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M iners once carried canaries down 
the mineshaft to warn of poisonous 
fumes; the birds are especially 

susceptible to toxic gases, and they quickly 
died if any were present. Writing on 
page 496 of this issue, Christoph Becker 
and colleagues1 report experiments with 
‘creatures’ that are sensitive not to subtle 
changes in the atmosphere, but to the elusive 
physics of the frontiers between classical and 
quantum mechanics, and between dynamics 
and thermodynamics. Their ‘quantum 
canaries’ are dark solitons in a Bose–Einstein 
condensate (BEC): narrow pulses of 
sharply reduced density, travelling slowly 
back and forth through the background 
condensate cloud.

Solitons are isolated waves that 
manage, through a dynamic balance 
between dispersion and nonlinearity, 
to keep their form intact as they move. 
John Scott Russell made the first reported 
observation of a soliton in 1834, when he 
noticed a remarkably durable ‘heap of water’ 
rolling along a canal. Solitons have since 
been observed in many media, and today 
are routinely created in nonlinear optics2. 
Soliton-like waves have also been created 
in BECs3,4, where, in particular, ‘bright’ 
solitons have been studied. In a BEC bright 
soliton, many atoms clump coherently, and 
move together through vacuum5,6. But the 
observations of Becker et al.1 are the first in 
which BEC dark solitons — pulses of reduced 
density within a condensate cloud — have 
been made sufficiently long-lived to exhibit 
their predicted particle-like motion7,8.

The work of Becker and colleagues is 
a technical advance in combining several 
forms of atomic control with gas confinement 
into the quasi-one-dimensional regime, 
and is thus an encouraging signpost on 
the way to studies of many-body physics 
in reduced dimensionality. But it is also an 

important advance on another road, leading 
to experimental investigation of certain 
questions that lurk in the depths of quantum 
and statistical mechanics. These questions 
concern the way in which some degrees of 
freedom stand out and demand accurate 
description, whereas others are appropriately 
given only limited description, and end up 
being treated as ‘environment’ or ‘noise’.

Ludwig Boltzmann taught us that the 
information that such limited description 
leaves unknown must constitute — in 
some way — thermodynamic entropy. 
Today we also know that the emergence of 
classical physics from quantum mechanics 
is very much dependent on the distinction 
between observed system and unobserved 
environment. If our understanding of 
quantum decoherence9 has removed the 

former ‘privileged role’ of the observer, 
a privileged role still remains for the 
‘unobserver’, who tells us which degrees 
of freedom to describe incompletely. This 
decision about which parts of the universe to 
describe being so fundamental to physics, we 
cannot accept that it is subjective. Classicality 
is not a choice, and thermodynamics does 
not negotiate. But a manifestly objective 
formulation of the system–environment 
distinction is hard to frame.

An ideal test case for this problem 
is a system of many interacting degrees 
of freedom, in which one simply 
behaved degree of freedom is objectively 
distinguished on non-trivial dynamical 
grounds. A dark soliton, for instance, is 
distinguished by a large separation of length 
and timescales: it is exceptionally slow for 

Dark solitons in Bose–Einstein condensates have been made to live long enough for their 
dynamical properties to be observed. They might serve as a sensitive probe of the rich physics 
at the mesoscale.

Canary in a coalmine. The little birds were once used for detecting small amounts of harmful gases in mineshafts. 
By way of analogy, dark solitons in a BEC can be considered ‘quantum canaries’ — they sensitively probe the 
elusive physics at the mesoscale, between classical and quantum mechanics.
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What can be learned about quantum 
gases from observing solitary wave  

and vortex dynamics? 



Dark solitons in a trapped BEC 

Solitons in trapped BEC 
oscillate more slowly than COM 

Hamburg Experiment: Becker et al. (2008) 

Theory: 
• Busch, Anglin PRL (2000) 
• Konotop, Pitaevskii, PRL (2004) 
 
Experiment: 
• Becker et al. Nat. Phys. (2008) 
• Weller et al. PRL (2008) 

Movie credits: Nick Parker, Univ. Leeds 
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Experiment: Yefsah et al., Nature (2013) 
Theory: Liao, Brand, PRA (2011), 
Scott, Dalfovo, Pitaevskii, Stringari, PRL (2011)  

Dark soliton in superfluid Fermi gas 
experiment 

Theory 
prediction

Discrepancy 
resolved: �
Experiment had 
(solitonic) vortex, 
not grey soliton.�
Ku et al. (2014)



Outline 

•  Solitons 
•  Dynamics from dispersion relations 
•  Dark solitons in the crossover Fermi superfluid 
•  One-dimensional Fermi superfluid 
•  Spin-orbit coupled topological Fermi superfluid 

 

•  Vortices as solitary waves – solitonic vortices 
•  What is a solitonic vortex? 
•  Slab model – asymptotically solvable for 

compressible fluids 
•  Snaking instability and Chladni solitons 



Soliton dynamics from dispersion 
relation 

If a soliton moves in a slowly changing environment 
(density, chemical potential, etc.), then its 
dynamics can be predicted from its dispersion 
relation, i.e. the properties of constant solutions 
on a homogeneous background. 

This is the Landau picture of quasi-particle 
dynamics. 

The effective mass is a particularly helpful 
concept. 

Konotop, Pitaevskii, PRL 93, 240403 (2004)  



Soliton dispersion 

Soliton energy: 
 
Canonical momentum: 
 
Effective (inertial) mass: 
 
Physical (heavy) mass: 

Es(µ, vs, g) = hĤ � µN̂i � Eh

vs =
dEs

dpc

Ns =

Z
(ns � n0)d

3r = ��Es

�µ

m⇤ = 2
@Es

@(vs)2

mph = mNs

(for v = 0)

Es ⇡ E0 +
p2c
2m⇤
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Landau quasiparticle dynamics 

•  soliton moves on a slowly varying background, 
locally conserving energy 
 

          equation of motion 
 

•  For harmonic trapping potential obtain small 
amplitude oscillations with 
 
 

–  BEC solitons: also locally conserve particle number 

Konotop, Pitaevskii, PRL (2004) 
Scott, Dalfovo, Pitaevskii, Stringari, PRL(2011) 

Ns = f(Es(vs, µ))

dEs(vs, µ(z))

dt
= 0
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What happens to solitons in the 
resonant Fermi superfluid? 

credit: MIT group 
BEC of 

preformed pairs 

BCS superfluid 

unitarity 

Can solitons probe strongly-interacting physics beyond 
hydrodynamics? 



Hydrodynamics: equation of state 

µBEC = gn / n
2
2

µUFG = (1 + �)
~2k2F
2m

/ n
2
3

Bose-Einstein condensate

Unitary Fermi gas

Phonons (sound waves):
• Sound speed determined by equation of state
• Zero effective mass (linear dispersion)
• In a harmonically trapped gas, they traverse the gas with 
sinusoidal oscillations

…determined by exponent in equation of state

✓
T
BEC phon

0
s

T
trap

◆
2

= 2

✓
T
UFG phon

0
s

T
trap

◆
2

= 3



Solitons in unitary Fermi gas 
• Analytical arguments based on scaling arguments and few 
(unproven) assumptions suggest [1]�
�

• Numerical solutions of the time-independent [1] and time-
dependent [2] Bogoliubov-de Gennes equations (interpolating 
mean-field theory) give a value consistent with 3.0.
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Does the equation of state completely determine the mass ratio 
of dark solitons? If so, why?

[1] Liao, Brand PRA 83, 041604(R) (2011) 
[2] Scott, Dalfovo, Pitaevskii, Stringari PRL (2011) 



Oscillation period: BdG numerics 

Time-dependent 
simulations were 
performed by the  
Trento group 

Scott, Dalfovo, Pitaevskii, Stringari PRL (2011) 
Liao, Brand PRA 83, 041604(R) (2011) 

(Liao PRA 2011) 
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One-dimensional Fermi superfluid 

The previous theory applied to the 3D Fermi 
superfluid (unitary FG and crossover regime). 

What happens in a 1D (tightly confined) situation? 
 
