton in 1834, when he noticed a remarkably durable 'heap of water' rolling along a canal. Solitons have since

Canary in a coalmine. The little birds were once used for detecting small amounts of harmful gases in mineshafts. By way of analogy, dark solitons in a BEC can be considered 'quantum canaries' — they sensitively probe the elusive physics at the mesoscale, between classical and quantum mechanics. What can be learned about quantum gases from observing solitary wave and vortex dynamics?

Dark solitons in a trapped BEC

Solitons in trapped BEC oscillate more slowly than COM

$$\left(\frac{T_s}{T_{\rm trap}}\right)^2 = \frac{m^*}{m_{ph}} = 2$$

Theory: •Busch, Anglin PRL (2000) •Konotop, Pitaevskii, PRL (2004)

Experiment:

•Becker et al. Nat. Phys. (2008) •Weller et al. PRL (2008)

Movie credits: Nick Parker, Univ. Leeds

Outline

- Solitons
 - Dynamics from dispersion relations
 - Dark solitons in the crossover Fermi superfluid
 - One-dimensional Fermi superfluid
 - Spin-orbit coupled topological Fermi superfluid
- Vortices as solitary waves solitonic vortices
 - What is a solitonic vortex?
 - Slab model asymptotically solvable for compressible fluids
 - Snaking instability and Chladni solitons

Soliton dynamics from dispersion relation

- If a soliton moves in a slowly changing environment (density, chemical potential, etc.), then its dynamics can be predicted from its dispersion relation, i.e. the properties of constant solutions on a homogeneous background.
- This is the Landau picture of quasi-particle dynamics.

The **effective mass** is a particularly helpful concept.

Konotop, Pitaevskii, PRL 93, 240403 (2004)

Soliton dispersion

Soliton energy: $E_s(\mu, v_s, g) = \langle \hat{H} - \mu \hat{N} \rangle - E_h$

Canonical momentum: $v_s = \frac{dE_s}{dn_s}$ Effective (inertial) mass: $m^* = 2 \frac{\partial E_s}{\partial (v_s)^2}$ $E_s \approx E_0 + \frac{p_c^2}{2m^3}$ 1.2 E_s Physical (heavy) mass: 0.8 0.6 $m_{ph} = mN_s$ 0.2 $N_s = \int (n_s - n_0) d^3 r = -\frac{\partial E_s}{\partial \mu} \quad \text{(for v = 0)}$

Landau quasiparticle dynamics

Konotop, Pitaevskii, PRL (2004) Scott, Dalfovo, Pitaevskii, Stringari, PRL(2011)

> 1 1

 soliton moves on a slowly varying background, locally conserving energy

$$\frac{dE_s(v_s,\mu(z))}{dt} = 0 \quad \longrightarrow \text{ equation of motion}$$

• For *harmonic trapping potential* obtain small amplitude oscillations with

$$\left(\frac{T_s}{T_{\rm trap}}\right)^2 = \frac{m^*}{m_{ph}}$$

– BEC solitons: also locally conserve particle number $\frac{m^*}{m_{ph}} = 2 \qquad \qquad N_s = f(E_s(v_s,\mu))$

Outline

- Solitons
 - Dynamics from dispersion relations
 - Dark solitons in the crossover Fermi superfluid
 - One-dimensional Fermi superfluid
 - Spin-orbit coupled topological Fermi superfluid
- Vortices as solitary waves solitonic vortices
 - What is a solitonic vortex?
 - Slab model asymptotically solvable for compressible fluids
 - Snaking instability and Chladni solitons

What happens to solitons in the resonant Fermi superfluid?

Hydrodynamics: equation of state

Bose-Einstein condensate $\mu_{BEC} = gn$ $\propto n^2$

Unitary Fermi gas
$$\mu_{UFG} = (1+\beta) \frac{\hbar^2 k_F^2}{2m} \propto n^2$$

. . .

Phonons (sound waves):

- Sound speed determined by equation of state
- Zero effective mass (linear dispersion)
- In a harmonically trapped gas, they traverse the gas with sinusoidal oscillations

$$\left(\frac{T_{\text{BEC phon's}}}{T_{\text{trap}}}\right)^2 = 2 \qquad \left(\frac{T_{\text{UFG phon's}}}{T_{\text{trap}}}\right)^2 = 3$$

...determined by exponent in equation of state

Solitons in unitary Fermi gas

 Analytical arguments based on scaling arguments and few (unproven) assumptions suggest [1]

$$\left(\frac{T_{\rm s,UFG}}{T_{\rm trap}}\right)^2 = \frac{m^*}{m_{ph}} = 3$$

 Numerical solutions of the time-independent [1] and timedependent [2] Bogoliubov-de Gennes equations (interpolating mean-field theory) give a value consistent with 3.0.

Does the equation of state completely determine the mass ratio of dark solitons? If so, why?

