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â
x+1,y

ei2⇡↵y

+ â†
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Experimental realization of the gauge field 
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Fig. 1: Geometry and band structure of honeycomb photonic Floquet topological 
insulator lattice.  (a) Input facet of photonic lattice, honeycomb geometry with “zig-zag” 
edge terminations on the top and bottom, and “armchair” terminations on the left and 
right sides.  (b) Schematic diagram of the helical waveguides.  The waveguides are 
helical with their rotation axis in the z-direction, with radius R and pitch Z.   (c) Spatial 
band structure (β vs. (kx,ky)) for the case of non-helical waveguides comprising a 
honeycomb lattice (R=0). Note the band crossings at the Dirac point. (d) Spatial bulk 
band structure for the photonic topological insulator: helical waveguides with R=8µm 
arranged in a honeycomb lattice.  Note the band gap opening up at the Dirac points 
(labeled with the red, double-sided arrow), which corresponds to the band gap in a 
Floquet topological insulator.     
 
  

M. H. “Synthetic gauge fields with photon’’ Int. J. Mod. Phys. B 28, 1441002 (2014).

L Lu, JD Joannopoulos, M Soljačić - Nature Photonics, 2015 
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FIG. 1: Real-space unit cell and reciprocal-space BZ of the 3D
DG PhC. a, Real space geometry in a bcc unit cell where a1 =
(−1,1,1) a2 , a2 = (1,−1,1) a2 and a3 = (1,1,−1) a2 . The two identi-
cal gyroid structures of red and blue colors are high refractive index
(n= 4) materials; they are inversion pairs of each other with respect
to the origin(o). An air sphere (r/a = 0.13) located at ( 14 ,−

1
8 ,
1
2 )a

breaks the inversion symmetry of the system. b, The BZ of the bcc
lattice. Weyl points and linear line-degeneracies of investigation in
this letter always lie in the green plane through the origin(Γ). Γ-N is
along [101] and Γ-H is along [010](ŷ). c, An air-isolated DG surface
can be formed by terminating the perturbed gyroid (red) but not the
other (blue). The SG PhC on the top has a large complete bandgap
as shown in Fig. 2a.

up. The three-fold degenerate point is well isolated in fre-
quency from other parts of the dispersion diagram of the DG
bandstructure, making it an ideal starting point for applying
symmetry-breaking perturbations.
The three-fold degeneracy of quadratic dispersions at Γ can

be lifted by breaking the I4132 space group without breaking
P or T symmetries. This is done by replacing a part of the gy-
roid material with two air-spheres (one on each gyroid). The
first air-sphere is placed in the red gyroid at ( 14 ,−

1
8 ,
1
2)a, as

illustrated in Fig. 1a; and the other is its inversion pair in the
blue gyroid (not illustrated in Fig. 1a). This perturbation lifts
the 5th band out of the three-fold degeneracy with the 3rd and
4th bands at Γ, as shown in Fig. 2b. The 4th and 5th bands
linearly cross each other, forming a closed line-degeneracy
around the Γ point in the Γ-N-P-H plane, inside an other-

wise complete frequency gap. It is worth pointing out that
this bandstructure, although not exhibiting Weyl points, is in-
teresting in itself in analogy to the line-node semimetals [23].
We show its flat surface dispersions towards the end of this
paper.
In what follows, we break the PT symmetry to obtain Weyl

points of photons for the first time. We start with the struc-
ture from Fig. 2a. First, we break P while preserving T. Since
T maps a Weyl point at k to −k with the same chirality, there
must exist at least two other Weyl points, both of opposite chi-
rality, to neutralize the whole system. So the minimal num-
ber of Weyl points in this case has to be four. We break P
by placing only one air sphere on one of the gyroids (but not
the other) at ( 14 ,−

1
8 ,
1
2 )a[34], as illustrated in Fig. 1(a). Un-

der this pure P-breaking perturbation[35], two pairs of Weyl
points, shown in Fig. 2c, emerge along Γ-N and Γ-H direc-
tions. The fact that all the Weyl points appear along high-
symmetry lines significantly simplifies the analysis. There are
no other states in the vicinity of the Weyl points’ frequencies.
Second, DC magnetic fields (B), along different directions,

are applied to the original DG PhC structure in Fig. 2a to
break the T while preserving P. We assume the high-index gy-
roid material is gyroelectric and use a generic model [24] to
describe its magnetic response. When B is along ẑ, we assume
the permittivity tensor takes the form of

ε(|B|) =

⎛

⎝

ε11(|B|) iε12(|B|) 0
−iε12(|B|) ε11(|B|) 0

0 0 ε

⎞

⎠ (1)

where det(ε(|B|)) = (ε211(|B|)−ε212(|B|))ε = ε3; this constant
determinant condition ensures the dispersions as a whole do
not move much in frequency with the external DC B fields.
The dimensionless effective magnetic field intensity is de-
fined as |B| ≡ ε12/ε in this paper. When B field is along
other directions, the corresponding ε tensor can be obtained
through coordinate transformations. (Note the T-breaking can
be equally well implemented via µ for gyromagnetic mate-
rials [25].) Under this pure T-breaking perturbation, only a
single pair of Weyl points emerges along the direction of the
magnetic field. This is the minimum number of Weyl points
that can exist under the inversion symmetry. These two Weyl
points are still frequency-degenerate: P maps a Weyl point at
k to −k with the opposite chirality. An example of this is
shown in Fig. 2d.
Third, we apply both P and T breaking perturbations at

the same time to observe the phase transitions between the
two(II) Weyl points in the pure T-breaking phase and the
four(IV) Weyl points in the pure P-breaking phase. Inter-
estingly enough, different magnetic field directions produce
strikingly different phase diagrams. When B is applied along
Γ-H, only two phases exist: the T-breaking dominated phase
(II) and the P-breaking dominated phase (IV). The pure P-
breaking phase, shown in the contour plot Fig. 2c, has four
Weyl points: two with positive chiralities along Γ-H and two
with negative chiralities along Γ-N. Applying magnetic field
along the Γ-H direction drives the two negative-chiralityWeyl

(Δϕp) because of their different propagation constants. A second
modulator (right) couples light in the odd mode back into the even
mode, and light exiting the interferometer exhibits an interference
profile, as in the atomic version but now depending on cos(Δϕp).

We use the Ramsey-type interferometer to probe the phase and
break the reciprocity of light, thus inducing an effective magnetic
field. This is achieved if the two modulators have different phases
ϕL and ϕR (Fig. 1c). When inducing couplings, modulators impart
their phases on photons. With respect to the phase of the local oscil-
lator that drives the modulator, the imparted phase on photons is
negative (positive) if excitation (de-excitation) occurs1. If the
phases of both modulators are identical (Fig. 1b), then the total
imparted phases are cancelled. However, if the modulators have
different phases (Fig. 1c), these imparted phases are detected and
the transmission becomes direction dependent. When light enters
the interferometer from the left (right), the output of the interfe-
rometer is proportional to cos(Δϕp − ϕL + ϕR) (cos(Δϕp − ϕR + ϕL)).
The non-reciprocal transmission is a result of an effective magnetic
flux, where Bflux = ϕL − ϕR (ref. 1). We implement the photonic
Ramsey-type interferometer by using the supermodes (even and
odd modes) of a silicon coupled-waveguides structure. The mode
profiles are shown in Fig. 2a,b and the dimensions of the structure
in Fig. 2c. The modulators are formed by embedding pn and np
diodes in the waveguides (Fig. 2c). Figure 2d presents a top view
of the carrier distribution under an applied sinusoidal voltage
(red). The width of the depletion region (grey) changes as the
signal is applied, which induces a change in the refractive index of
the coupled waveguides22,23. The pn–np configuration18 ensures
that, at any instant in time, only one side of the coupled waveguides
experiences a depletion width change, which enables coupling
between the supermodes. Figure 2e presents an overview of the
interferometer. The two modulators are identical and only their
modulation phases are different (ϕR and ϕL). The length of each
modulator is 3.9 mm, which in simulation provides an equal prob-
ability (50%) of populating both the two supermodes. The gap of the

coupled waveguides varies along the interferometer. At the edges
where the modulators are located, this gap is 900 nm (to separate
the two supermodes in frequency by a few GHz in the optical
c-band; Supplementary Fig. 1). In the centre, the gap tapers (taper
length of 100 µm) down to 550 nm and remains at this for a distance
Lf such that the two supermodes experience different effective
indices Δneff , and the phase difference between the two supermodes
becomes Δk × Lf (Δk = 2πΔneff/λ and λ is the optical wavelength).
Here, Lf varies from 175 µm to 350 µm for different fabricated
devices. We also place multimode interference devices at each end
of the interferometer so that only the even mode enters and exits
the interferometer. A microscope image and a simulated power
distribution of the multimode interference are shown in Fig. 2e
(bottom images).

We experimentally observed non-reciprocal fringe patterns, indi-
cating the existence of an effective magnetic flux from 0 to 2π cor-
responding to a non-reciprocal 2π phase shift of 8.35 mm (length of
our interferometer) and a fringe extinction ratio of 2.4 dB. Figure 3a
shows the optical transmission of our devices when light is propa-
gating from left to right (L→ R) and right to left (R→ L). Two syn-
chronized sinusoidal radiofrequency signals are applied such that ϕL
and ϕR are correlated. We chose λ = 1,570 nm to match the modu-
lation frequency ( fM = 4 GHz) to the frequency difference between
the supermodes. As shown in Fig. 3a we see full periods of sinusoi-
dal optical transmissions (fringe patterns) as Δϕ (= ϕL − ϕR) varies
from 0 to 2π. The solid curves in Fig. 3a are the theory curve fits
(Supplementary Section II), all of which match the experiments
well. For all values of Lf we observe clear non-reciprocal
transmission, where the Δϕ that corresponds to the maximum
transmission for R→ L (ΔϕR→L) is different from that for L→ R
(ΔϕL→R). Figure 3b also shows a linear relationship between
|ΔϕR→L − ΔϕL→R| and Lf. This result is expected, because ΔϕR→L
and ΔϕL→R are both proportional to the phase difference between
the two supermodes, which is also proportional to Lf. The exper-
iments (circles) match the theory well (solid line), and the data all
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Figure 2 | Ramsey-type interferometer design and fabrication. a,b, Simulated mode profiles for both the even mode (a) and the odd mode (b), which
coexist in a silicon coupled waveguide structure. c, Cross-sectional view of the coupled waveguides. A set of pn and np diodes is doped to modulate the
refractive index. d, Top view of carrier density (N) distribution in the coupled waveguide along the x-axis (slab omitted). The width of the depletion region
(grey) changes over time as a sinusoidal signal is applied to the diodes. The applied sinusoidal voltage V is shown in red. e, A photonic Ramsey
interferometer implemented as a silicon coupled-waveguide structure. Bottom: microscope image and simulated light transmission of a pair of multimode
interference devices located at the outer ends of the interferometer.
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see also: Ozawa et al. PRL 2014, Bardyn et al., Y. Chong 

• What is the manifestation of this integer 
conductance in a photonic system? 

Topological invariants in photons
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Measuring Topological Invariants in Photonic Systems

Mohammad Hafezi
Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA

(Received 5 December 2013; published 29 May 2014)

Motivated by the recent theoretical and experimental progress in implementing topological orders with
photons, we analyze photonic systems with different topologies and present a scheme to probe their
topological features. Specifically, we propose a scheme to modify the boundary phases to manipulate edge
state dynamics. Such a scheme allows one to measure the winding number of the edge states. Furthermore,
we discuss the effect of loss and disorder on the validity of our approach.