Efimkin and Galitski found an analytic solution of 

the Bogoliubov-de Gennes equations. They 
predict: 

Efimkin, Galitski, PRA 91, 023616 (2015)

m⇤ = �4m

⇡

EF

�0
! �1 when �0 ! 0

mph ! +0 in pure 1D or mph ! �0 in quasi-1D

But is BdG theory applicable to a 
one-dimensional gas?



Purely one-dimensional model 

Dark-soliton-like excitations in the Yang-Gaudin gas of attractively interacting fermions5

the Bethe-ansatz equations directly and with the aid of a string hypothesis for fermion

pairs in the strongly attractive regime. We then solve the integral equations for dimer

holes, which govern the yrast dispersion relation in the thermodynamic limit. From

these, a number of physical quantities including the missing particle number, the phase

step, and the inertial and physical masses are calculated. We find that the missing

particle number varies from one to two missing fermions as we tune from the Tonks-

Girardeau gas of dimers to the BCS limit, while both the physical and the inertial

masses correspondingly change from �2m to �m. Interestingly, the mass ratio mI/mP

is 1 in both limits and reaches a minimum value of about 0.78 in the crossover regime

� ⇡ �1.3 (see figure 9). This contrasts sharply with the results of 1D mean field theory

[36], where the mass ratio diverges in the BCS limit.

This paper is organized as follows: Section 2 introduces the Yang-Gaudin model and

the corresponding Bethe ansatz equations for finite particle number. The structure of

the ground and yrast exctited states, as well as the methods for solving the equations, are

discussed in both the strongly and weakly interacting regimes, and the excitation spectra

are computed. Section 3 then deals with the thermodynamic limit dispersion relations.

After discussing the ground state thermodynamic-limit equations in section 3.1, the

equations for the yrast dispersion relations are given in section 3.2, the missing particle

number and phase step are calculated in section 3.3 and the inertial and physical masses

insection 3.4. Conclusions are drawn in section 4 and three appendices provide technical

details regarding the numerical solution of the finite-system Bethe ansatz equations

(Appendix A), an outline of the derivation of the excited-state thermodynamic limit

integral equations (Appendix B), and details pertaining to the numerical computation

of the missing particle number (Appendix C), respectively.

2. Yang-Gaudin model for finite fermion number

The Yang-Gaudin model describes a gas of spin-1/2 fermions, confined to a 1D box with

periodic boundary conditions and interacting via a two-body �-function potential. The

Hamiltonian takes the form

H = �

~2
2m

NX

j=1

d2

dx2

j

+ g
X

hi,ji

� (xi � xj) , (2)

where in the second term the sum is over all pairs counted once. There are N fermions in

total, M  N/2 of which are spin-up and the rest are spin-down. Furthermore, m is the

mass of each particle, and L is the length of the box. The model is relevant to ultra-cold

fermionic atoms in two hyperfine states confined to a 1D wave guide in the low density

limit [42–45]. The 1D interaction constant g can be related to the 3D scattering length

a of the atoms and the wave guide trap frequency !? and length scale a? =
p
~/m!?

by g = 2~!?a(1 � Aa/a?)�1 with A ⇡ 1.0326 [49]. The coupling constant diverges

and changes sign at a confinement-induced resonance where a/a? = A�1. We are here

considering the case of attractive interaction where g < 0. It is convenient to write

• Consider N particles (bosons or fermions) with identical mass and 
interactions

•  Bethe ansatz provides exact description of ground and excited states
•  Lieb-Liniger model: Bosons with repulsive interactions (g>0)
• Yang-Gaudin model: spin-1/2 fermions �

(here: attractive g<0)

Dark-soliton-like excitations in the Yang-Gaudin gas of attractively interacting fermions3

fluctuations prevent true long-range superfluid order according to the Mermin-Wagner

Hohenberg theorem [37, 38]. Nevertheless, the use of BCS-like mean-field theory in the

weakly-attractive 1D Fermi gas had previously been supported by the comparison of

bulk properties with exact solutions of the Yang-Gaudin model [39].

Here we approach the tightly confined 1D Fermi gas from the exactly solvable Yang-

Gaudin model [40, 41] of spin-1
2

fermions with attractive �-function interactions. Using

a purely 1D model with contact interactions is well justified for an ultra-cold Fermi gas

in the low density regime, where the relevant energy scale, e.g. the Fermi energy of the

1D gas, is small compared to the spacing of transverse excitations levels of the wave-

guide trap [42–45]. While the two-particle problem in a wave-guide trap always has a

bound state [46], the many-body problem of spin-1
2

fermions knows two distinct regimes

that are separated by a confinement-induced resonance, where the 1D scattering length

a
1D

passes through zero. The regime of a
1D

< 0 is well described by the Yang-Gaudin

model of spin-1
2

fermions with attractive contact interactions while positive scattering

lengths a
1D

> 0 lead to gas of repulsively interacting bosonic dimers described by the

Lieb-Liniger model [47, 48]. The situation is sketched in figure 1 with reference to the

relevant dimensionless coupling parameter � = 2/a
1D

n
0

of the Yang-Gaudin model.

Here, n
0

= N/L is the particle number density, N the total number of fermions and L

the length of the system.

-∞ -1 0
γ

Yang GaudinLieb Liniger

Bose
gas of
dimers

Tonks-Girardeau
gas of dimers crossover

BCS - like gas
of long range

paired fermions

Free
Fermi
gas

Figure 1. Schematic of the spin– 1

2

Fermi gas with attractive interactions in a
one-dimensional wave guide. The physical regimes of the many-body physics are
determined by the dimensionless coupling parameter � = 2/a

1D

n
0

= gm/n
0

~2 = c/n
0

.

The Yang-Gaudin model with attractive interactions (� < 0) has two-particle bound

states, dimers, with length scale ⇠ |a
1D

|. The coupling constant � = 2/a
1D

n
0

thus

provides the ratio of the mean particle spacing n�1

0

to the dimer size and |�| ⌧ 1 is

a regime of Cooper-pair-like large dimers. An interesting crossover regime appears at

� ⇡ 1, where the length scales are comparable, while the dimers are tightly bound for

� ! �1. This is the position of the confinement-induced resonance, where the dimers

are tightly bound but also the dimer-dimer interactions diverge [45]. The many-body

physics becomes that of gas of impenetrable bosons, known as a Tonks-Girardeau gas

[49, 50]. In this regime, the energy spectrum becomes that of N/2 spinless fermions with

mass 2m, where m is the mass of the original fermionic atoms. In fact, there is a one-

to-one mapping between the impenetrable Bose gas (here referring to dimers) and non-

interacting spinless fermions (of mass 2m) [50]. In this sense both limits of the attractive

Yang Gaudin model are non-interacting fermions and the interesting correlated physics

is expected around � ⇡ 1.

� =
gm

n0~2
=

c

n0See also poster by A. Ayet on quantum bright 
solitons in attractive Bose gas



Where are the solitons? 
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Generic excitation spectrum 

Dense spectrum for N >> 1 

Identify solitons with the yrast states

P
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Low-lying excitation spectrum 
(yrast states) 

Momentum 
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Bethe ansatz equations 

Dark-soliton-like excitations in the Yang-Gaudin gas of attractively interacting fermions6

the interaction constant as g = ~2
m c where c = 2

a1D
and a

1D is the 1D scattering length

[59]. Let us also introduce the 1D density, n
0

= N/L, and � = c/n
0

which is a useful

dimensionless parameter both in the finite system and in the thermodynamic limit.

2.1. Bethe ansatz equations in exponential form

The Bethe-ansatz solution of the Yang-Gaudin model (2) consists of superpositions of

plane waves for the many-body wave function [60]. These are subject to boundary

conditions where particles interact and at the box boundaries, as well as fermionic

symmetry constraints. The solutions are uniquely determined by a set of quantum

numbers with the dimension of wave numbers known as rapidities. They have to satisfy

the Bethe ansatz equations in exponential form [40, 41]:

exp(ikjL) =
MY

n=1

kj � ↵n + ic/2

kj � ↵n � ic/2
, (3)

NY

j=1

↵m � kj + ic/2

↵m � kj � ic/2
= �

MY

n=1

↵m � ↵n + ic

↵m � ↵n � ic
. (4)

The charge rapidities kj can be thought of as the quasi-momenta of the fermions. They

completely determine the total momentum and energy of the system

P
tot

= ~
NX

j=1

kj, (5)

E
tot

=
~2
2m

NX

j=1

k2

j . (6)

The spin rapidities ↵m are auxiliary variables and are present due to the spin degree of

freedom. The ↵m’s do not contribute to the energy or momentum but must be solved

for as they are coupled to the kj’s. There are infinitely many di↵erent sets of rapidities

that solve (3) and (4) and each one corresponds to an eigenstate of the Hamiltonian (2).