[1] Liao, Brand PRA 83, 041604(R) (2011)[2] Scott, Dalfovo, Pitaevskii, Stringari PRL (2011)

Oscillation period: BdG numerics

Time-dependent simulations were performed by the Trento group

Scott, Dalfovo, Pitaevskii, Stringari PRL (2011) Liao, Brand PRA 83, 041604(R) (2011)

Outline

- Solitons
 - Dynamics from dispersion relations
 - Dark solitons in the crossover Fermi superfluid
 - One-dimensional Fermi superfluid
 - Spin-orbit coupled topological Fermi superfluid
- Vortices as solitary waves solitonic vortices
 - What is a solitonic vortex?
 - Slab model asymptotically solvable for compressible fluids
 - Snaking instability and Chladni solitons

One-dimensional Fermi superfluid

The previous theory applied to the 3D Fermi superfluid (unitary FG and crossover regime). What happens in a 1D (tightly confined) situation?

Efimkin and Galitski found an analytic solution of the Bogoliubov-de Gennes equations. They predict:

$$m^* = -\frac{4m}{\pi} \frac{E_F}{\Delta_0} \to -\infty$$
 when $\Delta_0 \to 0$
 $m_{\rm ph} \to +0$ in pure 1D or $m_{\rm ph} \to -0$ in quasi-1D

But is BdG theory applicable to a one-dimensional gas?

Efimkin, Galitski, PRA 91, 023616 (2015)

Purely one-dimensional model

$$H = -\frac{\hbar^2}{2m} \sum_{j=1}^{N} \frac{d^2}{dx_j^2} + g \sum_{\langle i,j \rangle} \delta\left(x_i - x_j\right)$$

- Consider N particles (bosons or fermions) with identical mass and interactions
- Bethe ansatz provides exact description of ground and excited states
- Lieb-Liniger model: Bosons with repulsive interactions (g>0)
- Yang-Gaudin model: spin-1/2 fermions (here: attractive g<0)

Where are the solitons?

Generic excitation spectrum

Identify solitons with the yrast states

Low-lying excitation spectrum (yrast states)

Bethe ansatz equations

$$\exp(ik_jL) = \prod_{n=1}^M \frac{k_j - \alpha_n + ic/2}{k_j - \alpha_n - ic/2},$$
$$\prod_{j=1}^N \frac{\alpha_m - k_j + ic/2}{\alpha_m - k_j - ic/2} = -\prod_{n=1}^M \frac{\alpha_m - \alpha_n + ic}{\alpha_m - \alpha_n - ic}.$$

- k_j charge rapidities
- α_j spin rapidities
- $_N$ number of fermions
- M number of spin-up fermions

$$P_{\text{tot}} = \hbar \sum_{j=1}^{N} k_j,$$
$$E_{\text{tot}} = \frac{\hbar^2}{2m} \sum_{j=1}^{N} k_j^2.$$

Yrast dispersion thermodynamic limit

Bethe ansatz equations yield Fredholm integro-differential equations in the thermodynamic limit

Yrast dispersion properties

Missing particle number

-1.1

 $\frac{\frac{1}{2P}}{\pi\hbar n_0}$

-1.2

-1.6

-1.8

0.5

z″

 $\gamma = -0.03$

 $\gamma = -40$

2

1.5

 $P = mv_s N_s - \frac{1}{2}\hbar n_0 \Delta \phi$

Inertial and physical mass

predicts divergent mass ratio

Shamailov, Brand, NJP 18, 075004 (2016)

Outline

- Solitons
 - Dynamics from dispersion relations
 - Dark solitons in the crossover Fermi superfluid
 - One-dimensional Fermi superfluid
 - Spin-orbit coupled topological Fermi superfluid
- Vortices as solitary waves solitonic vortices
 - What is a solitonic vortex?
 - Slab model asymptotically solvable for compressible fluids
 - Snaking instability and Chladni solitons

Fermi superfluid with spin-orbit coupling

- Fermi superfluid with spin-orbit coupling and spinimbalance (Zeeman) has a topological phase transition.
- This means that Majorana quasiparticles appear as edge states – and as Andreev bound states in dark solitons.
- Majorana quasiparticles are their own anti-particles.

Mizushima, Machida PRA 81, 053605 (2010) Xu et al. PRL 113, 130404 (2014) Xia-Ji Liu PRA 91, 023610 (2015)

Moving solitons in spin-orbit coupled Fermi superfluid

Zhou, Brand, Liu, Hu, PRL (2016) PRL 117, 225302 (2016)

Majorana soliton in topological superfluid

Outline

- Solitons
 - Dynamics from dispersion relations
 - Dark solitons in the crossover Fermi superfluid
 - One-dimensional Fermi superfluid
 - Spin-orbit coupled topological Fermi superfluid
- Vortices as solitary waves solitonic vortices
 - What is a solitonic vortex?
 - Slab model asymptotically solvable for compressible fluids
 - Snaking instability and Chladni solitons

What is a solitonic vortex?