DOI: 10.1103/PhysRevLett.112.210405 PACS numbers: 03.65.Vf, 42.25.-p, 73.43.Cd

Topology plays a fundamental role in many physical
phenomena in two-dimensional systems. The most famous
examples are various quantum Hall effects in electronic
systems [1–3]. Recently, there has been a surge of interest
in studying topological orders in nonelectronic systems,
ranging from ultra cold atoms [4–7] to photons [8–20]. For
example, it was shown that a uniform magnetic field can be
synthesized in an array of coupled resonators and the
system exhibits chiral edge states, in direct analogy to
integer quantum Hall edge states [13]. The robustness of
such edge states against disorder was experimentally
confirmed by direct imaging of the photonic array.
While the implementation of gauge fields has been

achieved, the measurement of the expected topological
orders remains elusive due to the inapplicability of the
conventional Hall conductance measurements to atomic
and photonic systems. There have been various proposals to
detect topological order in atomic [21–26] and, recently,
photonic systems [27,28], which are generally based on the
manipulation of Bloch states. However, the following
question has not yet been addressed: how can one directly
measure the integer topological invariants, e.g., the winding
number of the edge states or the Chern number of the bulk
state in a photonic system? In particular, how do the integer
values manifest themselves in an optical realization of
quantum Hall Hamiltonians. In this Letter, we propose a
scheme to measure the integer topological invariants of a
photonic system by manipulating the boundary conditions.
Following Refs. [12,13], we benefit from individual site
addressability to manipulate the synthetic gauge field at
the boundary—a property which is difficult to achieve in
electronic and atomic systems.
The main idea of our approach relies on the ability to

introduce a nonzero phase in the boundary conditions. Such
a phase is equivalent to a magnetic flux threading the holes
of the system when the system manifold is not simply
connected. If the system has an edge state around that hole,
the insertion of the magnetic flux shifts the momentum of
that edge state. Once an entire magnetic flux quantum
threads the hole, the edge state spectrum should return to its

original form, while an integer number of edge states have
been transferred during this process (Fig. 1). This integer
number is the winding number of the edge state. We
propose that, in a photonic implementation, such a spectral
shift and edge state transfer can be experimentally observed
using standard transmission spectroscopy. We note that our
proposal could be applied to all topologically ordered
photonic systems, ranging from radio frequency [29] and
microwave [30] to an optical domain, and any bosonic
system that can be externally driven. In particular, in
circuit-QED systems, whispering gallery mode resonators
[31], and in exciton-polariton systems, micropillars [32]
can be used to make an array of resonators, respectively.
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FIG. 1 (color online). (a) Coupled resonators in a ring configu-
ration: Photons hop between resonators with the rate J, except for
one link where they hop with Jeiϕ. The inset shows that the
boundary can bemodified by changing the index of refraction of the
connecting resonators. (b) Dispersion relation when the boundary
phase changes from zero to 2π, for a ring of 10 resonators.
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Experimental realization
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Quantum directions

Linear/weakly nonlinear Strong photon-
emitter  interaction  

Quantum transport of 
non-classical light 



Quantum transport in topological photonics systems

Theory: S. Mittal, V. Vikram Orre, and M. H., Optics Expres 24, 15632 (2016)
see also Rechtsman et al. arXiv:1605.02053 
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Fig. 1. (a) Schematic of a 2D lattice of coupled ring resonators implementing the integer
quantum-Hall model. Site resonators (black) are coupled using link resonators (grey). The
lattice is coupled to input and output waveguides. Edge states transport is confined along
the lattice boundary whereas the bulk states follow different paths through the bulk of the
lattice. A time-bin entangled photon pair is coupled to the lattice at input and the output
temporal correlations are examined. An example single photon temporal wavefunction and
the two-photon correlation function is shown at the input and the output. (b) A vertical
shift of link resonator introduces direction dependent hopping phase and hence synthetic
magnetic field for photons. Photons hopping along right experience a longer path and hence
an extra phase compared to photons hopping along left. (c) Single-photon transmission
spectrum (solid red line) for a pure 8×8 lattice. CW, CCW Edge and bulk bands are shaded
in green, red and blue, respectively. In this paper, we use the input/output coupling rate to
be same as the coupling rate J between site resonators.

whereω0 is the ring resonance frequency, J is the coupling rate between neighboring lattice sites
and φ is the synthetic magnetic flux threading a single plaquette. â†x,y and âx,y are the photon
creation and annihilation operators, respectively, at the lattice site (x,y). We have specifically
chosen the Landau gauge where the magnetic phase is associated only with hopping along
x-direction and it is a linear function of the row index y. For simplicity, we choose ω0 = 0.
Moreover, to elucidate the topological protection of edge states against disorder, we neglect
the effect of loss in the resonators which can lead to decoherence of the entangled state, in
addition to disorder. Also, in experimental realization of this system, the effect loss is very
small compared to that of disorder [4, 20].
Figure 1(c) shows the simulated single-photon transmission spectrum for a 8×8 lattice, with

a magnetic flux φ = 2π
4 per plaquette. The transmission spectrum is divided into bulk bands

separated by edge bands [24]. The edge bands (shaded in green and red) are associated with
topologically non-trivial edge states circulating clockwise (CW) and counterclockwise (CCW)
along the system boundary. On the other hand, states in the bulk band (shaded in blue) occupy
the bulk of the lattice [3, 4].
At the input of this lattice, we couple a time-bin entangled two-photon state of the form

|ψ⟩ =
∫ ∞
−∞

∫ ∞
−∞ dt1dt2ψ(t1, t2; te, tl)â†(t1)â†(t2) |0⟩ ,where(te) and (tl) correspond to the early

and late time bins in which the photons could arrive and â†(t) is the photon creation
operator at time t. ψ(t1, t2; te, tl) is the two-photon temporal wavefunction and is symmetric
under exchange of photons. Note that both the photons are centered around the same carrier
frequency and have same polarization, in the plane of ring resonators. Here, we consider
the maximally entangled states - the Bell states. For example, the Ψ+ state is written as

                                                                                                Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15634 

time, a two-photon state can be written as

|2i =
Z

dx1dx2 (x1, x2; t)â
†
(x1)â

†
(x2)|0i, (3)

where  (x1, x2; t) is the corresponding wavefunction. Depending on the relative positions of pho-
tons, in a given snapshot, the wavefunction can be represent bunched to anti-bunched photons. In
fact, the time-entangled (path-entangled) information can be obtained by binning such a wavefunc-
tion. Based on our preliminary simulations, we expect that the two-photon wave function will be
preserved in a chiral channel (e.g. edge band), in contrast to the non-chiral and disordered systems,
where multiple scatterings can dramatically modify the form of the two-photon wavefunction.

To generate these correlated photon pairs, we use Type II spontaneous parametric down con-
version (SPDC) process in a PPKTP crystal. The crystal is pumped with a pulsed Ti-Sapph laser
around 780 nm (tunable) to yield correlated photon pairs at all frequencies, satisfying the energy
conservation and phase matching condition. This wide spectrum of photon pairs is then filtered
using a high-resolution monochromator to give degenerate photon pairs at around 1560 nm. By
tuning the Ti-Sapph laser output and heating the PPKTP crystal, we can tune the center wavelength
of the degenerate photon pairs.

Ti-Sapph 
(780 nm)

PPKTP Crystal
Type II

Oven
Dichroic 
Mirror/Filter
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Correlated 
Photon Pair 
at 1560nm
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Figure 9: Schematic of the two-photon transport experimental
setup. HWP: half-wave plate, PBS: polarization beam splitter.

In order to achieve an arbitrary
two-photon wavefunction, we vary
the delay between two photons to
control their interaction in the lattice
of coupled resonators. Fo that, we
use Type II SPDC to generate pho-
ton pairs with orthogonal polariza-
tions. We use a polarization beam
splitter (PBS) to split the two polar-
izations and delay the vertical polar-
ization with respect to the horizon-
tal. We then use a half wave plate
(HWP) to rotate the vertical polariza-
tion to horizontal, the only polariza-
tion which our ring resonator waveg-
uides support. The two-photon states
with a mutual delay are then com-
bined using a beam combiner and
coupled to an optical fiber. This fiber is coupled to the resonator lattice using grating couplers.
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Fig. 2. (a) Time-correlation Γ(t1, t2) forΨ+ input state, with σ = 10 T0 and delay τ = 30 T0,
where T0 = 1/J. (b,c) Simulated correlation function at the output port of a 8×8 lattice for
CCW and CW edge states, respectively. The delay incurred in the edge states shifts the
correlation function diagonally but correlation of the input state is preserved. The centres
of the two time-bins are marked with dashed yellow lines. (d-f) Results for the input state
Φ+. Insets show the transmission spectrum and the path followed by edge states. Γ(t1, t2)
is normalized such that the maximum is unity.

|Ψ+⟩= 1√
2 (|e⟩1 |l⟩2+ |l⟩1 |e⟩2) ,where|e⟩1,2 and |l⟩1,2 represent the single-photon states in early

and late time bins, respectively. It corresponds to a situation when one photon arrives in the early
time-bin (te) and the other in the late bin (tl). The early/late time bins can be considered as "0/1"
logic values of a qubit. Similarly, the other two Bell states symmetric under exchange of photons
are

∣

∣Φ+
〉

=
1√
2
(|e⟩1 |e⟩2+ |l⟩1 |l⟩2) (2)

∣

∣Φ−〉=
1√
2
(|e⟩1 |e⟩2− |l⟩1 |l⟩2) . (3)

These are the symmetric and antisymmetric combinations of the two scenarios when both the
photons arrive early or both arrive late. The fourth Bell stateΨ− is not considered here because
it is antisymmetric under exchange of photons. These time-bin entangled two-photon states can
be realized in various systems, for example, using spontaneous parametric down conversion or
quantum dots [21–23].
Assuming the input single-photon temporal wavefunctions are Gaussian,

the two-photon wavefunction for Ψ+ state is given by Ψ+(t1, t2; te, tl) =

A
[

exp
(

− (t1−te)2
2σ2

)

exp
(

− (t2−tl)2
2σ2

)

+ exp
(

− (t1−tl)2
2σ2

)

exp
(

− (t2−te)2
2σ2

)]

,whereσ characterizes
the single-photon temporal pulsewidth and A is the normalization factor. Similarly, we can
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Fig. 3. (a-d) Time-correlation function at the input and the output of the lattice for Ψ+

state and three different input frequencies in the bulk band, ω = (−0.52,−0.4,0.52)J.
The profile is dictated largely by the input excitation frequency and the two photons can
bunch at the output even when they are well separated at the input. (e-h) Correlation for
the separable state corresponding to the input frequencies in (a-d). For the separable state,
the bunching is much less than that for the entangled state. (i-p) Simulation results for Φ+

and the corresponding separable state, where the photons are bunched at the input and can
anti-bunch at the output after propagating through bulk states. These results show that the
quantum state of two entangled photons is more fragile than the separable state.

to different input ports and quantum walk in the system leads to spatial bunching/anti-bunching
of photons at the output, depending on the choice of input excitation ports and relative phase
between them. In contrast, our system has a single input and a single output port. But, each
coupling region between the resonators is a beam-splitter and therefore, the transport of photons
from input to the output by hopping this array of beam-splitters can be considered as a 2D spatial
quantum walk of two photons. These spatial correlations of the two-photon quantum walk in
the lattice manifest as temporal correlations at the output port.
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:  photon blockade regime

Fractional Quantum Hall state of light 

Gauge field 
Fractional 
Quantum

Hall states

interaction

(k-body)+

Atomic case: MH, Sorensen, Demler, Lukin (2007) 

Exp: Spielman, Ketterle, Dalibard, Bloch,…. 



 Starting with a fixed number of photons, 
we can prepare a Laughlin state at ⌫ =

Nph

Nmag
=

1

2

:  photon blockade regime

Fractional Quantum Hall state of light 

�m(z1, z2, ..., zN ) ⇥
Ne�

j<k

(zj � zk)m
Ne�

j=1

e�|zj |2/4

How to make fixed photon number states 
and also combat loss?