In this work we are interested in the yrast states, i.e. the states with the lowest energy

E
tot

at given momentum P
tot

. We also restrict ourselves to balanced populations of

spin-up and -down particles, i.e. N = 2M . The rapidities for yrast states can be easily

identified in the weak and strong interaction limits, where simple analytic solutions to

(3) and (4) are known. The yrast solutions for finite interaction strength can then be

found by continuity. Examples of rapidities for yrast states are shown in figure 2.

A particular feature due to the periodic boundary conditions is that a new set of

rapidities solving (3) and (4) can be generated from an existing one by adding 2⇡/L

(or an integer mutiple) to every kj and ↵m, as is easily seen from the equations. This

changes the momentum to P 0
tot

= P
tot

+ 2⇡~n
0

, where n
0

= N/L and the energy to

E 0
tot

= E
tot

+ (2⇡~n
0

)2/2mN . Physically this corresponds to a Galilean boost of the

whole system by the umklapp momentum 2⇡~n
0

⌘ 4pF , while the internal structure of

the many-body state is unchanged [47]. Here, pF = ⇡~n
0

/2 is the Fermi momentum of
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-  charge rapidities
-  spin rapidities
-  number of fermions
-  number of spin-up fermions

N
M



Yrast dispersion thermodynamic limit 
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Figure 7. Yrast dispersion relation (dimer hole excitations) in the thermodynamic
limit from (33) and (34). Blue solid line: � = �0.02 (� ⇡ �0.031), red dashed
line: � = �1 (� ⇡ �1.1), black dash-dotted line: � = �50 (� ⇡ �40). The yrast
dispersion relation is periodic in momentum with period 2pF = ⇡~n

0

. Only one
period is shown. For the whole range of interactions, the dispersion relation relates
to a negative-e↵ective-mass quasiparticle and is reminiscent of dark solitons in the
nonlinear Schrödinger equation [69].
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The excitation energy and momentum can also be obtained, giving

P = ~2b [�q + 2↵] , (40)
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Eliminating q and substituting for � in terms of �, the dispersion relation becomes
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This result agrees with (16) for � ! �1 and N ! 1, as it should.

Bethe ansatz equations yield Fredholm integro-differential 
equations in the thermodynamic limit

Shamailov, Brand, NJP 18, 075004 (2016)
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Figure 8. Missing particle number (a) and phase di↵erence (b) for single fermion holes
in the � ! 0 limit, which become single dimer holes in the � ! �1 limit. Black:
� = �0.02, � = �0.030815, red: � = �1, � = �1.1363, blue: � = �50, � = �39.770.
Direct evaluation of (43) yields the results plotted as squares, while those from
Campbell’s formulas (45) and (46) are shown as solid lines.

¶:

Ns = � 2⇡g(1) [h(1)� h(�1)]� 2, (45)

�� =
1

g(1)
[h(1) + h(�1)] , (46)

where the functions g(x) and h(x) were introduced in sections 3.1 and 3.2 and still

depend on the interaction parameter � (and the momentum in the case of h(x)). The

excellent agreement with the direct evaluation of (43) is seen by the overlapping curves

in figure 8.

In the strongly-interacting limit, using the approximate analytical solutions of the

Bethe ansatz integral equations and Campbell’s formulae, we find the following limiting

expressions:

Ns = �2�
1

�
+O

�
��2

�
, (47)

�� = ⇡


1 +

✓
P

pF
� 1

◆
(1 + 2�)�1

�
+O

�
��2

�
(48)

3.4. Quasiparticle dynamics in a harmonic trap

Konotop and Pitaevskii have argued that the motion of solitons on a slowly varying

background is governed by the principles of Landau’s quasiparticle dynamics, which

leads to simple classical equations of motion [24]. Here we apply these ideas to yrast

¶ The constant -2 in (45) was missing in [73] but is needed to achieve consistency with (43). For the
Lieb-Liniger model it should be replaced by -1 and �� should have an additional factor of 1/2.

Missing particle number Phase step

� = �0.03

� = �1.1

� = �40

P = mvsNs �
1

2
~n0��
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Fermi superfluid with spin-orbit coupling 

Fermi superfluid with spin-orbit coupling and spin-
imbalance (Zeeman) has a topological phase 
transition. 

This means that Majorana quasiparticles appear as 
edge states – and as Andreev bound states in 
dark solitons. 

Majorana quasiparticles 
are their own  
anti-particles. 

XIA-JI LIU PHYSICAL REVIEW A 91, 023610 (2015)

FIG. 1. (Color online) Zero-temperature phase diagram without
solitons at γ = 2.2 and λ = 1.5EF /kF , determined from the behavior
of the two lowest-energy particle solutions (with Eη ! 0) in the
Bogoliubov quasiparticle spectrum (shown by the solid line and
empty squares, respectively). The topological phase transition occurs
at about h ≃ 0.59EF . As a result, two zero-energy Majorana fermions
emerge at the trap edges, as shown in the inset, plotting the local
density of states for the case h = 0.8EF . They are highlighted by two
gray circles.

Ec = 15EF = 450!ω, above which we use the local density
approximation [23,25].

Figure 1 shows the energies of the two lowest-energy
particle solutions with Eη ! 0, plotted, respectively, by using
the solid line and empty squares. A topological phase transition
occurs at a critical effective Zeeman field hc ≃ 0.59EF

[35–37], as revealed by min{Eη} (solid line). At a small
Zeeman field h < hc, the Fermi gas is a standard BCS super-
fluid, with a fully gapped quasiparticle energy spectrum (i.e.,
min{Eη} > 0). Above the threshold, h > hc, the quasiparticle
energy spectrum is again gapped in the bulk, as seen from the
empty squares. However, gapless edge excitations—Majorana
fermions—emerge at the trap edges. This is particularly
evident when we plot the local density of states in the inset.
Two (nearly) zero-energy Majorana fermions—well localized
at the trap edges as highlighted by the two gray circles—are
clearly visible.

It is useful to note that Majorana fermions may acquire an
exponentially small energy due to the finite size of the har-
monic trap [38]. The typical spatial extension of the localized
Majorana wave function ξM is of the order of the coherence
length ξc = !vF /&, where vF and & are the unperturbed local
Fermi velocity and pairing gap at the trap edge [38]. For the two
Majorana fermions shown in the inset of Fig. 1, we estimate
that ξM ∼ 0.1xF (see also Fig. 4). Therefore, the exponentially
small overlap between two Majorana fermion wave functions
'L and 'R , i.e., O = ⟨'L|'R⟩ ∼ exp(−L/ξM ), where L ≃
2xF is the distance between two Majorana fermions, leads to an
exponentially small energy (splitting) of Majorana fermions,

E

EF

∼ O ∼ exp
(

− L

ξM

)
∼ 10−9. (20)

This is consistent with our numerical finding that the energy
of Majorana fermions E ∼ 10−10EF .

III. SINGLE SOLITON

Here we consider the behavior of a single dark soliton. The
case of multiple dark solitons will be discussed in the next
section.

A. Order parameters

In Fig. 2, we report the pairing gap profile in the presence of
a single dark soliton, at zero Zeeman field [Fig. 2(a)] or finite
Zeeman fields [Fig. 2(b)]. The order parameter crosses zero at
the position of the soliton x1 and hence creates a point node.
At small Zeeman fields, it exhibits two length scales around
the point node [5]: a fast oscillation with length scale of k−1

F

and a slower healing with length scale ξc = !vF /&. Here, vF

and & are the unperturbed local Fermi velocity and pairing
gap at the point node x1, respectively. The former length scale
is essentially independent of the interaction parameter and the
spin-orbit coupling strength. Thus, as in the case of a vortex in
2D Fermi gases [39], we may safely identify the oscillation as
the Friedel oscillation. For the coherence length, we find that
ξc ≃ 3k−1

F at γ = 2.2. It increases with decreasing interaction
parameter, as expected.

