SPICE Workshop: Non-equilibrium Quantum Matter, Mainz Germany, 5/31/2017

Inflation and coherent dynamics in a Bose-Einstein condensate driven across a quantum critical point

Cheng Chin

James Franck institute Enrico Fermi institute Department of Physics University of Chicago

Funding:

Army Research Office

Material Research Science & Engineering center

Cold atom research at UChicago

Nuclear Physics: Feshbach molecules Efimov physics Quantum droplet

Condensed Matter: Scale invariance Quantum criticality

Cosmology: Sakharov oscillations Kibble mechanism Inflation

Thermal Levitation

ARO MURI: Fundamental Issues in Non-equilibrium Dynamics

F.I.N.D. Broad impact: General principle: Quench Quark-gluon plasma Integrability Criticality Quantum sensor Metastability Entropy Thermalization Entropy management **Kibble-Zurek** Material design Spin-charge separation Cosmology Holographic principle and AdS-CFT

Consortium: Chicago, Harvard, MIT, Rice, Cornell, Ohio State

ARO MURI

Synopsis

- Bose-Fermi mixture of ⁶Li and ¹³³Cs
 - Efimov scaling symmetry
 - Test of Efimov universality
 - Bose-Fermi mixture
- ¹³³Cs: Quantum criticality
 - Equilibrium Science 12, PRL13
 Domain formation NatPhys13
 Roton-Maxon dispersion PRL 15
 Kibble-Zurek scaling Science 16
 Inflation

PRL 2014, NatPhys 2015

NatPhys 2017

Test of Efimov Universality

J. Johansen, B. DeSalvo, K. Patel, CC, Nature Physics (2017)

LiCs Fermi-Bose mixture

10,000 atoms 10~20 nK 10,000 atoms Fermi temperature = 500 nK

LiCs Fermi-Bose mixture

Degenerate Fermi gas inside a Bose Einstein condensate

Bose-Fermi droplet

Quantum phase transition in modulated lattices

RED: BEC with k=k*

WHITE: BEC with k=-k*

Inflation model and quantum phase transition

A. Guth 1981

Figure from Alan H Guth, J. Phys. A: Math. Theor. 40 (2007)

T.W.B. Kibble, PHYSICSREPORTS 67, 183 (1980) M. Morikawa, Progress of Theoretical Physics 93, 685 (1995) Also see: *More is different*, P.Anderson, Science (1972)

Our ¹³³Cs BEC machine

Cs superfluid: 20,000~100,000 atoms Imaging resolution: 1.0 µm 20~100 atoms/micron³

Nature 2009, Nature 2011

Simplest inflation model

Figure from Alan H Guth, J. Phys. A: Math. Theor. 40 (2007)

Hybridization of Bloch bands

$$H = \begin{pmatrix} E_e(k) & 0\\ 0 & E_g(k) \end{pmatrix} - \frac{\hbar\omega}{2}\sigma_z + \frac{\Omega}{2}\sigma_x$$

ω: modulation frequencyΩ: modulation strength

Domain Gallery

Spin Correlation Function $G(d\mathbf{r}) = \langle j_z(\mathbf{r}) j_z(\mathbf{r} + d\mathbf{r}) \rangle$

$$F(x,t;\dot{s}) = \dot{s}^{\ell} f(\frac{x}{x_{KZ}},\frac{t}{t_{KZ}})$$

Universal Kibble-Zureck scaling: L. Clark, L. Feng, CC, Science (2016)

T.W.B. Kibble, PHYSICSREPORTS 67, 183 (1980) M. Morikawa, Progress of Theoretical Physics 93, 685 (1995) Also see: *More is different*, P.Anderson, Science (1972)

Observation of density wave order

(Real space) Density wave vs. Time-of-flight

Inflation Hamiltonian and inflaton

emission

emission

stimulation

Stimulated inflation by seeding quantum fluctuations

Inflaton dispersion (growth rate)

Coherent proliferation of inflatons

Compare experiment and theory

Density wave oscillations in real space

Coherent Inflation dynamics

Full model: $H = \sum_{k} \varepsilon_{k} a_{k}^{+} a_{k} + g \sum_{k} \hat{b}_{k1}^{+} \hat{b}_{k2}^{+} \hat{b}_{k3} \hat{b}_{k1+k2-k3}$

Conclusion

Universal domain formation in quantum critical dynamics

- Kibble-Zurek temporal exponent 0.50(2) and spatial exponent 0.26(2)
- Coherent dynamics of inflation and inflaton
- Exponential growth and poliferation
- inflaton energy

Future

Coherent control of quantum phase transition

Current group members:

Dr. Brian DeSalvo KrutikPatel

Logan Clark

Lei Feng

Quantum Matter synthesizer

Dr. Mickey McDonald

Jonathan Trisnadi

Theory collaboration

Jason Ho (Ohio State)

Subir Sachdev (Harvard)

Hui Zhai (Tsinghua Univ)

Brandon Anderson (UChicago)

Kathryn Levin (UChicago)

Qi Zhou (Purdue Univ)

Tongtong Liu (Peking Univ)

Former members

Chen-lung Hung Xibo Zhang (Asst. Prof., Purdue) (Asst. Prof., PKU)

Li-chun Ha Nate Gemelke (PostDoc, UT-Austin) (Asst.Prof., PennState)

Colin Parker Eric Hazlett Shih-Kuang Tung Kathy-Ann Solderberg (Asst.Prof. GaTech) (Asst. Prof. Carleton) (Assit. Prof. Tsinghua) (Gov Agent, BAH)