⌦ cos(2!0t)
h
a†P�

+
S + aP�

�
S

i

� � �S ⇠ ⌦ � �P

Use incompressibility (blockade) to prepare 

 many-body states of photons

E(N)� E(N � 1) 6= E(N + 1)� E(N)

How to prepare a cavity in the single photon state:

E(N)

E. Kapit, MH and S. Simon PRX 2014

see also Lebreuilly Carusotto 2015, Ma 

et al. 2017 

Generalize to
 many-body case
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Topological growing of Laughlin states in synthetic gauge fields

Fabian Grusdt,1, 2 Fabian Letscher,1 Mohammad Hafezi,3 and Michael Fleischhauer1

1Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Germany
2Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, 67663 Kaiserslautern, Germany

3Joint Quantum Institute, NIST/University of Maryland, College Park MD
(Dated: June 11, 2014)

We suggest a scheme for the preparation of highly correlated Laughlin (LN) states in the presence
of synthetic gauge fields, realizing an analogue of the fractional quantum Hall effect in photonic or
atomic systems of interacting bosons. It is based on the idea of growing such states by adding weakly
interacting composite fermions (CF) along with magnetic flux quanta one-by-one. The topologically
protected Thouless pump (”Laughlin’s argument”) is used to create two localized flux quanta and
the resulting hole excitation is subsequently filled by a single boson, which, together with one of
the flux quanta forms a CF. Using our protocol, filling 1/2 LN states can be grown with particle
number N increasing linearly in time and strongly suppressed number fluctuations. To demonstrate
the feasibility of our scheme, we consider two-dimensional (2D) lattices subject to effective magnetic
fields and strong on-site interactions. We present numerical simulations of small lattice systems and
discuss also the influence of losses.

PACS numbers: 42.50.Pq,73.43.-f,03.67.Lx

Introduction In recent years topological states of mat-
ter [1–8] have attracted a great deal of interest, partly due
to their astonishing physical properties (like fractional
charge and statistics) but also because of their poten-
tial practical relevance for quantum computation [9, 10].
While these exotic phases of matter were first explored
in the context of the quantum Hall effect of electrons
subject to strong magnetic fields [11, 12], there has been
considerable progress recently towards their realization in
cold-atom [13–16] as well as photonic [17–23] systems. A
particularly attractive feature of such quantum Hall sim-
ulators are the comparatively large intrinsic length scales
which allow coherent preparation, manipulation and spa-
tially resolved detection of exotic many-body phases and
their excitations.

In electronic systems the preparation of topological
states of matter relies on quick thermalization and cool-
ing below the many-body gap. While this is already hard
to achieve in cold-atom systems (partly due to the small
required temperatures), cooling is even less of an op-
tion in photonic systems due to the absence of effective
thermalization mechanisms. On the other hand, lasers
with extremely narrow linewidths allow for a completely
different avenue towards preparation of extremely pure
quantum states. For instance, it was suggested to use
the good coherence properties of lasers to directly excite
two (and more) photon LN states in non-linear cavity
arrays [24], where the laser plays the role of a coherent
pump. However, this approach has the inherent prob-
lem of an extremely small multi-photon transition am-
plitude. While this might be acceptable for small sys-
tems of N = 2, 3 photons, it makes the preparation of
true many-body states with N ≫ 2 practically impossi-
ble. Moreover, the prepared states in this case contain
superpositions of different photon-numbers rather than
being Fock states.

In this letter we suggest an alternative scheme for the

preparation of topologically ordered states of strongly in-
teracting bosons, and we discuss systems allowing for an
implementation of our scheme with state-of-the-art tech-
nology. It consists of adiabatically growing such states
and makes direct use of the Thouless pump [25] con-
nected to the many-body topological invariant. In the
case of quantum Hall physics the latter is realized by
local flux insertion in the spirit of Laughlin’s argument
for the quantization of the Hall conductivity σH [26]:
Introducing magnetic flux φ = 2 × 2π in the center of
the system produces a quantized outwards Hall current
∼ σH∂tφ, leaving behind a hole along with 2 flux quanta,
see FIG. 1 (a).

In the next step, the so-created hole can be replenished
by a single boson. In view of the composite fermion (CF)
picture [27, 28] of the fractional quantum Hall effect, this

magn. fluxCF

(a) (b)

FIG. 1. (Color online) (a) The key idea of our scheme is to
grow LN states by introducing weakly interacting CFs into the
system. This is achieved by adding magnetic flux (arrows) in
the center and replenishing the arising hole by a new boson
(red bullet). (b) We consider the Hofstadter-Hubbard model
(flux α per plaquette). Additional flux φ can be introduced in
the center by adiabatically changing the complex phase of the
hoppings marked with a box. Furthermore, the central site is
assumed to be externally accessible for a coherent drive (Rabi
frequency Ω).

see also: Angelakis et al. PRL (2008), Carusotto, 
Umucalilar PRL (2012) Greentree et al. PRL (2012)

Grusdt, Letscher, MH, Fleischhauer PRL (2014)

Fractional Quantum Hall States of Rydberg Polaritons

Mohammad F. Maghrebi,1 Norman Y. Yao,2 Mohammad Hafezi,1, 3

Thomas Pohl,4 Ofer Firstenberg,5 and Alexey V. Gorshkov1

1
Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA

2
Department of Physics, University of California, Berkeley, California 94720, USA

3
Department of Electrical Engineering and Institute for Research in Electronics and Applied Physics,

University of Maryland, College Park, MD 20742, USA

4
Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany

5
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

(Dated: November 26, 2014)

We propose a scheme for realizing fractional quantum Hall states of light. In our scheme, photons
of two polarizations are coupled to di↵erent atomic Rydberg states to form two flavors of Rydberg
polaritons that behave as an e↵ective spin. An array of optical cavity modes overlapping with
the atomic cloud enables the realization of an e↵ective spin-1/2 lattice. We show that the dipolar
interaction between such polaritons, inherited from the Rydberg states, can be exploited to create
a flat, topological band for a single spin-flip excitation. At half filling, this gives rise to a photonic
(or polaritonic) fractional Chern insulator – a lattice-based, fractional quantum Hall state of light.

PACS numbers: 42.50.Nn, 32.80.Ee, 73.43.-f, 42.50.Pq

Fractional Chern insulators are exotic topological
phases of matter that can be thought of as magnetic-
field-free fractional quantum Hall states on a lattice [1].
Recently, there have been several proposals to implement
fractional Chern insulators in optical flux lattices [2] and
dipolar systems [3]. On the other hand, the recent exper-
imental realization of topological band structures in ar-
rays of photonic modes [4, 5] points to the intriguing pos-
sibility of realizing strongly-correlated interacting topo-
logical states of light [6, 7]. Given that photonic systems
are prepared and probed di↵erently [8], typically have
no chemical potential [9], and exhibit di↵erent decoher-
ence mechanisms [10, 11] as compared to their electronic
counterparts, interacting topological states of light will
open new avenues to the study of exotic physics [6]. Fur-
thermore, such states might enable the construction of
numerous robust, i.e. topologically protected, optical de-
vices such as filters [6], switches, and delay lines [12, 13].
Finally, once such highly non-classical states of light are
released onto freely propagating non-interacting modes,
they might be usable as resources for enhanced precision
measurements and imaging [14].

While strong interactions between microwave photons
are readily achievable [15–20], the realization of strong
high-fidelity interactions between optical photons has re-
mained a challenge [21–23]. Only recently, the required
strong interaction between optical photons has been im-
plemented in a robust fashion by transforming photons
into superpositions of light and highly excited atomic Ry-
dberg states, thus forming polaritons. These polaritons
inherit strong dipolar interactions from Rydberg states
[24–32] and – together with artificial gauge fields that
arise naturally in dipolar systems via the Einstein-de-
Haas e↵ect [3, 33, 34] – constitute an ideal platform for
realizing interacting topological states of light [35–38].

In this Letter, we present the first example of a frac-
tional Chern insulator of photons (or polaritons) in such
a medium. The particular insulator we construct cor-
responds to the ⌫ = 1/2 filling fraction of the familiar
Laughlin fractional quantum Hall state, in which an ad-

P
3/2

D
3/2

m
J

= �3/2

|"i = s|3i + v|4i + w(|5i + |6i)/
p

2

|5i |6i

|1i |2i
|3i|4i

�1/2 1/2 3/2

|#i = (|2i � |1i)/
p

2

⌦"

E"

⌦#

E#

|gi

|e"i |e#i

|#i

|"i(a)

ẑ

(b)

(c)

�" �#

FIG. 1. (a) A quasi-two-dimensional cloud of atoms (red disk)
overlaps with an array of cavity modes (with cavity axis ẑ) at
a plane tilted relative to ẑ. The overlaps (red balls) allow one
to define a square-lattice array of Rydberg polaritons. Each
polariton can be in state |*i or |+i. The resulting spin model
has a fractional quantum Hall ground state. (b) To achieve
a topological flat-band structure, single-atom dressed states
|"i and |#i are constructed as linear combinations of several
Rydberg levels with spatially dependent coe�cients s, v, and
w. A weak DC electric field along ẑ is assumed. (c) The |*i
and |+i polaritons are created by coupling |"i and |#i states
to E" (��-polarized) and E# (�+-polarized) photonic modes,
respectively. The flip-flop (|"#i ! |#"i) dipolar interaction
yields the fractional quantum Hall polariton Hamiltonian.
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Three-body interaction  
and Pfaffian states

Greiter, Wen, Wilczek Phys. Rev. Lett (1991)

The parent Hamiltonian for Pfaffian state 
has three-body short range interaction 

H = �J
X

x,y

â†
x+1,yâx,ye

�i2⇡↵y + â†
x,y

â
x+1,ye

+i2⇡↵y

+â†
x,y+1âx,y + â†

x,y

â
x,y+1 + U3â

†3
x,y

â3
x,y

The lattice version of their model:

V =
X

�(2)(zi � zj)�
(2)(zi � zk)

⌫ = N/N� = 1

For bosons:

Artificial magnetic field: Koch et al (2010), Kamal (2011) Kapit (2013) 
Zakka-Bajjani (2011) 


atoms: Cooper et al PRL (2001), Mazza et al PRA (2010)

MH, P. Adhikari, J. Taylor 

PRB (2014)
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Quantum optics of chiral spin networks

Hannes Pichler,1, 2, ⇤ Tomás Ramos,1, 2 Andrew J. Daley,3 and Peter Zoller1, 2, 4
1Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria

2Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
3Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, UK

4Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

We study the driven-dissipative dynamics of a network of spin-1/2 systems coupled to one or more
chiral 1D bosonic waveguides within the framework of a Markovian master equation. We determine
how the interplay between a coherent drive and collective decay processes can lead to the formation
of pure multipartite entangled steady states. The key ingredient for the emergence of these many-
body dark states is an asymmetric coupling of the spins to left and right propagating guided modes.
Such systems are motivated by experimental possibilities with internal states of atoms coupled to
optical fibers, or motional states of trapped atoms coupled to a spin-orbit coupled Bose-Einstein
condensate. We discuss the characterization of the emerging multipartite entanglement in this
system in terms of the Fisher information.

PACS numbers: 03.67.Bg, 03.65.Yz, 42.50.Nn, 42.81.Dp

I. INTRODUCTION

The ability to engineer the system-bath coupling in
quantum optical systems allows for novel scenarios of dis-
sipatively preparing quantum many-body states of mat-
ter [1]. This is of interest both as a nonequilibrium con-
densed matter physics problem [2–8] and in the context of
quantum information [9–18]. In the present work we will
study open system quantum dynamics of chiral spin net-

works from a quantum optical perspective. The nodes
of these networks are represented by spin-1/2 systems,
whereas the quantum channels connecting them are 1D
waveguides carrying bosonic excitations [cf. Fig. 1(a) and
1(b)]. In addition, these waveguides provide the input
and output channels of our quantum network, allowing
for driving and continuous monitoring of the spin dy-
namics. In a quantum optical setting, such a network
can be identified by two-level atoms coupled to optical
fibers [19, 20] or photonic structures [21, 22]. As dis-
cussed in previous studies [23–25], the 1D character of
the quantum reservoir manifests itself in unique features
including long-range dipole-dipole interactions mediated
by the bath and collective decay of the two-level systems
as super- and subradiant decay.

