Photo-induced Superconductivity and all that...

Andrea CavalleriMax Planck Institute for the Structure and Dynamics of Matter

Department of Physics University of Oxford

Materials control: conventional routes

Chemical doping

Driven Systems

Driven solids are different

Dynamical modulation can create effective energy landscapes and new functionalities in quantum solids

Driven Systems: New Energy Landscapes

Take a pendulum and vibrate its pivot point:

P.L. Kapitza, "Dynamic stability of a pendulum with an oscillating point of suspension," *Zh. Eksp. Teor. Fiz.* 21, 588 (1951)

L.D. Landau and E.M. Lifschitz *Mechanics* (Pergamon, Oxford 1976)

Driven Systems: New Energy Landscapes

Take a saddle and spin it:

Structure-function in solids

Resonant excitation of the lattice

Mid infrared and THz light: lattice distortions along one (or few) normal mode coordinates

Displacements ~ 1-10 %

Can I dynamically stabilize new lattice structures?

Linear coupling

Light couples to IR active phonons – whose coordinates that are odd against inversion

Linear optical excitation of IR-active modes does nothing on average

LINEAR - Q_{IR}

Today's lecture: beyond linear coupling

M. Först et al., Nature Physics 7, 854 (2011)

Lowest order non-linear coupling

Equations of motion: oscillations in Q_{IR}

$$\ddot{Q}_{IR} + \gamma_{IR}\dot{Q}_{IR} + \omega_{IR}^2 Q_{IR} = A E_{laser}^{i\omega t}$$

harmonic oscillator Laser field

Equations of motion: oscillations in (Q_{IR})²

$$\ddot{Q}_{IR} + \gamma_{IR}\dot{Q}_{IR} + \omega_{IR}^2 Q_{IR} = A E_{laser}^{i\omega t}$$

$$(\ddot{Q}_2 + \gamma \dot{Q}_2 + \omega_2^2 Q_2) = B Q_{IR}^2$$

Oscillations in Q_{IR} displace Q₂

$$\ddot{Q}_{IR} + \gamma_{IR}\dot{Q}_{IR} + \omega_{IR}^2 Q_{IR} = A E_{laser}^{i\omega t}$$

$$(\ddot{Q}_2 + \gamma \dot{Q}_2 + \omega_2^2 Q_2) = BQ_{IR}^2$$

Q_{IR} **Q**₂ term: Oscillations in **Q**_{IR} displace **Q**₂

Pr_{0.3}Ca_{0.3}MnO₃: control of bond tilt

M. Rini et al., Nature 449, 72 (2007)

A. Subedi, A. Cavalleri, A. Georges Phys. Rev B 89, 330301 (2014)

Controlling Superconductivity

Lattice distortions may quench SC

Lattice distortions may promote SC

Cuprate superconductors: competing orders and hidden phases

Stripes: Frustrated Interlayer tunnelling

First step: Melt Stripes Optically

Seeing Stripes: Resonant Soft X-rays

Abbamonte et al Nature Physics 1, 155 (2005)

Pump probe experiment using X-ray FEL

Ultrafast Resonant Soft X-rays

O Kedge

(0.25, 0, 0.65)

Ultrafast Resonant Soft X-rays

M. Foerst et al., Phys Rev Lett 112, 157002 (2014)

With John Hill, BNL

Light Induced "superconductivity"

D. Fausti et al., Science 331, 6014 (2011)

Light: La_{1.675}Eu_{0.2}Sr_{0.125}CuO₄

C.R. Hunt et al., Physical Review B 91, 020505(R) (2015)

Hypothesis: Melt Stripes Optically

Bi-layer Cuprates: more competing orders and hidden phases

$YBa_2Cu_3O_{6+x}$: Coherence above T_c and a CDW

With B. Keimer MPI Stuttgart

YBa₂Cu₃O_{6.6}

Below T_c

W. Hu et al. *Nature Materials* 13, 705 (2014)

S. Kaiser, D. Nicoletti, C. Hunt et al., Phys. Rev. B 89, 184516 (2014)

Below Tc: two plasma plasma edges

Low frequency inter-bilayer plasma edge

W. Hu et al. *Nature Materials* 13, 705 (2014)

Below Tc: Light-induced blue shift of the edge

W. Hu et al. *Nature Materials* 13, 705 (2014)

S. Kaiser, D. Nicoletti, C. Hunt et al., Phys. Rev. B 89, 184516 (2014)

Below T_c: Enhancement of "superconductivity"