For a spin-orbit coupled Fermi gas, it is interesting to see
[Fig. 2(b)] that the Friedel oscillation suddenly ceases to exist
when the Zeeman field is above a threshold, hc ≃ 0.57EF .
Actually, this point corresponds to the topological phase
transition in the presence of a single dark soliton, which we
shall now discuss in greater detail.

FIG. 2. (Color online) (a) The solitonic pairing gap &(x) at zero
Zeeman field h = 0 and at different interaction strengths γ and spin-
orbit coupling strengths λ, when a π -phase jump is imprinted at
x1 = 0. (b) The solitonic &(x) at nonzero Zeeman fields [h/EF = 0.4
(thick solid line), 0.56 (crosses), 0.58 (daggers), or 0.8 (dashed line)]
and at γ = 2.2 and λ = 1.5EF /kF . For the case of h = 0.4EF , we
also consider a soliton at x1 = −0.5xF and plot the result with a thin
solid line.
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Traveling Majorana solitons in a low-dimensional spin-orbit coupled Fermi superfluid
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We investigate traveling solitons of a one- or two-dimensional spin-orbit coupled Fermi super-
fluid in both topologically trivial and non-trivial regimes by solving the static and time-dependent
Bogoliubov-de Gennes equations. We find a critical velocity vh for traveling solitons that is much
smaller than the value predicted using the Landau criterion due to spin-orbit coupling. Above vh,
our time-dependent simulations in harmonic traps indicate that traveling solitons decay by radiating
sound waves. In the topological phase, we predict the existence of peculiar Majorana solitons, which
host two Majorana fermions and feature a phase jump of ⇡ across the soliton, irrespective of the
velocity of travel. These unusual properties of Majorana solitons may open an alternative way to
manipulate Majorana fermions for fault-tolerant topological quantum computations.

PACS numbers: 03.75.Lm, 67.85.Lm, 67.85.De

Solitons or localized waves that arise from the inter-
play between the dispersion and nonlinearity of underly-
ing systems are fascinating phenomena occurring in many
di↵erent fields of physics [1]. Over the past two decades,
a major research emphasis has focused on solitons in
atomic Bose-Einstein condensates (BECs) [2]. The fam-
ily of BEC solitons consists of many interesting members,
from bright solitons in attractive BECs [3] and gap soli-
tons in optical lattices [4], to dark solitons in repulsively
interacting BECs [5–7], which are created experimentally
by imprinting a sharp and characteristic phase jump into
the BEC. Remarkably, dark solitons may also be created
in strongly interacting Fermi gases [8–16] at the crossover
from BECs to Bardeen-Cooper-Schrie↵er (BCS) super-
fluids [17], where phase kinks are encoded in the pairing
order parameter. Their recent experimental observation
may o↵er valuable insights into the nature of fermionic
superfluidity in the strongly correlated regime [13, 18].

Here we consider traveling fermionic solitons in a dif-
ferent setup – one- (1D) or two-dimensional (2D) Fermi
superfluids with spin-orbit coupling (see Fig. 1 for a 1D
setup) – and predict the existence of an exotic member of
the soliton family when the superfluid becomes topolog-
ically non-trivial. It is referred to as Majorana soliton,
owing to its ability to host two Majorana fermions that
obey non-Abelian statistics at the soliton core [19, 20].
Majorana solitons are universal and remarkably robust,
in the sense that their properties are not a↵ected by a
finite velocity of travel. In particular, the phase jump
across a Majorana soliton is exactly pinned to ⇡ and
therefore the soliton is not greyed by a finite velocity.
This unique stability renders Majorana solitons an ideal
platform to manipulate Majorana fermions for topologi-
cal quantum computations [21].

Our investigation is motivated by the recent realiza-
tions of spin-orbit coupling in atomic Fermi gases [22–
26] and the promising perspective of creating an atomic

Figure 1: (color online). Upper panel: Sketch of the proposed
1D experimental configuration, where many 1D tubes of spin-
orbit coupled 40K Fermi gases are formed using a 2D optical
lattice and two counter-propagating Raman lasers. Lower
panel: The magnitude |�(⇠)| and phase �(⇠) of the soliton
order parameter in the non-topological phase with an interac-
tion parameter � = 3.41, Zeeman field h = 0.52EF and spin-
orbit coupling strength �kF /EF = 1.71. The solid, dashed
and dotted lines correspond to soliton velocities vs = 0,
0.15vF and 0.3vF , respectively. Here kF is the Fermi wavevec-
tor and EF is the Fermi energy.

topological superfluid [27–29]. Traveling Majorana soli-
tons with fixed ⇡ phase step, if experimentally observed
to oscillate inside a Fermi cloud, would be a smoking-gun
proof of the existence of long-sought topological super-
fluids. We note that stationary dark solitons with Majo-
rana fermions in a 1D spin-orbit coupled Fermi gas were
recently predicted [30, 31]. However, the crucial issue
raised in practical manipulations, i.e., the fate of these

2

solitons at a finite velocity of motion, was not addressed.
For concreteness, in the main text we focus on 1D spin-

orbit coupled Fermi superfluids. The results of 2D Fermi
superfluids will only be discussed briefly at the end of the
paper, to validate the mean-field theoretical framework
used in this work. It is known from previous studies that
mean-field theory predicts various qualitative features of
1D interacting quantum gases in the weakly interacting
regime. In most cases, the qualitative mean-field predic-
tions, such as the existence of Majorana fermions [32–
34] and dark solitons [35], are not invalidated by strong
quantum fluctuations in 1D [36–40]. To ensure the ro-
bustness of our 1D mean-field results of Majorana soli-
tons, we carry out additional, extensive simulations for
a 2D spin-orbit coupled Fermi gas and a 2D p-wave su-
perfluid, where the use of mean-field theory is widely
accepted. The details of these simulations are outlined
in the Supplemental Material [41].

Model. A possible 1D experimental configuration is
sketched in the upper panel of Fig. 1. A bundle of paral-
lel, identical 1D spin-1/2 40K Fermi gases can be formed
by adding a tight 2D optical lattice in the transverse
y � z plane [42, 43], and the spin-orbit coupling with
equal Rashba and Dresselhaus weight can be realized by
adapting the so-called NIST scheme using two counter-
propagating Raman laser beams [22]. The resulting 1D
spin-orbit coupled Fermi gas in a single tube is modeled
by the Hamiltonian H =

R
dx [H

0

+H
int

], where [28–31]
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with g
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< 0 is the interaction Hamiltonian describing
the attractive contact interaction between the two spin
states (� =", #). Here,  †
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is the fermionic field opera-
tor that creates an atom with mass m in the spin state
�. The term �k̂
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with the momentum operator
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= �i@/@x and Pauli matrices �
y

and �
z

is induced by
the Raman process, describing a synthetic spin-orbit cou-
pling with strength � ⌘ ~2k
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/m and an e↵ective Zeeman
field h = ⌦
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/2, where k
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and ⌦
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are the momentum
and Rabi frequency of the Raman beams [22], respec-
tively. The term H
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/(2m)+V
T

(x)�µ with the
chemical potential µ describes the motion of atoms in a
harmonic trapping potential V

T

(x) = m!2x2/2.
We solve the model Hamiltonian for stationary and

traveling solitons within the mean-field approxima-
tion. This amounts to finding solutions with phase-
twisted order parameter in the static and time-dependent
Bogoliubov-de Gennes (BdG) equations, H

BdG
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spectively. Here, for convenience we have used the
Nambu spinor representation and have introduced �
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as the wave-function and en-
ergy of Bogoliubov quasiparticles. The BdG Hamiltonian
reads
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and the BdG equations, either static or time-dependent,
should be self-consistently solved with the gap equa-
tion � = �(g
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)], where f(E) = 1/(1 + eE/kBT ) is the
Fermi-Dirac distribution function and the summation is
performed for the energy level (labeled by ⌘) up to a
high-energy cut-o↵ E

c

, i.e., |E
⌘

| < E
c

.
To obtain a moving soliton in a trapped gas, we first

find a stationary dark soliton at x
0

away from the trap
center [31]. By evolving such an initial state in time, the
soliton is accelerated by the trap potential and caused
to oscillate inside the Fermi cloud. The same procedure
has previously been used to understand the dynamics of
dark solitons in a BEC-BCS Fermi superfluid [9], and
could also be employed in experiment.