The crucial aspect underlying our study below is the
assumption of a chiral character of the waveguides rep-
resenting the photonic channels. By chirality we mean
that the symmetry of emission of photons from the two-
level atoms into the right and left propagating modes
of the 1D waveguides is broken. This allows the forma-
tion of novel nonequilibrium quantum phases as steady
states of the open system dynamics in chiral quantum
spin networks. This includes the driven-dissipative evo-
lution as “cooling” to pure states of entangled spin clus-

ters, which play the role of quantum many-particle dark

⇤ hannes.pichler@uibk.ac.at

Figure 1. (Color online) Spin networks with chiral coupling
to 1D bosonic reservoirs. (a) Driven spins can emit photons
to the left and right propagating reservoir modes, where the
chirality of the system-reservoir interaction is reflected in the
asymmetry of the corresponding decay rates �

L

6= �

R

. (b)
Spin network coupled via three different chiral waveguides
m = 1, 2, 3. Waveguide m = 1 couples the spins in the order
(1, 2, 3, 4), whereas m = 2 couples them in order (1, 3, 2, 4)

and m = 3 in order (2, 1, 4, 3). Note that only waveguides
without closed loops are considered in this work.

states, i.e. spin clusters decoupled from the bath. While
in Ref. [26] the formation of entangled spin clusters for
the (idealized) purely unidirectional waveguide has been
discussed, we have recently presented results that this
formation of pure entangled spin clusters is, in fact, the
generic case for chiral spin networks under fairly general
conditions [27]. It is the purpose of the present paper to
present an in depth study of this quantum dynamics and
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Review: P. Lodahl et al. Nature (2017)
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Outline of this talk

• Review of ring resonators 


• Measuring topological invariants 


• Quantum directions 


• Topological photonic crystals


• Photons and electronic quantum Hall states 
and other activities 



Topological photonic crystals
• Synthesize spin-orbit in photonic crystals

• Find a compatible structure with solid-state emitters in optical domain 

 
Challenges:

★ Full bandgap in the bulk

★ E&M should be confined in prep. direction to the slab

previous works:  Rechtsman/Segev Nat. Photon (2012)

Shvets/Khanikaev PRL (2014), Wu/Hu PRL (2015)S. Barik, H. Miyake, W. DeGottardi, E. Waks, M.H. NJP (2016)



Tight-binding approximation
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Figure 3: Schematic of the di↵erent orbital states. See Fig. 2(a) of Ref. [1] for reference. For
Ref. [1] these are Ez modes and for us these are Hz modes.

Then the transformation matrix can be written

T =

✓
a
11

a
12

a
21

a
22

◆
. (11)

This transformation matrix construction generalizes in an obvious way to higher dimensions.
Then given a matrix M in the original bases, the matrix in the new bases can be written in

any dimension as

M 0 = T�1MT. (12)

6.2 First transformation to “orbital” bases

With this understanding, the first transformation we want to apply toH is to go to an “orbital” basis
like what the Wu and Hu PRL does (see Fig. 2(a) of Ref. [1]). These modes can be schematically
depicted as in Fig. 3. Note these modes are Ez modes in the case of Ref. [1] and for us these are
Hz modes.

It turns out that if you find the eigenstates of the original Hamiltonian at k = 0, you see that
these modes are exactly the eigenstates. Since we want to expand around k = 0 to find the e↵ective
topological Hamiltonian, it makes sense to transform to this basis.

The corresponding transformation matrix can be written

To =
�
s f py px dxy dx2�y2

�
(13)

=
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CCCCCCCCA

. (14)

Then we can apply this to H to get

Ho = T�1

o HTo. (15)

4

t1 6= 0, t2 = 0

p+

p�

Two-Dimensionally Confined Topological Edge States in Photonic Crystals 14

phase of z is analogous to an angular momentum. Acting H on | (z)i yields

H| (z)i =

0

BBBBBBB@

�t1 (z5 + z)� t2z
3

�t1 (1 + z

2)� t2z
3

�t1 (z + z

3)� t2z
3

�t1 (z2 + z

4)� t2z
�3

�t1 (z3 + z

5)� t2z
�3

�t1 (z4 + 1)� t2z
�3

1

CCCCCCCA

. (8)

We find that | (z)i is an eigenstate provided that z is a sixth root of unity. For

z = e

i⇡n/3, the spectrum is given by

"

n

= �2t1 cos
⇡n

3
� (�1)nt2. (9)

Thus, we see that the | (z)i states associated with z = 1 and z = �1 have energies

�2t1 � t2 and 2t1 + t2, respectively. Time-reversal symmetry is enacted by complex

conjugation. Thus the states corresponding to z = e

i⇡/3 and e

�i⇡/3 have energies

"±1 = �t1 + t2 while z = e

i2⇡/3 and e

�i2⇡/3 have energies "±2 = t1 � t2.

Although the full rotational symmetry is broken by the crystal axis, the states

corresponding to z = e

±i⇡/3 possess strong p-like character, while those with z = e

±i2⇡/3

have d-like character. This can be most easily seen by noting that the various states

| (z)i are ‘sampled’ from continuous angular wave functions as follows

| (e±i⇡/3)i = e

±i✓ ! |p±i, (10)

| (e±i2⇡/3)i = e

±i2✓ ! |d±i. (11)

The ± labels the pseudo-spin degree of freedom. The geometry of the wavefunctions is

clarified through the definitions

|p
x

i = 1p
2
(|p+i+ |p�i) , (12)

|p
y

i = 1

i

p
2
(|p+i � |p�i) (13)

where |p
x

i is odd about the x-axis, etc. Similarly, we have

|d
x

2�y

2i = 1p
2
(|d+i+ |d�i) , (14)

|d
xy

i =
1

i

p
2
(|d+i � |d�i) , (15)

where |d
x

2�y

2i is a wave function whose maxima coincide with the x- and y-axes as

✓ = 0 ! 2⇡, etc.

We now derive the spectra associated with these 4 states near � by expanding

Eq. (??) to linear order in k

x

and k

y

. In this limit, the e↵ective 4 ⇥ 4 Hamiltonian

is block diagonal, and only states of the same pseudo-spin are coupled. The e↵ective

Hamiltonian for the (+)-pseudo-spin is given by

H+ =

p
3

2
t2a (�k

x

�

x

+ k

y

�

y

) +
⇥
t2 � t1 +O(k2

x

+ k

2
y

)
⇤
�

z

, (16)
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in the (|p+i, |d+i)T basis. Similarly, in the (|p�i, |d�i)T basis we find

H� =

p
3

2
t2a (kx�x

+ k

y

�
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In both cases, we have performed a unitary transformation U = e

i

⇡

2 �z . We note that in

the limit that the various honeycombs are completely decoupled, t2 ⇡ 0 and Eqs. (??)

and (??) reflect the fact that the p-states have a lower energy than the d-states. For

t1 = t2, H+ and H� are characterized by a Dirac cone spectrum. For t1 6= t2, the

spectrum acquires a gap of size |t1 � t2|.
Typically, the application of tight-binding is limited to electronic systems in which

electrons hop between weakly coupled atomic orbitals. However, the method is actually

much more broadly applicable. It turns out that any band can always be written in terms

of so-calledWannier functions [?]. Only if the various ‘atomic’ states are weakly coupled

will the Wannier functions bear a strong resemblance to the atomic wave functions, but

generally such Wannier functions may always be obtained. Moreover, the band structure

near � is tightly constrained by the symmetries of the system. In particular, the tight-

binding Hamiltonian H automatically accounts for the fact that the lattice and the

triangular holes exhibit a C6v symmetry. For t1 = t2, the Dirac cones are protected by

additional C3v symmetries.

7.4. Topology and Edge States

In the previous section, we showed that a honeycomb structure can be described

by a gapless Dirac Hamiltonian. When we introduce the lattice deformations, i.e.,

shrinking/expanding, a gap opens which can be described a mass term (m�

z

). Here, we

review the concept why the band inversion, i.e., changing the sign of mass, results in

having a topological edge at the boundary.

When the system is gapped, its topology can be characterized by a Chern number

for the pseudospins (±). A spin Chern number takes the form

C = C+ � C�, (18)

where C± = ±1
2sgn(m±), where m± are the masses for the two pseudo-spins [?]. Thus,

we have

C = sgn(t2 � t1). (19)

Topologically-protected edge modes will exist between gapped regions with di↵erent C 0
s,

i.e., any place that the quantity t2 � t1 changes sign.

In order to understand the edge state structure, we begin by considering H+ with

a spatially varying mass. For concreteness, we consider the situation outlined in Fig.

4b in the main text As we will see, edge states are localized to domain walls for which

m(x) = t2 � t1 ⇡ 0. The edge states satisfy the Heisenberg equation of motion which,

for H+ [Eq. (??)], is the Dirac equation. The Dirac equation corresponding to H+ is
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point in the reciprocal space [Fig-1.(b), (c)]. The parameters used are a0 = 445 nm, s = 140 nm, dielectric constant e=
13.1 and thickness h = 160 nm. A tight-binding model calculation for the in-plane electric field profile at the G point
confirmed different band topologies for the shrunken and expanded clusters [6].

The topologically non-trivial band structures give rise to edge states when an interface of shrunken and expanded
lattices with common bandgaps is created [Fig-1(d)]. The bandstructure revealed two edge modes crossing each other
at the G point [Fig-1(e)] inside the common bandgap region with opposite group velocities, and 3D simulations show
that these can be selectively excited with circularly polarized light [Fig-1(f), (g)]. We also confirm that these edge
modes are vertically confined due to total internal reflection [Fig-1(h), (i)] and robust against sharp turns [Fig-1(j)].

Experimentally we have nanofabricated TPCW structures with a 280 nm-thick indium phosphide (InP) membrane
with embedded indium arsenide (InAs) quantum dots (QDs) [Fig-2(a)]. We begin the fabrication by depositing a 100
nm-thick silicon nitride (SiN) mask layer. Structures are patterned in the SiN layer using electron beam lithography and
fluorine-based inductively-coupled plasma reactive-ion etching (ICP-RIE), followed by pattern transfer to the InP layer
via chlorine-based ICP-RIE. Finally the sacrificial layer is removed by selective wet etching to form an air-suspended
photonic crystal membrane. Parameters used for fabrication are a0 = 900 nm and s = 300 nm. Two grating couplers
[denoted G1 and G2 in Fig-2(a)] are used to couple light into the waveguide of 25 µm in length. InAs QD are excited
with a 780 nm laser at G1 and transmission is collected at G2. The experimentally observed transmission window of
50 nm around 1500 nm agrees with simulation results [gray region in Fig-2(b)]. The appearance of a transmission
peak in an otherwise gapped photonic crystal validates the existence of edge modes in the system.

Fig. 2. (a) SEM image of the topological photonic crystal waveguide device on InP. (b) Transmission
via edge states. The gray region shows the theoretical transmission band around 1500 nm.