- ... a solitary wave that is localised (exponentially) in the long dimension of a fluid that is confined in the other two dimensions.
- 2. ... a single vortex filament.

Brand, Reinhardt, JPB 37, L113 (2001) Brand, Reinhardt, PRA 65, 043612 (2002)

Vortex dynamics from hydrodynamics

Local evolution of vortex filament

$$\vec{v} = \left(\kappa\hat{b} + \frac{\hat{t}\times\vec{\nabla}V}{\mu_{\rm loc}}\right)\frac{\Lambda}{2}$$

vortex line

х

Z

axis

Svdizinski, Fetter, PRA (2000) Horng, Gou, Lin PRA (2006)

Dynamics of the solitonic vortex in harmonically trapped (cylindrical) superfluid was solved by Ku et al. (2014).

However, the hydrodynamic solutions suffer from **'logarithmic (in-) accuracy'**.

Dynamics of solitonic vortex

$$\left(\frac{T_s}{T_{\rm trap}}\right)^2 = \frac{m^*}{m_{ph}}$$

Oscillation frequency can be measured accurately in experiments

Effective (inertial) mass:

- Property of the velocity field
 - length scale > healing length
 - determined by hydrodynamics

Physical (heavy) mass:

- Integral over expelled mass density
 - This happens at healing length scale
 - <u>not captured</u> accurately by hydrodynamics

Can we solve the hydrodynamic problem exactly? Measuring the oscillation frequency then gives access to the physical mass, i.e. the vortex core 'size'.

Solitonic vortex in a slab geometry

Toikka, Brand NJP 19, 023029 (2017)

Compressible fluid – perturbation theory

- Idea: View kinetic energy density in Euler equation as 'perturbation'.
- Series expansion for density and phase lead to Poisson equations.
- These can be solved by Greens function methods but need to be renormalised.
- Leads to series expansion for dispersion relation in powers of ξ^2/D^2

The series can be solved, order-by-order, beyond logarithmic accuracy – exactly. Precision experiments that reveal deviations could help us **understand vortex-core physics**.

Toikka, Brand NJP 19, 023029 (2017)

Outline

- Solitons
 - Dynamics from dispersion relations
 - Dark solitons in the crossover Fermi superfluid
 - One-dimensional Fermi superfluid
 - Spin-orbit coupled topological Fermi superfluid
- Vortices as solitary waves solitonic vortices
 - What is a solitonic vortex?
 - Slab model asymptotically solvable for compressible fluids
 - Snaking instability and Chladni solitons

How do solitonic vortices form?

I. Phase imprinting generates dark soliton

2. Dark soliton decays via snaking instability

Snaking instability for homogeneous gas

Solution: Approach from hydrodynamics

Hydrodynamic picture of the snaking instability: Dark soliton is a membrane that "vibrates" under the influence of *surface tension* (and negative mass density).

Kamchatnov, Pitaevskii PRL (2008)

Thus, we should expect the vibration modes of a circular membrane ...

Unstable modes of the dark soliton (numerics)

A. Mateo Munoz, JB, PRL (Dec 2014)

Chladni Solitons: Numerics (GPE)

Decay of planar dark solitons observed in the unitary Fermi gas

From Planar Solitons to Vortex Rings and Lines: Cascade of Solitonic Excitations in a Superfluid Fermi Gas

Mark J.H. Ku, Biswaroop Mukherjee, Tarik Yefsah, Martin W. Zwierlein MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Evidence for observation of the Phi soliton.

Ku et al. PRL 116, 045304 (2016)

Outline

- Solitons
 - Dynamics from dispersion relations
 - Dark solitons in the crossover Fermi superfluid
 - One-dimensional Fermi superfluid
 - Spin-orbit coupled topological Fermi superfluid
- Vortices as solitary waves solitonic vortices
 - What is a solitonic vortex?
 - Slab model asymptotically solvable for compressible fluids
 - Snaking instability and Chladni solitons

What can we learn from solitary waves about strongly-correlated superfluids?

Dynamics is interesting.

Consider solitonic vortex: Hydrodynamics (almost) completely determines dynamics, determines inertial mass.

- But the physical mass (buoyant, or 'heavy' mass) is determined by micro/mesoscopic properties of the core structure.
- The ratio inertial mass / physical mass can be measured by oscillation experiments (like at MIT).

The end!

Colloborators:

At Massey University:

Sophie Shamailov Antonio Muñoz Mateo Renyuan Liao Oleksandr Fialko Alberto Cetoli

Elsewhere:

Peng Zou Xia-Ji Liu Hui Hu Robin Scott Franco Dalfovo Lev Pitaevskii Sandro Stringari