We also search for traveling soliton solutions on
a homogeneous (untrapped) background that satisfy
�(x, t) = �(x � v

s

t) = �(⇠), by solving the BdG equa-
tions in the co-moving frame with the velocity v

s

[11]:
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Here, H
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(⇠) is obtained by replacing @
x

with @
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and
�(x, t) with �(⇠) in Eq. (3). In other words, we seek
traveling solitons in a homogeneous gas that are station-
ary in the frame of the soliton. This technique provides
more insights into the soliton properties and enables us to
isolate e↵ects caused by the trapping potential when we
analyze time-dependent simulations [12]. For the calcu-
lations in a box with length L we impose a modified peri-
odic boundary condition, �(⇠ + L/2) = �(⇠ � L/2)ei��,
to explicitly take into account a phase jump �� across
the soliton [16]. In addition, we implement a generalized
secant (Broyden’s) approach to make sure that the self-
consistent iteration procedure will converge to a stable
solution [11, 44].

In our 1D numerical calculations, we use a dimension-
less interaction parameter to characterize the interaction
strength, � = �mg

1D

/(~2n), which is basically the ratio
between the interaction and kinetic energy at the density
n. We choose the Fermi vector and energy, k

F

= ⇡n/2
and E

F

= ~2k2
F

/(2m), as the units of wave-vector and
energy, respectively. For simulations in a trapped cloud
with N atoms, it is convenient to use the peak density
of a non-interacting Fermi gas in the Thomas-Fermi ap-
proximation at the trap center, n0 = (2/⇡)

p
Nm!/~,

Choose 1D system and 
Bogoliubov-de Gennes approach
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For concreteness, in the main text we focus on 1D spin-

orbit coupled Fermi superfluids. The results of 2D Fermi
superfluids will only be discussed briefly at the end of the
paper, to validate the mean-field theoretical framework
used in this work. It is known from previous studies that
mean-field theory predicts various qualitative features of
1D interacting quantum gases in the weakly interacting
regime. In most cases, the qualitative mean-field predic-
tions, such as the existence of Majorana fermions [32–
34] and dark solitons [35], are not invalidated by strong
quantum fluctuations in 1D [36–40]. To ensure the ro-
bustness of our 1D mean-field results of Majorana soli-
tons, we carry out additional, extensive simulations for
a 2D spin-orbit coupled Fermi gas and a 2D p-wave su-
perfluid, where the use of mean-field theory is widely
accepted. The details of these simulations are outlined
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Model. A possible 1D experimental configuration is
sketched in the upper panel of Fig. 1. A bundle of paral-
lel, identical 1D spin-1/2 40K Fermi gases can be formed
by adding a tight 2D optical lattice in the transverse
y � z plane [42, 43], and the spin-orbit coupling with
equal Rashba and Dresselhaus weight can be realized by
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dark solitons in a BEC-BCS Fermi superfluid [9], and
could also be employed in experiment.

We also search for traveling soliton solutions on
a homogeneous (untrapped) background that satisfy
�(x, t) = �(x � v

s

t) = �(⇠), by solving the BdG equa-
tions in the co-moving frame with the velocity v

s

[11]:

H
BdG

(⇠)�
⌘

(⇠) =


E

⌘

� i~v
s

@

@⇠

�
�

⌘

(⇠). (4)

Here, H
BdG

(⇠) is obtained by replacing @
x

with @
⇠

and
�(x, t) with �(⇠) in Eq. (3). In other words, we seek
traveling solitons in a homogeneous gas that are station-
ary in the frame of the soliton. This technique provides
more insights into the soliton properties and enables us to
isolate e↵ects caused by the trapping potential when we
analyze time-dependent simulations [12]. For the calcu-
lations in a box with length L we impose a modified peri-
odic boundary condition, �(⇠ + L/2) = �(⇠ � L/2)ei��,
to explicitly take into account a phase jump �� across
the soliton [16]. In addition, we implement a generalized
secant (Broyden’s) approach to make sure that the self-
consistent iteration procedure will converge to a stable
solution [11, 44].

In our 1D numerical calculations, we use a dimension-
less interaction parameter to characterize the interaction
strength, � = �mg

1D

/(~2n), which is basically the ratio
between the interaction and kinetic energy at the density
n. We choose the Fermi vector and energy, k

F

= ⇡n/2
and E

F

= ~2k2
F

/(2m), as the units of wave-vector and
energy, respectively. For simulations in a trapped cloud
with N atoms, it is convenient to use the peak density
of a non-interacting Fermi gas in the Thomas-Fermi ap-
proximation at the trap center, n0 = (2/⇡)

p
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solitons at a finite velocity of motion, was not addressed.
For concreteness, in the main text we focus on 1D spin-

orbit coupled Fermi superfluids. The results of 2D Fermi
superfluids will only be discussed briefly at the end of the
paper, to validate the mean-field theoretical framework
used in this work. It is known from previous studies that
mean-field theory predicts various qualitative features of
1D interacting quantum gases in the weakly interacting
regime. In most cases, the qualitative mean-field predic-
tions, such as the existence of Majorana fermions [32–
34] and dark solitons [35], are not invalidated by strong
quantum fluctuations in 1D [36–40]. To ensure the ro-
bustness of our 1D mean-field results of Majorana soli-
tons, we carry out additional, extensive simulations for
a 2D spin-orbit coupled Fermi gas and a 2D p-wave su-
perfluid, where the use of mean-field theory is widely
accepted. The details of these simulations are outlined
in the Supplemental Material [41].

Model. A possible 1D experimental configuration is
sketched in the upper panel of Fig. 1. A bundle of paral-
lel, identical 1D spin-1/2 40K Fermi gases can be formed
by adding a tight 2D optical lattice in the transverse
y � z plane [42, 43], and the spin-orbit coupling with
equal Rashba and Dresselhaus weight can be realized by
adapting the so-called NIST scheme using two counter-
propagating Raman laser beams [22]. The resulting 1D
spin-orbit coupled Fermi gas in a single tube is modeled
by the Hamiltonian H =
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We solve the model Hamiltonian for stationary and

traveling solitons within the mean-field approxima-
tion. This amounts to finding solutions with phase-
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and the BdG equations, either static or time-dependent,
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performed for the energy level (labeled by ⌘) up to a
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To obtain a moving soliton in a trapped gas, we first

find a stationary dark soliton at x
0

away from the trap
center [31]. By evolving such an initial state in time, the
soliton is accelerated by the trap potential and caused
to oscillate inside the Fermi cloud. The same procedure
has previously been used to understand the dynamics of
dark solitons in a BEC-BCS Fermi superfluid [9], and
could also be employed in experiment.

We also search for traveling soliton solutions on
a homogeneous (untrapped) background that satisfy
�(x, t) = �(x � v
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t) = �(⇠), by solving the BdG equa-
tions in the co-moving frame with the velocity v
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Here, H
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(⇠) is obtained by replacing @
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with @
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and
�(x, t) with �(⇠) in Eq. (3). In other words, we seek
traveling solitons in a homogeneous gas that are station-
ary in the frame of the soliton. This technique provides
more insights into the soliton properties and enables us to
isolate e↵ects caused by the trapping potential when we
analyze time-dependent simulations [12]. For the calcu-
lations in a box with length L we impose a modified peri-
odic boundary condition, �(⇠ + L/2) = �(⇠ � L/2)ei��,
to explicitly take into account a phase jump �� across
the soliton [16]. In addition, we implement a generalized
secant (Broyden’s) approach to make sure that the self-
consistent iteration procedure will converge to a stable
solution [11, 44].