In conclusion, we have proposed a nanoscale design to realize an all-dielectric topological photonic waveguide
which can support two-dimensionally confined robust helical edge modes. Furthermore we have experimentally
nanofabricated these structures and observed the existence of edge states.
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Fig. 1. (a) Schematic of a 2D lattice of coupled ring resonators implementing the integer
quantum-Hall model. Site resonators (black) are coupled using link resonators (grey). The
lattice is coupled to input and output waveguides. Edge states transport is confined along
the lattice boundary whereas the bulk states follow different paths through the bulk of the
lattice. A time-bin entangled photon pair is coupled to the lattice at input and the output
temporal correlations are examined. An example single photon temporal wavefunction and
the two-photon correlation function is shown at the input and the output. (b) A vertical
shift of link resonator introduces direction dependent hopping phase and hence synthetic
magnetic field for photons. Photons hopping along right experience a longer path and hence
an extra phase compared to photons hopping along left. (c) Single-photon transmission
spectrum (solid red line) for a pure 8×8 lattice. CW, CCW Edge and bulk bands are shaded
in green, red and blue, respectively. In this paper, we use the input/output coupling rate to
be same as the coupling rate J between site resonators.

whereω0 is the ring resonance frequency, J is the coupling rate between neighboring lattice sites
and φ is the synthetic magnetic flux threading a single plaquette. â†x,y and âx,y are the photon
creation and annihilation operators, respectively, at the lattice site (x,y). We have specifically
chosen the Landau gauge where the magnetic phase is associated only with hopping along
x-direction and it is a linear function of the row index y. For simplicity, we choose ω0 = 0.
Moreover, to elucidate the topological protection of edge states against disorder, we neglect
the effect of loss in the resonators which can lead to decoherence of the entangled state, in
addition to disorder. Also, in experimental realization of this system, the effect loss is very
small compared to that of disorder [4, 20].
Figure 1(c) shows the simulated single-photon transmission spectrum for a 8×8 lattice, with

a magnetic flux φ = 2π
4 per plaquette. The transmission spectrum is divided into bulk bands

separated by edge bands [24]. The edge bands (shaded in green and red) are associated with
topologically non-trivial edge states circulating clockwise (CW) and counterclockwise (CCW)
along the system boundary. On the other hand, states in the bulk band (shaded in blue) occupy
the bulk of the lattice [3, 4].
At the input of this lattice, we couple a time-bin entangled two-photon state of the form

|ψ⟩ =
∫ ∞
−∞

∫ ∞
−∞ dt1dt2ψ(t1, t2; te, tl)â†(t1)â†(t2) |0⟩ ,where(te) and (tl) correspond to the early

and late time bins in which the photons could arrive and â†(t) is the photon creation
operator at time t. ψ(t1, t2; te, tl) is the two-photon temporal wavefunction and is symmetric
under exchange of photons. Note that both the photons are centered around the same carrier
frequency and have same polarization, in the plane of ring resonators. Here, we consider
the maximally entangled states - the Bell states. For example, the Ψ+ state is written as
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sub-wavelength correlations [57, 58].

As the electron-hole pair approaches the edge, the sit-
uation changes dramatically because these states exhibit
electronic coherence that extends across the entire sam-
ple. Furthermore, due to the magnetic field, the edge
states carry a large angular momentum, which can be
partially transferred into the optical radiation during
emission. Such a transfer process is necessarily associ-
ated with the presence of higher order multipole moments
in the far-field radiation. To illustrate this point more
concretely, we consider a cylindrically symmetric edge,
where the multipole radiation pattern can be calculated
analytically. We represent the magnetic vector potential
in the symmetric gauge A

0

= B
z

(�y, x)/2, where B
z

is the perpendicular magnetic field and (x, y) are the in-
plane coordinates of the 2DES. In this gauge, the angular
momentum is a good quantum number and we can or-
der the single-particle states in the nth Landau level into
eigenstates |n, mi (m � � |n|) of the angular momentum
operator L

z

/~ = xk
y

� yk
x

with eigenvalue �m, where
k = (k

x

, k
y

) is the in-plane wavevector.

To describe the spontaneously emitted field, we also
decompose the optical field into eigenstates of L

z

with
orbital angular momentum (OAM) ~` and longitudinal
momentum ~k. Such states are known as cylindrical vec-
tor harmonics and are closely related to the cylindrically
symmetric Laguerre-Gaussian modes within the paraxial
approximation [59]. An electron in the conduction band
with angular momentum m can conserve total angular
momentum by recombining with a hole in the valence
band with angular momentum m0 and emitting light with
OAM ` = m�m0 [see Fig. 1(b)]. In the supplemental ma-
terial, we give a gauge independent derivation of this se-
lection rule [60]. We remark that these arguments should
generally apply to integer quantum Hall systems, as well
as other materials with topological edge states. Focus-
ing on quantum Hall systems in Dirac materials, we now
discuss these e↵ects from a more microscopic picture.

Dirac Model.—The low-energy Hamiltonian in a 2D
material with an underlying hexagonal lattice takes the
Dirac form in each valley (neglecting spin), H = ~v k ·
⌧ + m

0

v2⌧
z

, where v is the Dirac velocity, k = (k
x

, k
y

)
is the in-plane wavevector, ⌧ = (⌧

x

, ⌧
y

, ⌧
z

) are Pauli ma-
trices operating on the Dirac pseudospin, and m

0

is the
e↵ective Dirac mass. At zero magnetic field the spec-
trum of H is E(k) = ±

p
m2

0

v4 + v2|k|2, as shown in
Fig. 1(a). For large B

z

, the energy spectrum is quan-
tized into degenerate Landau levels at energies E

n

=
sign(n)

p
m2

0

v4 + ~2!2

c

|n|, where n is an integer, !
c

=p
2v/`

c

is the cycolotron frequency, and `
c

=
p

~/eB
z

is
the magnetic length. Throughout this work we restrict
our discussion to the K-valley for simplicity and neglect
inter-valley scattering processes.

Consider the interaction of this system with an ex-
ternal optical field. The light-matter interaction can be

2DESB

(a) E

m

E
F

Bulk

E
v

E
c

m

E

E
F

. . .

` = �m

...

...

Edge

E
v

E
c

(b)

2DESB

Radiation Radiation

FIG. 1: (a) In the presence of a large magnetic field, the
electronic states of the 2DES are quantized into Landau lev-
els, which we index by their angular momentum �~m. The
majority of the states in the bulk are localized by disorder,
leading to inter-band radiation dominated by dipole emission.
The spectrum of this radiation is spatially correlated with the
disorder potential. Here Ec(v) refer to the energy of the con-
duction (valence) band and EF is the Fermi energy. (b) An
electron excited at the edge of the system can emit light with
orbital angular momentum ~` by recombining with a hole in
the state m

0 = m � `. Here we have taken the edge states
in the conduction band to have the opposite slope from the
valence band so that the edge emission is spectrally distin-
guishable from the bulk.

found through the usual prescription k ! k � eA/c

H
int

=
evp
2c

[⌧
+

A⇤
+

(x, y) + ⌧�A⇤
�(x, y)]e�i!t + h.c., (1)

where A± = (A
x

± iA
y

)/
p

2 are the circularly polarized
components of the vector potential A in the plane of
the 2D material. Due to the Dirac band structure, the
pseudo-spin operators ⌧± couple the nth Landau level to
both n±1 and �n±1. This leads to the optical selection
rule: n ! n0 with |n0| = |n| ± 1 [34].

We represent the single-particle states in the symmet-
ric gauge, in which case the eigenstates |n, mi take the
form [61]

hx, y|n, mi /
 

↵
n

p
|n|D|n|�1

ū

ū|n|+m

�
n

p
2i`

c

D
|n|
ū

ū|n|+m

!
e�|u|2/4`

2
c , (2)

where u = x + iy, D
ū

= @
ū

� u/2`2
c

acts as a raising
operator on the Landua level eigenfunctions, (↵

0

, �
0

)T =
(0, 1), and, for n > 0 (n < 0), (↵

n

, �
n

)T are the positive
(negative) eigenvectors of the 2x2 matrix

H
n

=

✓
m

0

v2 ~!
c

p
|n|

~!
c

p
|n| �m

0

v2

◆
, (3)

whose eigenvalues are the energy eigenvalues E
n

. We
represent the OAM eigenstates for the optical field in
the basis of cylindrical vector harmonics [59], which take
the form E(x, y, z) =

P
`,k

E
`,k

(r)ei`✓+ikz, where r = |u|
and ✓ = tan�1(y/x).
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FIG. 3: (a) The disorder potential U(x, y) for the inter-band
transitions between Landau levels. (b) U(x, y) can be re-
constructed by correlating the amplitude of spatially-resolved
scattered light with the frequency of the incoming probe. We
took the 2DDM to be embedded in GaP (n0 = 3.2) in a
10 T magnetic field with �0 = 1 µm. The optical imaging is
able to resolve spatial features down to the di↵raction limit
�0/2n0 ⇡ 160 nm.

emission from the localized states in the bulk of the 2D
material at integer filling. In particular, we show that the
disorder landscape can be reconstructed through optical
imaging of the scattered light. We can include disorder
in the Dirac model by adding all terms consistent with
the symmetries of the hexagonal lattice (neglecting inter-
valley scattering) [61]

H
dis

= u
0

(r)I + u(r) · ⌧ . (4)

The first term u
0

corresponds to long range diagonal dis-
order arising from, e.g., charged impurities, while the
other terms are associated with shorter range e↵ects such
as, e.g., variations in the two sub-lattice potentials (u

z

),
tunneling rates (u

x,y

), or the presence of vacancies and
defects.

The projection of H
dis

into the Landau levels leads
to smoothing of the disorder on the scale of `

c

. This
produces a potential landscape for each Landau level
U

n

(x, y) = hx, y|Tr
⌧

(P
n

H
dis

P
n

)|x, yi, where P
n

is a pro-
jector into the nth Landau level and Tr

⌧

traces over the
pseudospin states. This landscape gives rise to (1) an adi-
abatic shift of the edge position and (2) localized states
in the bulk. Thus, the edge multipole e↵ects remain the
same, while the bulk radiation becomes dominated by
transitions between localized states, each with a di↵er-
ent spectral signature [see Fig. 1(a)].

To see how these spectral signatures can be used to
image the disorder landscape, we consider near resonant
excitation between Landau levels with �

+

polarized light
and a probe whose frequency !

`

is scanned through the
resonance ~!

`

= ✏
n+1

� ✏�n

. The disorder in the optical
transition frequency U(x, y) = U

n+1

(x, y)�U�n

(x, y) for
n = 0 is shown in Fig. 3(a). To obtain the spatial pro-
file of emitted light we approximate the far field emis-
sion pattern by a convolution of U(x, y) with the filter
function ⌘

�

(r) = sin(4⇡r/�)/⇡2r2, which arises from the

di↵raction limit. Here � = [(hn
0

/c)(✏
n+1

�✏�n

)]�1 is the
central wavelength of emitted light, and n

0

is the index
of refraction of the surrounding substrate. We construct
the disorder potential by finding the probe frequency at
which the local scattered light reaches its maximum am-
plitude. The resulting optically reconstructed disorder
potential is shown in Fig. 3(b). In practice, this recon-
struction will be limited by the numerical aperture NA of
the imaging system. The di↵raction limit in free-space
is NA 1, using, e.g., a solid-immersion-lens, one can
enhance the upper limit of the NA by the index of re-
fraction of the lens [62]. Alternatively, super-resolution
techniques would enable imaging far below the di↵raction
limit [52, 53].

As we are treating the disorder in degenerate, first-
order perturbation theory, we can see from Eq. (3) that,
for massless Dirac Fermions, U(r) is dominated by the ⌧

x

disorder, while, for su�ciently massive Dirac fermions,
U(r) is dominated by ⌧

z

disorder. A related measure-
ment in massive 2DDMs could be used to indirectly map
out the diagonal disorder term u

0

(r) by going away from
integer filling. In particular, the exciton binding energy
will vary with the local carrier density due to screening
e↵ects. Thus, mapping out the exciton line across the
sample would reveal variations in the local carrier den-
sity, which, in the partially filled, disordered quantum
Hall regime, are directly correlated with the underlying
disorder potential [2, 63].

Electron-Electron Interactions.– In our analysis, we
have largely neglected the e↵ect of electron-electron inter-
actions on both the disorder landscape and the optically
excited electron-hole pair. Near integer filling, the inter-
actions will have a minimal e↵ect on the bare disorder
potential because the electronic state is incompressible
and does not e↵ectively screen the disorder [2, 63].

The dominant e↵ects of the electron-hole interactions
is to lead to Landau level mixing and magnetexciton for-
mation, which have to be considered separately for the
bulk and the edge. On the edge, magnetoxciton e↵ects
are weak because of the predominantly linear dispersion
of the edge states. Landau level mixing can then also be
ignored because the electron and hole are both delocal-
ized and interact weakly. For the bulk, our analysis as-
sumes that the magnetoexciton binding energy ✏

b

is much
less than the strength of the disorder potential. However,
in the opposite limit of strongly bound excitons, the ⌧
disorder will lead to spatial variations in ✏

b

. As a result,
we expect our conclusions about mapping the ⌧ disorder
to remain valid in this limit, provided that the disorder
potential contains long-range correlations compared to
the magnetoexciton Bohr radius.