W. Hu. S. Kaiser, D. Nicoletti, C.S. Hunt et al. *Nature Materials* 13, 705 (2014)
S. Kaiser, D. Nicoletti, C. Hunt et al., *Phys. Rev. B* 89, 184516 (2014)

Spectral weight from high frequency

W. Hu. et al. *Nature Materials* 13, 705 (2014)

Above T_c

With B. Keimer MPI Stuttgart

Light induced "Superconductivity"

Plasma edge $\varepsilon_1(\omega_{IPR}) = 0$ 1.0 $T < T_c$ equilibrium Reflectivity 50 3/L ml-T < T_ equilibrium 0.0 0.0 Δ -lm 1/ε (10⁻³) 0.1 **AR/R** light-ind equilibrium T > T_ 0.0 light-induced 30 60 30 60 Wavenumber (cm⁻¹) Wavenumber (cm⁻¹)

YBCO_{6.6} – 100 K

Equilibrium T<T_c

Light induced T>T_c

W. Hu. et al. Nature Materials 13, 705 (2014)

G. Ghiringhelli et al., *Science 337*, 821 (2012)

S. Kaiser, D. Nicoletti, C. Hunt et al., *Phys. Rev. B* 89, 184516 (2014)

Light induced edge in YBa₂Cu₃O_{6.6}: CO melts

Hypothesis: I Melt Stripes Optically

Lower doping values

larger effect for lower dopings....

S. Kaiser, et al., *Phys. Rev. B* 89, 184516 (2014)

Follows T*

Hole concentration

W. Hu. S. Kaiser, D. Nicoletti, C.S. Hunt et al. Nature Materials (2014)S. Kaiser, D. Nicoletti, C. Hunt et al., *Phys. Rev. B* 89, 184516 (2014)

Dynamical modulation: what is going on ?

Excite B_{1u} and displace along A_g

Femtosecond X-ray Scattering

R. Mankowski et al. Nature 516,71 (2014)

New bond lengths in YB₂Cu₃O_{6+x}

R. Mankowski et al. Nature 516, 71 (2014)

Pressure does the same.... only less

- J. G. Huber et al. *Phys. Rev. B* 41, 8757 (1990)
- L. E. Schirber et al. Phys. Rev. B 35, 8709 (1987)
- B. Bucher et al. Journal of Less-Common Metals 164, 165, 20 (1990)
- J. Jorgensen et al. *Physica C* 171, 93 (1990)

Phononics d~3%

Is this phenomenon general?

The K₃C₆₀ superconductor

- Lattice mediated superconductivity
- T_c (20 K)

Superconducting transition: cooling

Pairing aided by a molecular Jahn-Teller distortion

Courtesy of A. Subedi

Optical excitation of molecular vibrations

A light-induced superconducting like phase

M. Mitrano et al. Nature 530, 461 (2016)

Up to > 100 K

Quasi-static lattice distortion ?

Light induced negative U?

Parametric amplification of the pairing instability ?

New data (2017 +): fluence dependent gap

Other parameters: e.g. pressure

New data (2017 +): pressure dependent gap

New data (2017 +): pressure dependent gap

New data (2017 +): pressure dependent conductivity

New data (2017 +): non-equilibrium phase diagram

Andrea Cavalleri, M. Foerst, D. Nicoletti, W. Hu, M. Buzzi, J. McIver, S. Rajasekaran, E. Pomarico, F.U. Stein, M. Budden, A. Cantaluppi, A. Cartella, E. Casandruc. B. Liu, R. Mankowski, T. Nova. A. von Hoegen, Th. Gepert, H. Bromberger

Thanks !

Thanks also to

D. Jaksch University of Oxford

S. Clark University of Bath

B. Keimer Max Planck Institut - Stuttgart

S. Dhesi Diamond Light Source

J. Hill Brookhaven National Laboratory

A. Georges College de France R. Merlin University of Michigan

H. Takagi Max Planck Institut - Stuttgart

Y. Tokura University of Tokyo

J.M. Triscone University of Geneva

G. Gu Brookhaven National Laboratory

Experimental Team LCLS - SLAC

M. Ricco' Universita' di Parma

Summary

Dynamical control of the crystal lattice

Use coherent radiation to drive quantum materials, discover new nonequilibrium phases of matter not found near equilibrium

Understand the non-equilibrium emergent phenomena

Explore new paradigms for device applications