In our 1D numerical calculations, we use a dimension-
less interaction parameter to characterize the interaction
strength, � = �mg
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/(~2n), which is basically the ratio
between the interaction and kinetic energy at the density
n. We choose the Fermi vector and energy, k

F

= ⇡n/2
and E

F

= ~2k2
F

/(2m), as the units of wave-vector and
energy, respectively. For simulations in a trapped cloud
with N atoms, it is convenient to use the peak density
of a non-interacting Fermi gas in the Thomas-Fermi ap-
proximation at the trap center, n0 = (2/⇡)
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The phase step changes with velocity in the 
non-topological regime. h=0.5EF



Majorana soliton in topological 
superfluid 4

Figure 4: (color online). Majorana soliton. The two upper
panels report the time evolution of the magnitude |�(x, t)|
(left) and the phase �(x, t) (right) of the order parameter for
a Majorana soliton in a trapped topological Fermi superfluid
(h = 1.2E0

F > hc) with a maximum soliton velocity 0.07vF <

vh. The two lower panels show the density (left) and order
parameter (right) of a Majorana soliton in the homogeneous
configuration at di↵erent velocities with parameters � = 3.75,
h = 1.71EF and �kF /EF = 1.79.

dependent simulations with spin-orbit coupling therefore
indicate that the critical velocity of traveling solitons
could be significantly smaller than Landau critical ve-
locity v

pb

, which was found to be the relevant critical ve-
locity without spin-orbit coupling [9–11]. These results
are still consistent, since without spin-orbit coupling v

h

actually is close to the pair-breaking velocity [12].

Topological phase. By increasing e↵ective Zeeman field
across h

c

' E
F

for a trapped Fermi cloud, the local en-
ergy gap (and hence the pair-breaking velocity) at the
trap center closes and then re-opens. A topological su-
perfluid emerges. The first sign of the existence of a
velocity-independent Majorana soliton comes from the
time-dependent simulations in harmonic traps, as shown
in the upper panel of Fig. 4. During the time evolution,
the dip minimum in |�(x, t)| remains at zero and the
phase jump ��(t) across the soliton is always pinned at
⇡ (see also the inset in Fig. 5). In the lower panel of
Fig. 4, we check more rigorously the velocity dependence
using Broyden’s approach. With increasing the soliton
velocity in the topological phase, the density and pairing
order parameter profiles remain essentially unchanged.

To show the presence of Majorana fermions at the soli-
ton core, we report in Fig. 5 the energy of the ABS as
a function of the traveling velocity. Although in the co-
moving frame the energy EMov

ABS

increases (linearly) with
the velocity, the energy in the laboratory frame, ELab

ABS

,

Figure 5: (color online). The ABS energy of the Majorana
soliton as a function of the soliton velocity in the co-moving
frame (upper panel) or in the laboratory frame (lower panel).
We note that in the topological phase, the number of the ABS
states decreases to one [31], if we count only positive energy
levels. The inset examines the ⇡-phase of Majorana solitons.
Parameters as in Fig. 4.

which is related to the co-moving energy by

ELab

ABS

= EMov

ABS

+

Z
d⇠�⇤

ABS

(�i~v
s

)@�
ABS

/@⇠, (6)

is precisely zero [48]. This is expected behavior for a
Majorana fermion, which must have zero energy due to
the particle-antiparticle symmetry. Together with the
observed continuity with the zero velocity case [30, 31],
we conclude that the moving soliton in the topological
phase indeed hosts Majorana fermions. The properties
of the Majorana soliton at finite velocity can be made
plausible from the universal relation (5), if we assume
its validity in the topological phase. We recall that the
density notch in Majorana solitons is absent [30, 31] and
hence the physical mass vanishes [9]. Equation (5) im-
mediately implies that the derivative of the phase jump
is zero, since the oscillation period should be finite. This
leads to a constant ⇡ phase jump, irrespective of the soli-
ton velocity. In turn, the magnitude of order parameter
should vanish at the soliton core.

2D Majorana solitons. We now turn to consider trav-
eling solitons in 2D topological Fermi superfluids. As
shown in the Supplemental Material, traveling Majorana
solitons exist both in a 2D spin-orbit coupled Fermi gas in
its topological phase and in a 2D p-wave Fermi superfluid.
In particular, time-dependent simulations in the case of
the 2D p-wave Fermi superfluid show that, the shapes of
both density profile and order parameter of the traveling
soliton remain the same during the time-evolution and
thus are independent of the velocity of travel, similar to
what happens in 1D spin-orbit coupled topological Fermi
superfluid. All these similarities strongly indicate that

In the topological regime�
the phase step is locked �
to π, independent of�
velocity.

The order parameter and�
density profiles are indepen- �
dent as well.

In a harmonic trap,�
the Majorana soliton�
oscillates, but the phase�
step remains π.

The same behaviour is seen in�
Rashba-coupled and p-wave superfluids in two dimensions.

Zhou, Brand, Liu, Hu, PRL (2016) PRL 117, 225302 (2016)



Outline 

•  Solitons 
•  Dynamics from dispersion relations 
•  Dark solitons in the crossover Fermi superfluid 
•  One-dimensional Fermi superfluid 
•  Spin-orbit coupled topological Fermi superfluid 

 

•  Vortices as solitary waves – solitonic vortices 
•  What is a solitonic vortex? 
•  Slab model – asymptotically solvable for 

compressible fluids 
•  Snaking instability and Chladni solitons 



What is a solitonic vortex? 

1.  … a solitary wave that is localised 
(exponentially) in the long dimension of a fluid 
that is confined in the other two dimensions. 

2.  … a single vortex filament. 

Brand, Reinhardt, JPB 37, L113 (2001) 
Brand, Reinhardt, PRA 65, 043612 (2002) 



Vortex dynamics from 
hydrodynamics 

~v =

 
b̂+

t̂⇥ ~rV

µ
loc

!
⇤

2
Svdizinski, Fetter, PRA (2000) 
Horng, Gou, Lin PRA (2006) 

Local evolution of vortex 
filament

Dynamics of the solitonic vortex in harmonically trapped 
(cylindrical) superfluid was solved by Ku et al. (2014).

However, the hydrodynamic solutions suffer from�
 ‘logarithmic (in-) accuracy’.

Ku et al. PRL 113, 065301 (2014)



Dynamics of solitonic vortex 

Effective (inertial) mass: 
•  Property of the velocity field 

•  length scale > healing length 
•  determined by hydrodynamics 

Physical (heavy) mass: 
•  Integral over expelled mass density 

•  This happens at healing length scale 
•  not captured accurately by hydrodynamics 

Oscillation frequency can be 
measured accurately in experiments

Can we solve the hydrodynamic problem exactly? 
Measuring the oscillation frequency then gives access to the physical mass, �

i.e. the vortex core ‘size’.

✓
Ts

Ttrap

◆2

=
m⇤

mph



Solitonic vortex in a slab geometry 
Quantum gas in trap with hard walls, 
slab geometry

Weak harmonic potential in long direction

Thomas Fermi limit, i.e.
Healing length << box width << box length



All particles in volume D2 contribute to the effective/inertial mass

D2

Method of images – incompressible fluid 

Dh

m⇤ = �m
4

⇡
D2n2

Effective mass (v=0)

Es = ⇡n2 ln sin

✓
P

2n2D

◆

0 1 2 3 4 5 6
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P
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��
��
��

Energy-momentum 
dispersion relation

w = i ln
sinh ⇡

2D (z � ih)

sinh ⇡
2D [z � i(2D � h)]

Velocity potential

Toikka, Brand NJP 19, 023029 (2017)

The solitonic vortex is indeed 
exponentially localised.



Compressible fluid – perturbation 
theory 

•  Idea: View kinetic energy density in Euler equation as ‘perturbation’.
•  Series expansion for density and phase lead to Poisson equations.
•  These can be solved by Greens function methods but need to be 

renormalised.
•  Leads to series expansion for dispersion relation in powers of ξ2/D2  

8

ticular, at h = D/2, we find both analytically and nu-
merically the following dependence on R:
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The leading order terms do not depend on h. After the
identification R = ⇠, this means that we need all the
terms in the perturbation series just to get the leading-
order O(⇠2) term for N

s

. Fortunately, it is possible to
evaluate this contribution from all the terms of order ✏2

and higher using the general expression (12). Summing
over all the higher-order contributions of integrals of the
form
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where
p

F

q

is the generalised hypergeometric function.
With the unitary Fermi gas (� = 3/2), we have
p

F

q

�
1, 1, 1

2

; 2, 3; 2

3

� ⇡ 1.06829. For the case of a BEC
(� = 1), the second term in Eq. (37) drops out, and
the quantum pressure terms only contribute at order
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. At h = D/2, numerical evaluation shows that
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where |⌅
2

� 5| . 10�2, as determined by our numerical
accuracy.