Conclusion.—We have studied the properties of the
optical radiation from integer quantum Hall edge states
in Dirac materials. We showed that the optical emission
from the bulk of the 2DDM reflects the disorder land-
scape and, at the edge, high-order multipole transitions
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emission from the localized states in the bulk of the 2D
material at integer filling. In particular, we show that the
disorder landscape can be reconstructed through optical
imaging of the scattered light. We can include disorder
in the Dirac model by adding all terms consistent with
the symmetries of the hexagonal lattice (neglecting inter-
valley scattering) [61]
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corresponds to long range diagonal dis-
order arising from, e.g., charged impurities, while the
other terms are associated with shorter range e↵ects such
as, e.g., variations in the two sub-lattice potentials (u
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),
tunneling rates (u
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), or the presence of vacancies and
defects.

The projection of H
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is a pro-
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traces over the
pseudospin states. This landscape gives rise to (1) an adi-
abatic shift of the edge position and (2) localized states
in the bulk. Thus, the edge multipole e↵ects remain the
same, while the bulk radiation becomes dominated by
transitions between localized states, each with a di↵er-
ent spectral signature [see Fig. 1(a)].

To see how these spectral signatures can be used to
image the disorder landscape, we consider near resonant
excitation between Landau levels with �
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transition frequency U(x, y) = U
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(x, y) for
n = 0 is shown in Fig. 3(a). To obtain the spatial pro-
file of emitted light we approximate the far field emis-
sion pattern by a convolution of U(x, y) with the filter
function ⌘
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(r) = sin(4⇡r/�)/⇡2r2, which arises from the

di↵raction limit. Here � = [(hn
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)]�1 is the
central wavelength of emitted light, and n
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is the index
of refraction of the surrounding substrate. We construct
the disorder potential by finding the probe frequency at
which the local scattered light reaches its maximum am-
plitude. The resulting optically reconstructed disorder
potential is shown in Fig. 3(b). In practice, this recon-
struction will be limited by the numerical aperture NA of
the imaging system. The di↵raction limit in free-space
is NA 1, using, e.g., a solid-immersion-lens, one can
enhance the upper limit of the NA by the index of re-
fraction of the lens [62]. Alternatively, super-resolution
techniques would enable imaging far below the di↵raction
limit [52, 53].

As we are treating the disorder in degenerate, first-
order perturbation theory, we can see from Eq. (3) that,
for massless Dirac Fermions, U(r) is dominated by the ⌧

x

disorder, while, for su�ciently massive Dirac fermions,
U(r) is dominated by ⌧

z

disorder. A related measure-
ment in massive 2DDMs could be used to indirectly map
out the diagonal disorder term u

0

(r) by going away from
integer filling. In particular, the exciton binding energy
will vary with the local carrier density due to screening
e↵ects. Thus, mapping out the exciton line across the
sample would reveal variations in the local carrier den-
sity, which, in the partially filled, disordered quantum
Hall regime, are directly correlated with the underlying
disorder potential [2, 63].

Electron-Electron Interactions.– In our analysis, we
have largely neglected the e↵ect of electron-electron inter-
actions on both the disorder landscape and the optically
excited electron-hole pair. Near integer filling, the inter-
actions will have a minimal e↵ect on the bare disorder
potential because the electronic state is incompressible
and does not e↵ectively screen the disorder [2, 63].

The dominant e↵ects of the electron-hole interactions
is to lead to Landau level mixing and magnetexciton for-
mation, which have to be considered separately for the
bulk and the edge. On the edge, magnetoxciton e↵ects
are weak because of the predominantly linear dispersion
of the edge states. Landau level mixing can then also be
ignored because the electron and hole are both delocal-
ized and interact weakly. For the bulk, our analysis as-
sumes that the magnetoexciton binding energy ✏

b

is much
less than the strength of the disorder potential. However,
in the opposite limit of strongly bound excitons, the ⌧
disorder will lead to spatial variations in ✏

b

. As a result,
we expect our conclusions about mapping the ⌧ disorder
to remain valid in this limit, provided that the disorder
potential contains long-range correlations compared to
the magnetoexciton Bohr radius.

Conclusion.—We have studied the properties of the
optical radiation from integer quantum Hall edge states
in Dirac materials. We showed that the optical emission
from the bulk of the 2DDM reflects the disorder land-
scape and, at the edge, high-order multipole transitions

Mapping disorder landscape
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As the electron-hole pair approaches the edge, the situ-
ation changes dramatically compared to the bulk because
the topologically protected edge states can exhibit elec-
tronic coherence that extends across the sample. The
radiation from such an extended object will generically
contain higher order multipole moments when its size ex-
ceeds the wavelength of light. To see this explicitly we
consider a cylindrically symmetric edge, where the mul-
tipole radiation pattern can be directly calculated. We
represent the magnetic vector potential in the symmetric
gauge A

0

= B
z

(�y, x)/2, where B
z

is the perpendicular
magnetic field and (x, y) are the in-plane coordinates of
the 2DES. In this gauge, we can order the single-particle
states in the nth Landau level into eigenstates |n, mi
(m � � |n|) of the canonical angular momentum oper-
ator L

z

/~ = xk
y

� yk
x

with eigenvalue �|n| � m, where
k = (k

x

, k
y

) is the in-plane wavevector.
To describe the spontaneously emitted field, we also

decompose the optical field into eigenstates of L
z

with
orbital angular momentum (OAM) ~` and longitudinal
momentum ~k. Such states are known as cylindrical vec-
tor harmonics and are closely related to the cylindrically
symmetric Laguerre-Gaussian modes within the paraxial
approximation [43]. In the symmetric gauge, the selec-
tion rules for light with OAM ~` follow directly from con-
servation of total L

z

and are given by |n, mi ! |n0, m0i,
where |n0| = |n| ± 1 and m0 = m � `. Here the ±1
term arises from the choice of one of the two circular po-
larizations of the light. The selection rule for n follows
from particle-hole symmetry and is well known for Dirac
systems [31], while the selection rules for m have not
been considered before. In the supplementary material,
we give a gauge independent derivation of these selection
rules [45]. As illustrated in Fig. 1(c), when the electron-
hole pair is excited at the edge of the sample, it can
recombine by emitting light with OAM. To understand
the scaling of the multipole emission with increasing `,
we note that light with OAM ` has on optical vortex
in the center of size greater than or equal to �`, where
� = �/2⇡. As an example, we show the profile of an
` = 100 mode in Fig. 1(d). Beyond this radius, however,
its magnitude is independent of `. This implies that the
emitted light will contain multipole contributions up to
maximum value of `

max

= r
e

/�, where r
e

is the radius of
the edge.

This analysis illustrates the two basic e↵ects we find
for integer quantum Hall states: the ability to optically
image the disorder landscape and the presence of large
multipole transitions for the edge states. These argu-
ments should generally apply to quantum Hall systems,
as well as other materials with topologically protected ex-
tended electronic states such as those found in the quan-
tum spin-Hall e↵ect or in topological insulators. Focus-
ing on quantum Hall systems in Dirac materials, we now
discuss these e↵ects from a more microscopic picture.

Dirac Model.—The low-energy Hamiltonian in a 2D
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FIG. 1: (a) Low-energy band structure of graphene-like Dirac
material for zero magnetic field. Here m0 and v are the Dirac
mass and velocity, respectively, and we only show one of the
two valleys. (b) In the presence of a large magnetic field, the
electronic states are quantized into Landau levels. Disorder
in the sample leads to spatial variations in the optical transi-
tion energies, which can be optically imaged. (c) An electron
excited at the edge of a cylindrically symmetric sample will
emit light with orbital angular momentum ~` by recombining
with a hole in the state m

0 = m � `. (d) Amplitude of the
cylindrical vector harmonic |E`| for ` = 100 with �0 = 600 nm
and index of refraction n0 = 3.2. Because the size of the opti-
cal vortex increases as �`, an edge state with radius re (black
circle) can only spontaneously emit into modes with ` . re/�.

material with an underlying hexagonal lattice takes the
Dirac form (neglecting spin), H = (�1)s~v k·⌧+m

0

v2⌧
z

,
where s = 0 or s = 1 for the K or K’ valley, respec-
tively, v is the speed of light for the Dirac fermions,
k = (k

x

, k
y

) is the in-plane wavevector, ⌧ = (⌧
x

, ⌧
y

, ⌧
z

)
are Pauli matrices operating on the Dirac pseudospin,
and m

0

is the e↵ective Dirac mass. At zero magnetic
field the spectrum of H takes the Dirac form E(k) =
±
p

m2

0

v4 + v2|k|2 as shown in Fig. 1(a). For large per-
pendicular magnetic fields B

z

, the energy spectrum of
H is quantized into degenerate Landau levels at ener-
gies E

n

= sign(n)
p

m2

0

v4 + ~2!2

c

|n|, where n is an in-
teger, !

c

=
p

2v/`
c

is the cycolotron frequency and
`
c

=
p

~/eB
z

is the magnetic length.
Consider the interaction of this system with an ex-

ternal optical field. The light-matter interaction can be
found through the usual prescription k ! k � eA/c

H
int

= (�1)s

evp
2c

[⌧
+

A⇤
+

(x, y) + ⌧�A⇤
�(x, y)]e�i!t + h.c.,

(1)
where A± = (A

x

± iA
y

)/
p

2 are the circularly polarized
components of the vector potential A in the plane of the
2D material. Due to particle-hole symmetry in H, the
pseudo-spin operators ⌧± couple the nth Landau level to
both n ± 1 and �n ± 1. This leads to the selection rule
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Radiation from the edge.—We first consider the light
emission from the edge states of the quantum Hall sys-
tem. The edge can either be formed by an external con-
fining potential, at an interface with vacuum or another
material, or from an abrupt change in the local dielectric
environment. An externally applied potential V (r) will
generally lead to a uniform shift E

n

! E
n

+ V (r
m

). As
a result, the optical transitions between edge states will
be degenerate with the transitions in the bulk. In order
to selectively address the edge states, it is desirable to a
have a di↵erence in dispersion between the edge states in
the conduction and valence bands [see Fig. 1(b)]. Such a
di↵erence in slope can arise at a sharp interface with vac-
uum or another material due to local modifications of the
band structure. In the case of graphene with a vacuum
interface, the dispersion of the quantum Hall edge states
depends on whether the edge termination is of armchair
or zig-zag type [62]. For |n| > 0, however, all edge states
disperse with the opposite sign in the conduction and
valence band, which allows these optical transitions to
be spectrally distinguished from the bulk. This analy-
sis can be generalized to include a Dirac mass and one
finds that the opposite slope of the conduction and va-
lence band is preserved. Alternatively, to avoid defects
associated with a sharp interface, one can consider an
edge formed by a change in the dielectric environment,
e.g., an additional layer of h-BN. In this case, the change
in the dielectric screening will modify the contribution
of electron-electron interactions to the inter-band Lan-
dau level transitions [41]. The adiabatic connection of
the Landau levels between these two regions will lead to
optically addressable edge states.

For the case of a cylindrically symmetric edge, the edge
states are simply given by the angular momentum states
|n, mi with r

m

⇠ r
e

, the radius of the edge. As we
noted above, one can achieve optical Raman transitions
between edge states by transferring orbital angular mo-
mentum into the light field. To understand the scaling
of the multipole emission with increasing `, we note that
light with OAM ` has on optical vortex in the center of
size greater than or equal to �`, where � = �/2⇡ [see
Fig. 2(b)]. Beyond this radius, the average intensity of
the light is independent of `. This implies that the emit-
ted light will contain multipole contributions up to the
maximum value `

max

= r
e

/�, where r
e

is the radius of
the edge. In addition, `

max

will be cut o↵ by the finite
coherence length of the edge states, which arises primar-
ily from electron-electron interactions and phonon scat-
tering. For integer quantum Hall states in GaAs, the
coherence length was measured via transport methods
to be roughly (10-20) µm [4]. Our work shows that the
multipole radiation provides an optical means to directly
probe the coherence length.

To understand this e↵ect more quantitatively, we de-
compose the radiative emission rate �

m

of an excited
electron in the state |n + 1, mi into all the multipole mo-
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FIG. 2: (a) Low-energy band structure of graphene-like Dirac
material for zero magnetic field. Here m0 and v are the Dirac
mass and velocity, respectively, and we only show one of the
two valleys. (b) Amplitude of the cylindrical vector harmonic
|E`| for ` = 100 with �0 = 600 nm and index of refraction
n0 = 3.2. Because the size of the optical vortex increases
as �`, an edge state with radius re (black circle) can only
spontaneously emit into modes with ` . re/�. (c) Branching
ratio for spontaneous emission into di↵erent ` modes for two
di↵erent values of re/�. We took Dirac parameters for WSe2
(m0v

2 ⇡ 1 eV and v ⇡ 106 m/s [63]) embedded in GaP,
Bz = 11 T, n = 0, and � = 30 nm.

ments �
m

=
P

`�0

�`

m

[64]. Each individual component
can be found using Fermi’s golden rule for the emission
into the free space modes with a specified `. We give the
matrix elements in the supplemental material [60]. Two
illustrative examples are shown in Fig. 2(c) for the n = 0
to n = 1 transition with Dirac parameters for single-
layer WSe

2

. We plot the branching ratio �`

m

/�
m

for two
di↵erent edge radii, which confirms the scaling analysis
from above. For r

e

= 1.5 µm we find a nearly uniform
distribution for the spontaneous emission out to ` = 50.
Including disorder will modify shape of the distributions
in Fig. 2(c), but it will not reduce `

max

, which is simply
a result of the large coherence length of the edge states
compared to �.

These large multipole moments for the quantum Hall
edge states may also be useful for applications that make
use of light with large orbital angular momentum [65].
For example, placing the 2DES in a cavity and using
the pumping scheme in Fig. 1(b), would enable lasing
with orbital angular momentum by tuning a Laguerre-
Gaussian mode of the cavity into resonance with the as-
sociated Raman transition for the edge state.

Radiation from the bulk.— We now consider the optical
emission from the localized states in the bulk of the 2D
material. In particular, we show that the disorder land-
scape can be reconstructed through optical imaging of
the scattered light. For simplicity, we consider circularly

2⇡redge/� = 50

2⇡redge/� = 3

multipole emission

2

sub-wavelength correlations [57, 58].

As the electron-hole pair approaches the edge, the sit-
uation changes dramatically because these states exhibit
electronic coherence that extends across the entire sam-
ple. Furthermore, due to the magnetic field, the edge
states carry a large angular momentum, which can be
partially transferred into the optical radiation during
emission. Such a transfer process is necessarily associ-
ated with the presence of higher order multipole moments
in the far-field radiation. To illustrate this point more
concretely, we consider a cylindrically symmetric edge,
where the multipole radiation pattern can be calculated
analytically. We represent the magnetic vector potential
in the symmetric gauge A

0

= B
z

(�y, x)/2, where B
z

is the perpendicular magnetic field and (x, y) are the in-
plane coordinates of the 2DES. In this gauge, the angular
momentum is a good quantum number and we can or-
der the single-particle states in the nth Landau level into
eigenstates |n, mi (m � � |n|) of the angular momentum
operator L

z

/~ = xk
y

� yk
x

with eigenvalue �m, where
k = (k

x

, k
y

) is the in-plane wavevector.

To describe the spontaneously emitted field, we also
decompose the optical field into eigenstates of L

z

with
orbital angular momentum (OAM) ~` and longitudinal
momentum ~k. Such states are known as cylindrical vec-
tor harmonics and are closely related to the cylindrically
symmetric Laguerre-Gaussian modes within the paraxial
approximation [59]. An electron in the conduction band
with angular momentum m can conserve total angular
momentum by recombining with a hole in the valence
band with angular momentum m0 and emitting light with
OAM ` = m�m0 [see Fig. 1(b)]. In the supplemental ma-
terial, we give a gauge independent derivation of this se-
lection rule [60]. We remark that these arguments should
generally apply to integer quantum Hall systems, as well
as other materials with topological edge states. Focus-
ing on quantum Hall systems in Dirac materials, we now
discuss these e↵ects from a more microscopic picture.

Dirac Model.—The low-energy Hamiltonian in a 2D
material with an underlying hexagonal lattice takes the
Dirac form in each valley (neglecting spin), H = ~v k ·
⌧ + m

0

v2⌧
z

, where v is the Dirac velocity, k = (k
x

, k
y

)
is the in-plane wavevector, ⌧ = (⌧

x

, ⌧
y

, ⌧
z

) are Pauli ma-
trices operating on the Dirac pseudospin, and m

0

is the
e↵ective Dirac mass. At zero magnetic field the spec-
trum of H is E(k) = ±

p
m2

0

v4 + v2|k|2, as shown in
Fig. 1(a). For large B

z

, the energy spectrum is quan-
tized into degenerate Landau levels at energies E

n

=
sign(n)

p
m2

0

v4 + ~2!2

c

|n|, where n is an integer, !
c

=p
2v/`

c

is the cycolotron frequency, and `
c

=
p

~/eB
z

is
the magnetic length. Throughout this work we restrict
our discussion to the K-valley for simplicity and neglect
inter-valley scattering processes.

Consider the interaction of this system with an ex-
ternal optical field. The light-matter interaction can be
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FIG. 1: (a) In the presence of a large magnetic field, the
electronic states of the 2DES are quantized into Landau lev-
els, which we index by their angular momentum �~m. The
majority of the states in the bulk are localized by disorder,
leading to inter-band radiation dominated by dipole emission.
The spectrum of this radiation is spatially correlated with the
disorder potential. Here Ec(v) refer to the energy of the con-
duction (valence) band and EF is the Fermi energy. (b) An
electron excited at the edge of the system can emit light with
orbital angular momentum ~` by recombining with a hole in
the state m

0 = m � `. Here we have taken the edge states
in the conduction band to have the opposite slope from the
valence band so that the edge emission is spectrally distin-
guishable from the bulk.

found through the usual prescription k ! k � eA/c

H
int

=
evp
2c

[⌧
+

A⇤
+

(x, y) + ⌧�A⇤
�(x, y)]e�i!t + h.c., (1)

where A± = (A
x

± iA
y

)/
p

2 are the circularly polarized
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ū

= @
ū
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whose eigenvalues are the energy eigenvalues E
n

. We
represent the OAM eigenstates for the optical field in
the basis of cylindrical vector harmonics [59], which take
the form E(x, y, z) =
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We show how to realize two-component fractional quantum Hall phases in monolayer graphene by
optically driving the system. A laser is tuned into resonance between two Landau levels of graphene
and acts as a e↵ective tunneling term between these states. We study systems with small number
of electrons for filling factor 2/3 using exact-diagonalization. When the lower state is the first
Landau level, we find that tuning the e↵ective tunneling amplitude causes the system to undergo
a phase transition from a spin-singlet phase to a particle-hole conjugate 1/3 Laughlin phase of
the antisymmetric optical dressed states. This phase transition can be traced to the presence of
additional cross interaction terms that arise in the rotating wave approximation. These results pave
the way towards the realization of new phases, as well as the control of phase transitions, in graphene
quantum Hall systems using optical fields and integrated photonic structures.

The fractional quantum Hall (FQH) e↵ect is a fasci-
nating phenomena in condensed matter physics, whereby
electron-electron interaction fully determine the behav-
ior of the system [1–3]. While initial considerations fo-
cused on systems with no internal degrees of freedom,
later it was realized that the electron spin plays an im-
portant role for several filling factors [4–7], which was
confirmed experimentally [8, 9]. More generally, mul-
ticomponent FQH phases [10] occur in numerous sys-
tems, where the role of the internal degree of freedom
is ascribed to subbands, such as in wide quantum wells
[11–14], layers, such as in double quantum wells [15, 16],
or the valley quantum number, such as in AlAs quan-
tum well [17] and graphene [18–20]. In particular, there
has been much e↵ort towards engineering various system
parameters, such as tunneling, to realize di↵erent FQH
states. However, these approaches can add unwanted side
e↵ects, and therefore, it is desirable to investigate other
control methods.

At the same time, there has been many theoretical [21–
24] and experimental [25–28] studies of the interaction of
light with quantum Hall states of graphene. In particu-
lar, due the linear dispersion in graphene, the Landau
levels (LL) are not equidistant, unlike semiconductors
with a parabolic dispersion [29]. This makes it possi-
ble to selectively couple LLs with resonant light. More
recently, FQH phases in integrated GaAs quantum well-
cavity structures have also been explored experimentally
[30].

In this Letter, we explore the possibility of using light
to control multicomponent FQH phases of graphene.
Resonant excitation by light results in an e↵ective tun-
neling between two LL, with a rate proportional to the
amplitude of the electric field. The optical driving results
in the formation of dressed states of LL orbits. Conse-

FIG. 1: (a) A single layer of of graphene driven by a light
with Rabi frequency coupling ⌦. (b) LL structure with partial
filling and optical transitions between 0� 1 and 1� 2 states.
(c) Formation of the dressed states due to the light coupling
between two LLs.

quently, the Coulomb interaction terms between di↵er-
ent LLs, which are usually ignored due to the negligible
population of the higher LLs, become important. These
terms come in two categories: (1) direct terms, which
are the counterpart of inter-layer interaction in bilayer
systems [31–33], and (2) cross terms, which are absent
in conventional bilayer systems. The latter terms further
turn out to be crucial in understanding how our system
deviates from the usual bilayer systems. We numerically
study the case of ⌫ = 2/3 filling on a torus and find
that, when the e↵ective tunneling rate is large, the sys-
tem forms a Laughlin state out of the dressed LL orbitals.
This is the case for all values of tunneling we considered
for LL0�LL1 transitions. In contrast, for the LL1�LL2

transition with a small e↵ective tunneling rate, the cross
terms in the Coulomb interaction compete with the en-
ergy separation of the dressed states and force the system
into a many-body singlet state. This state is the result
of the cross Coulomb interaction terms, and therefore,
has infinitesimal overlap with the usual bilayer singlet
[31, 34, 35].
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(1) Different LL plays the role of layers

(2) Light plays the role of tunneling
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FIG. 2: The dependence of the low lying energy levels on the
e↵ective tunneling ⌦ for di↵erent transitions 0�1 (a) and 1�2
(b). Insets show the dependence of the gap between ground
and first excited state on ⌦. The dependence of the overlap
between trial wave functions and numerically exact ground
state on e↵ective tunneling ⌦ for the case of transition 0� 1
(c) and 1 � 2 (d). All energies are in units of e2/✏lB and for
all figures � = 0.02.