The quantum pressure corrections contribute to n

2

,
and so have an e↵ect on the missing particle number at
order ✏

2 and higher. As is the case without the quan-
tum pressure, the excision procedure introduces problems
when evaluating N

s

. For example, we can analytically
evaluate the first quantum pressure correction
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which, as before, means that we must evaluate higher-

order corrections to obtain the full contribution to N

(✏)

s

.
While this is possible in principle, we have not performed
a fully detailed calculation to obtain this contribution.

IV. EQUATION OF MOTION UNDER
HARMONIC TRAPPING

In the previous Secs. II and III we have considered a
homogeneous slab extending infinitely in the x-direction,
which led to the vortex moving at constant velocity par-
allel to the x-axis. In this section we consider the ef-
fects of a weak harmonic trapping potential V

trap

(x) =
1

2

m

p

!

2

x

x

2, where m

p

is the mass of the elementary par-
ticles confined by the trapping potential [46]. An impor-
tant property of the solitonic vortex is that it is localised
along the x-axis. Indeed it can be seen from Eq. (5) that
the incompressible phase field S

0

(r) approaches a con-
stant value (a vacuum) exponentially with a characteris-
tic length scale D/⇡ on either side of the vortex core and
the exponential localisation remains valid at all orders of
the perturbation expansions (11) and (14) for the den-
sity and phase of the compressible superfluid solutions.
For this reason, in the presence of a trapping potential,
the dynamics of the solitonic vortex can be treated in the
framework of Landau quasiparticle dynamics, as outlined
in Sec. I and previously considered in Ref. [16].

A. Period of small amplitude oscillations

In the harmonic trapping potential the buoyancy-like
restoring force F takes the form

F = � m

m

p

M

ph

!

2

x

x, (40)

and the solutions of Newton’s equation (1) are oscil-
lations, as shown in Fig. 4. In the regime of small-
amplitude oscillations, the inertial and physical masses
M

⇤ and M

ph

can be replaced by their respective values
in the center of the channel. Equation (1) now becomes
that of a harmonic oscillator with an oscillation period
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where T
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= 2⇡/!
x

. The coe�cients a

2

and a
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are at
most logarithmic functions of ⇠2/D2 with explicit expres-
sions as follows:
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. For the unitary

Fermi gas � = 3

2

and F ⇡ 0.08902. In the BEC case
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The leading order terms do not depend on h. After the
identification R = ⇠, this means that we need all the
terms in the perturbation series just to get the leading-
order O(⇠2) term for N

s

. Fortunately, it is possible to
evaluate this contribution from all the terms of order ✏2

and higher using the general expression (12). Summing
over all the higher-order contributions of integrals of the
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where
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is the generalised hypergeometric function.
With the unitary Fermi gas (� = 3/2), we have
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where |⌅
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,
and so have an e↵ect on the missing particle number at
order ✏

2 and higher. As is the case without the quan-
tum pressure, the excision procedure introduces problems
when evaluating N

s

. For example, we can analytically
evaluate the first quantum pressure correction
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(39)

which, as before, means that we must evaluate higher-

order corrections to obtain the full contribution to N

(✏)

s

.
While this is possible in principle, we have not performed
a fully detailed calculation to obtain this contribution.

IV. EQUATION OF MOTION UNDER
HARMONIC TRAPPING

In the previous Secs. II and III we have considered a
homogeneous slab extending infinitely in the x-direction,
which led to the vortex moving at constant velocity par-
allel to the x-axis. In this section we consider the ef-
fects of a weak harmonic trapping potential V

trap

(x) =
1

2

m

p

!

2

x

x

2, where m

p

is the mass of the elementary par-
ticles confined by the trapping potential [46]. An impor-
tant property of the solitonic vortex is that it is localised
along the x-axis. Indeed it can be seen from Eq. (5) that
the incompressible phase field S

0

(r) approaches a con-
stant value (a vacuum) exponentially with a characteris-
tic length scale D/⇡ on either side of the vortex core and
the exponential localisation remains valid at all orders of
the perturbation expansions (11) and (14) for the den-
sity and phase of the compressible superfluid solutions.
For this reason, in the presence of a trapping potential,
the dynamics of the solitonic vortex can be treated in the
framework of Landau quasiparticle dynamics, as outlined
in Sec. I and previously considered in Ref. [16].

A. Period of small amplitude oscillations

In the harmonic trapping potential the buoyancy-like
restoring force F takes the form

F = � m

m

p

M

ph

!

2

x

x, (40)

and the solutions of Newton’s equation (1) are oscil-
lations, as shown in Fig. 4. In the regime of small-
amplitude oscillations, the inertial and physical masses
M

⇤ and M

ph

can be replaced by their respective values
in the center of the channel. Equation (1) now becomes
that of a harmonic oscillator with an oscillation period
T

0
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where T

trap

= 2⇡/!
x

. The coe�cients a

2

and a

4

are at
most logarithmic functions of ⇠2/D2 with explicit expres-
sions as follows:
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where F ⌘
p

F

q

⇣
1, 1, 2� �; 2, 3; 1

�

⌘
��1

4�

. For the unitary

Fermi gas � = 3

2

and F ⇡ 0.08902. In the BEC caseThe series can be solved, order-by-order, beyond logarithmic accuracy – 
exactly. Precision experiments that reveal deviations could help us 
understand vortex-core physics. 

Toikka, Brand NJP 19, 023029 (2017)
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How do solitonic vortices form?

1. Phase imprinting generates dark soliton

2. Dark soliton decays via snaking instability



Snaking instability for homogeneous gas 

One can now understand the origin of dynamical instabil-
ity of a kinkwise Bose-condensed state in a cylindrical har-
monic trap; the interparticle interaction can transfer the
!axial" kink-related kinetic energy of the condensate to the
radial degrees of freedom. In order to suppress this instabil-
ity one has to significantly confine the radial motion. As the
!axial" kinetic energy per particle in the axially Thomas-
Fermi condensate is of the order of the mean-field interaction
at maximum density, n0mŨ , the radial frequency should be
the same or larger.
We have performed calculations for various ratia of the

radial to axial frequency, #$ /#z , and found the maximum
value %c of the parameter %!n0mŨ/&#$ , at which the kink-
wise Bose-condensed state is still dynamically stable, i.e., all
excitation modes have real frequencies. If %"%c , there are
excitations with imaginary frequencies, and the kinkwise
condensate is dynamically unstable.
We have solved the Gross-Pitaevskii equation

!#
&2

2m '$
m
2 !#z

2z2$#$
2$2"$Ũ"(0"2#)#(0!0,

!11"

together with the Bogolyubov–de Gennes equations for the
excitations, which we write in the form

*+ f%!
&2

2m !#'$
'(0

(0
# f&$!1%1 "Ũ"(0"2 f&. !12"

Equation !12" gives real *+
2 , which depends continuously on

% and the aspect ratio. In the range of % and #$ /#z , where
a given mode + is dynamically unstable, *+

2'0 and the en-
ergy *+ is purely imaginary. In the region of dynamical sta-
bility *+ is purely real (*+

2"0) and, hence, at the border
between the two regions we have *+!0.
At the critical point %!%c all excitation energies *+ are

real, and one of the excitations has zero energy. This is just
the mode which for %"%c becomes dynamically unstable.
Similar to the mode of Eq. !10" in the absence of trapping
field, this mode is even with respect to inversion of the z
coordinate. The function f#!0, and f$ follows directly
from Eq. !12":

!#'$'(0 /(0" f$!0. !13"

Equation !13" is the Schrödinger equation for the motion of a
particle !with zero energy" in a cylindrically symmetric po-
tential V!&2'(0/2m(0. The potential V depends on % and
the aspect ratio. Thus, for a given ratio #$ /#z one finds the
critical value %c by selecting the parameter % such that there
is an even !nonzero" solution of Eq. !13", remaining finite at
the origin and tending to zero at infinity. This was checked
numerically on the basis of Eqs. !11"–!12" for a wide range
of % and the aspect ratio.
As it follows from our calculations, %c is minimal for

excitations with the projection of the orbital angular momen-
tum on the symmetry axis, M!1. The dependence of %c on
the aspect ratio is presented in Fig. 3. For #$'#z even an
arbitrary small interparticle interaction leads to instability,
since the axial ‘‘kink-related’’ energy per particle in the con-
densate (&#z) can be always transferred to the radial mode
with M!1 which, by itself, has energy &#$ . For #$"#z ,
the critical value %c increases with the ratio #$ /#z and
reaches %c,2.4 for #$(#z . We also found that the decay
of dynamically unstable kink states is accompanied by the
undulation of the nodal plane and the formation of vortex-
antivortex pairs, similar to the decay of dark optical solitons
-16..
The criterion of dynamical stability of a kinkwise conden-

sate, %'%c , can be satisfied in the conditions of current
BEC experiments. For a rubidium condensate in a cylindrical
trap with #$/200 Hz(#z , it requires the maximum den-
sity n0m)1014 cm#3.
Although for %'%c the kinkwise condensate is dynami-

cally stable, there is a thermodynamic instability related to
the presence of an excitation with negative energy. For a
very strong radial confinement of the axially Thomas-Fermi
kinkwise condensate (&#$(n0mŨ(&#z ;%*%c), we calcu-
late a negative excitation energy close to **!#&#z /!2
characteristic for the 1D Thomas-Fermi kinkwise condensate
in a harmonic trap.
In the 1D case we calculate the negative excitation energy

analytically by solving the Bogolyubov–de Gennes equa-
tions at distances z from the origin, much smaller than the
Thomas-Fermi size of the condensate R!(2)/m#z

2)1/2. We
represent (0 and the excitation wave functions as a series of
expansion in powers of small parameter 0!&#z /) . Then, in
the same dimensionless units as in the absence of trapping
field, the Gross-Pitaevskii equation is given by Eq. !1" with
an extra term 02z2(0/2 on the left-hand side. Confining our-
selves to the expansion up to 02, we obtain

FIG. 2. Imaginary part of the excitation energy !in units of )" vs
the transverse momentum k !in units of l#1) for a kinkwise con-
densate in the absence of a trapping field.

FIG. 3. Critical parameter %c vs the aspect ratio for a kinkwise
condensate in a cylindrical trap.
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Solution: Approach from hydrodynamics 

Hydrodynamic picture of the snaking instability:�
Dark soliton is a membrane that “vibrates” under the 
influence of surface tension (and negative mass density).

Kamchatnov, Pitaevskii PRL (2008)

Thus, we should expect the 
vibration modes of a circular 
membrane …



“Discoveries about the Theory of 
Chimes”



Unstable modes of the dark soliton 
(numerics) 

A. Mateo Munoz, JB, PRL (Dec 2014)



Chladni Solitons: Numerics (GPE) 
Dark soliton (DS)

A. Mateo Munoz, JB, PRL (Dec 2014)



Decay of planar dark solitons observed 
in the unitary Fermi gas 

From Planar Solitons to Vortex Rings and Lines:

Cascade of Solitonic Excitations in a Superfluid Fermi Gas

Mark J.H. Ku, Biswaroop Mukherjee, Tarik Yefsah, Martin W. Zwierlein
MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

We follow the time evolution of a superfluid Fermi gas of resonantly interacting 6Li atoms after
a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its
subsequent snaking, and its decay into a vortex ring, which in turn breaks to finally leave behind
a single solitonic vortex. In intermediate stages we find evidence for an exotic structure resembling
the �-soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface
reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The
observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics,
calling for a microscopic description of unitary fermionic superfluids out of equilibrium.

Solitonic excitations such as solitons, vortices and vor-
tex rings are found in a large variety of nonlinear media,
from classical fluids and plasmas to polyacetylene chains
and superconductors. While ubiquitous, their intrinsic
properties are tailored by the host medium. In superflu-
ids, which are characterized by a complex order parame-
ter with a well-defined phase and a non-viscous flow, such
excitations correspond to phase defects and exhibit prop-
erties non-existent in their classical counterparts. There,
a vortex is topologically protected owing to the quantized
circulation of the velocity field, and a traveling soliton ex-
periences superfluid back flow determined by the phase
di↵erence across it [1, 2]. The quantum statistics of the
particles forming the superfluid is yet another ingredient
which dramatically a↵ects the properties of these defects.
In Fermi superfluids, as opposed to the bosonic case, dark
solitons and vortices are known to host in-gap fermionic
excitations in their cores, from the Andreev bound states
in the generic case [3, 4], to the more exotic Majorana
fermions in the presence of spin-orbit coupling [5, 6].

Importantly, in a quantum fluid with short-ranged in-
teractions, these phase defects are localized within the
microscopic length scale of the system: the healing length
⇠. The healing length sets the length scale above which
the superfluid dynamics is well captured by the hydro-
dynamic formalism. At length scales on the order of ⇠ or
smaller, a microscopic description is required, and this is
where the dichotomy between Bose superfluids and Fermi
superfluids becomes stringent. While weakly interacting
Bose-Einstein condensates (BEC) are well understood in
terms of the Gross-Pitaevskii (GP) theory, a complete
microscopic wave equation for strongly-interacting Fermi
superfluids remains to be established. At the mean-
field level, a unified description can be formulated within
the Bogoliubov–de Gennes (BdG) formalism, which con-
nects to the GP equation in the limit of weakly inter-
acting BECs, and contains the necessary fermionic de-
grees of freedom in the Bardeen-Cooper-Schrie↵er limit
(BCS) [1, 2, 4, 7]. However, while the BdG framework
provides a good description of these two limiting cases,

it is unclear whether it contains the right ingredients to
quantitatively handle the behavior of solitonic excitations
in the strongly correlated regime, where the dynamics
near the core of these phase defects is highly nontriv-
ial [8]. The unitary Fermi gas realized in ultracold atom
experiments o↵ers a unique opportunity to clarify this is-
sue, as it resides at the point of the BEC-BCS crossover
where beyond mean-field correlations are expected to be
the strongest [9]. It is also the regime where the healing
length ⇠ is the smallest – on the order of the inter-particle
spacing – such that phase defects are as localized as pos-
sible in a quantum fluid.

A natural approach to experimentally reveal the core
dynamics of such defects is to trigger their decay. Soli-
tonic excitations indeed follow a well-defined hierarchy
in terms of stability and energy cost in three dimensions,
the planar soliton being the most energetic and unstable
towards the formation of other solitary waves [10–15].
In weakly interacting BECs, dark solitons have been ob-
served to decay into vortex rings and vortices [16–18] as
a consequence of the snake instability, the undulation of
the soliton plane [10]. In the case of strongly interacting
Fermi superfluids, similar scenarios have been predicted
numerically within a mean-field approximation [19–21],
but an experimental support of such microscopic dynam-
ics is still lacking.

In this Letter, we create a cascade of solitonic excita-
tions in a unitary Fermi gas of 6Li atoms. Starting from
a planar dark soliton created via phase imprinting, we
observe the formation of ring defects which eventually
decay into a single solitonic vortex. By means of a to-
mographic imaging technique [22], we are able to follow
the surface dynamics of the soliton’s nodal plane at the
level of the interparticle spacing, as it snakes, breaks and
converts into the topologically protected solitonic vortex.
Our measurements allow for a quantitative analysis of
the snaking dynamics of the initial dark soliton, awaiting
comparison to time-dependent theories of strongly corre-
lated fermions.

We create a strongly interacting fermionic superfluid
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Evidence for observation of 
the Phi soliton.

Ku et al. PRL 116, 045304 (2016)
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What can we learn from solitary waves 
about strongly-correlated superfluids? 

Dynamics is interesting. 
 
Consider solitonic vortex: Hydrodynamics (almost) 

completely determines dynamics, determines 
inertial mass. 

But the physical mass (buoyant, or ‘heavy’ mass) is 
determined by micro/mesoscopic properties of 
the core structure. 

The ratio inertial mass / physical mass can be 
measured by oscillation experiments (like at 
MIT). 

 



The end! 
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