pseudo-spin symmetry present in the conventional bilayer
case. More specifically, in RWA, the energy-conserving
Coulomb interaction terms are the ones with equal ini-
tial and final energies which results in the presence of
�n1+n2,n3+n4 in Eq.(6). Since we are limiting the system
to two LLs, we can write �n1+n2,n3+n4 as �n1,n4�n2,n3 or
�n1,n3�n2,n4 . We denote the first term as direct which is
similar to the density-density type interaction between
the LLs, whereas the second term is designated as cross
term and is similar to an exchange type interaction be-
tween the LLs (see Supplementary Material). Note that
in conventional bilayer systems the layer index acts as a
pseudo-spin and only direct type interactions between
the layers are present. Due to the fact that in con-
ventional bilayer systems the exchange type interaction
is only present for intra-layer interactions, it was ini-
tially supposed that FQHE phases should be pseudo-
spin polarized, which was proven to be wrong by exact-
diagonalization [5–7] and experimental studies [8, 9]. The
presence of inter-layer cross interaction terms in our case
nominally makes the competition between pseudo-spin
polarized and unpolarized phases even more important,
but it competes with the SU(2) symmetry breaking. The
competition between the SU(2) symmetry breaking and
inter LL cross interaction terms will be analyzed below.
We have performed exact-diagonalization studies of

the system containing eight electrons with filling factor
⌫ = Ne/Ns = 2/3 on torus geometry using magnetic

translation symmetry [1, 38]. In the absence of light, the
FQH phases in graphene are well studied [39–43] both
in single-component and multicomponent regimes. Re-
cently, bilayer 2/3 filling system has received renewed
interest because of the possibility of obtaining additional
non-Abelian phases by engineering special type of inter-
action potentials [44–46]. We have considered the system
to initially occupy the LL0 or LL1 and then optically cou-
ple these levels to LL1 and LL2 respectively. We denote
these two cases as the 0�1 and 1�2 transitions, respec-
tively (Fig. 1 (b)). In the calculations, we take the unit of
the energy to be e2/✏lB . All calculations are performed
for non-zero detuning (� = 0.02) to rule out singular be-
havior associated with driving exactly on resonance. Due
to the computational complexity, we disregard LL mix-
ing to other levels not involved in the optical transition,
which is a good approximation for graphene placed on a
substrate [47, 48].
In Fig. 2, the dependence of the low lying energy lev-

els and overlap with trial wave functions on the e↵ective
tunneling ⌦ is presented for di↵erent transitions 0 � 1
and 1 � 2. It is clear from the figure that these two
cases demonstrate di↵erent behavior, as we change the
tunneling ⌦. It should be noted that for both tran-
sitions and for all phases observed in the system the
obtained energy levels are triple degenerate. For the
0 � 1 case, there is no ground state crossing and the
system has finite gap for all values of ⌦, as shown in
Fig. 2(a). Therefore, the system always remains in the
same phase, which is the particle-hole conjugate 1/3
Laughlin phase. This claim is further justified by an-
alyzing the overlap between several trial wave functions
and the obtained exact wave functions, for di↵erent val-
ues of ⌦, as shown in Fig. 2(c). For particle-hole con-
jugate 1/3 Laughlin state, we consider three di↵erent
bases: (1) LL basis, when all the electrons reside in initial
LL, (2) the dressed state basis, when all electrons reside
in lower energy dressed orbitals with energy �⌦̃, i.e., a
Laughlin state formed of lower eigenstates of Eq. (5) or-
bitals: |±, ji / �

� ±p
�2 + 4⌦2

� |M + 1, ji + 2⌦|M, ji,
(3) symmetric-antisymmetric basis, when all electrons re-
side in the antisymmetric state, i.e., lower energy dressed
orbital when ⌦ � �, |�, ji = 1p

2
(�|M + 1, ji + |M, ji).

For weak tunnelings (⌦ ⌧ �), the state remains polar-
ized in lowest LL system and has a large overlap with
the particle-hole conjugate 1/3 Laughlin state. In this
regime, the dressed states coincides with orbitals in the
absence of the light coupling (|�, ji ⇡ |M, ji). As the
tunneling increases, the dressed state acquires a bigger
component from the opposite orbital, however, we ob-
serve that the overlap with the dressed Laughlin state
remains large. In the strong tunneling limit (⌦ � �),
the dressed orbital coincide with symmetric and anti-
symmetric states and the system develops a large over-
lap with antisymmetric wave function. In summery, for
0 � 1 case, the system remains in a particle-hole con-

• Filling factor is
For bilayer: McDonald Haldane PRB (1996)
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FIG. 2: The dependence of the low lying energy levels on the
e↵ective tunneling ⌦ for di↵erent transitions 0�1 (a) and 1�2
(b). Insets show the dependence of the gap between ground
and first excited state on ⌦. The dependence of the overlap
between trial wave functions and numerically exact ground
state on e↵ective tunneling ⌦ for the case of transition 0� 1
(c) and 1 � 2 (d). All energies are in units of e2/✏lB and for
all figures � = 0.02.

pseudo-spin symmetry present in the conventional bilayer
case. More specifically, in RWA, the energy-conserving
Coulomb interaction terms are the ones with equal ini-
tial and final energies which results in the presence of
�n1+n2,n3+n4 in Eq.(6). Since we are limiting the system
to two LLs, we can write �n1+n2,n3+n4 as �n1,n4�n2,n3 or
�n1,n3�n2,n4 . We denote the first term as direct which is
similar to the density-density type interaction between
the LLs, whereas the second term is designated as cross
term and is similar to an exchange type interaction be-
tween the LLs (see Supplementary Material). Note that
in conventional bilayer systems the layer index acts as a
pseudo-spin and only direct type interactions between
the layers are present. Due to the fact that in con-
ventional bilayer systems the exchange type interaction
is only present for intra-layer interactions, it was ini-
tially supposed that FQHE phases should be pseudo-
spin polarized, which was proven to be wrong by exact-
diagonalization [5–7] and experimental studies [8, 9]. The
presence of inter-layer cross interaction terms in our case
nominally makes the competition between pseudo-spin
polarized and unpolarized phases even more important,
but it competes with the SU(2) symmetry breaking. The
competition between the SU(2) symmetry breaking and
inter LL cross interaction terms will be analyzed below.

We have performed exact-diagonalization studies of
the system containing eight electrons with filling factor
⌫ = Ne/Ns = 2/3 on torus geometry using magnetic

translation symmetry [1, 38]. In the absence of light, the
FQH phases in graphene are well studied [39–43] both
in single-component and multicomponent regimes. Re-
cently, bilayer 2/3 filling system has received renewed
interest because of the possibility of obtaining additional
non-Abelian phases by engineering special type of inter-
action potentials [44–46]. We have considered the system
to initially occupy the LL0 or LL1 and then optically cou-
ple these levels to LL1 and LL2 respectively. We denote
these two cases as the 0�1 and 1�2 transitions, respec-
tively (Fig. 1 (b)). In the calculations, we take the unit of
the energy to be e2/✏lB . All calculations are performed
for non-zero detuning (� = 0.02) to rule out singular be-
havior associated with driving exactly on resonance. Due
to the computational complexity, we disregard LL mix-
ing to other levels not involved in the optical transition,
which is a good approximation for graphene placed on a
substrate [47, 48].

In Fig. 2, the dependence of the low lying energy lev-
els and overlap with trial wave functions on the e↵ective
tunneling ⌦ is presented for di↵erent transitions 0 � 1
and 1 � 2. It is clear from the figure that these two
cases demonstrate di↵erent behavior, as we change the
tunneling ⌦. It should be noted that for both tran-
sitions and for all phases observed in the system the
obtained energy levels are triple degenerate. For the
0 � 1 case, there is no ground state crossing and the
system has finite gap for all values of ⌦, as shown in
Fig. 2(a). Therefore, the system always remains in the
same phase, which is the particle-hole conjugate 1/3
Laughlin phase. This claim is further justified by an-
alyzing the overlap between several trial wave functions
and the obtained exact wave functions, for di↵erent val-
ues of ⌦, as shown in Fig. 2(c). For particle-hole con-
jugate 1/3 Laughlin state, we consider three di↵erent
bases: (1) LL basis, when all the electrons reside in initial
LL, (2) the dressed state basis, when all electrons reside
in lower energy dressed orbitals with energy �⌦̃, i.e., a
Laughlin state formed of lower eigenstates of Eq. (5) or-
bitals: |±, ji / �

� ±p
�2 + 4⌦2

� |M + 1, ji + 2⌦|M, ji,
(3) symmetric-antisymmetric basis, when all electrons re-
side in the antisymmetric state, i.e., lower energy dressed
orbital when ⌦ � �, |�, ji = 1p

2
(�|M + 1, ji + |M, ji).

For weak tunnelings (⌦ ⌧ �), the state remains polar-
ized in lowest LL system and has a large overlap with
the particle-hole conjugate 1/3 Laughlin state. In this
regime, the dressed states coincides with orbitals in the
absence of the light coupling (|�, ji ⇡ |M, ji). As the
tunneling increases, the dressed state acquires a bigger
component from the opposite orbital, however, we ob-
serve that the overlap with the dressed Laughlin state
remains large. In the strong tunneling limit (⌦ � �),
the dressed orbital coincide with symmetric and anti-
symmetric states and the system develops a large over-
lap with antisymmetric wave function. In summery, for
0 � 1 case, the system remains in a particle-hole con-
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FIG. S2: The dependence of the expectation values of total spin operators in the ground state of the system on the e↵ective
tunneling ⌦ for the case of transition 0� 1 (a) and 1� 2 (b) for � = 0.02. Expectation value of Sy operator is always zero.

FIG. S3: Intra (a) and inter (b) LL Haldane pseudopotentials for the case of transition 0�1 and 1�2 as a function of relative
angular momentum m.

where V (q) is the Fourier transform of the Coulomb interaction. The Fn1,n2(q) is the graphene form factor defined
as [3]
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when n1 < n2 and we use the notation q = qx + iqy and q̄ = qx � iqy in this section.
Following the notation of table S1 the pseudopotentials which correspond to inter LL direct interaction terms are

V n1n2n2n1
m , whereas the ones which correspond to inter LL cross interaction terms are V n1n2n1n2

m , where we took
n1 6= n2. As for the intra LL interaction there is just one type of pseudopotential denoted as V nnnn

m . The values of
appropriate pseudopotentials for both transitions 0� 1 and 1� 2 as a function of relative angular momentum m are
shown in Fig. S3. The nature of intra LL pseudopotentials for graphene was analyzed before [3–5]. To understand
why the physics is di↵erent for 0� 1 and 1� 2 we consider inter LL pseudopotentials shown in Fig. S3 (b). It is clear
from this figure that, for relative momentum m = 0, the pseudopotential responsible for direct interaction terms is
considerably bigger for the 0� 1 compared to the 1� 2 case, while the one responsible for cross interaction terms is
slightly smaller. Due to the fact that full wave function can have even parity for the interchange of particle coordinates
with di↵erent LL indices, the inter LL interaction V0 pseudopotential makes the biggest contribution to the total inter
LL interaction. The reason for the discrepancy between 0 � 1 and 1 � 2 stems from the two component form of the
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FIG. 2: The dependence of the low lying energy levels on the
e↵ective tunneling ⌦ for di↵erent transitions 0�1 (a) and 1�2
(b). Insets show the dependence of the gap between ground
and first excited state on ⌦. The dependence of the overlap
between trial wave functions and numerically exact ground
state on e↵ective tunneling ⌦ for the case of transition 0� 1
(c) and 1 � 2 (d). All energies are in units of e2/✏lB and for
all figures � = 0.02.

pseudo-spin symmetry present in the conventional bilayer
case. More specifically, in RWA, the energy-conserving
Coulomb interaction terms are the ones with equal ini-
tial and final energies which results in the presence of
�n1+n2,n3+n4 in Eq.(6). Since we are limiting the system
to two LLs, we can write �n1+n2,n3+n4 as �n1,n4�n2,n3 or
�n1,n3�n2,n4 . We denote the first term as direct which is
similar to the density-density type interaction between
the LLs, whereas the second term is designated as cross
term and is similar to an exchange type interaction be-
tween the LLs (see Supplementary Material). Note that
in conventional bilayer systems the layer index acts as a
pseudo-spin and only direct type interactions between
the layers are present. Due to the fact that in con-
ventional bilayer systems the exchange type interaction
is only present for intra-layer interactions, it was ini-
tially supposed that FQHE phases should be pseudo-
spin polarized, which was proven to be wrong by exact-
diagonalization [5–7] and experimental studies [8, 9]. The
presence of inter-layer cross interaction terms in our case
nominally makes the competition between pseudo-spin
polarized and unpolarized phases even more important,
but it competes with the SU(2) symmetry breaking. The
competition between the SU(2) symmetry breaking and
inter LL cross interaction terms will be analyzed below.
We have performed exact-diagonalization studies of

the system containing eight electrons with filling factor
⌫ = Ne/Ns = 2/3 on torus geometry using magnetic

translation symmetry [1, 38]. In the absence of light, the
FQH phases in graphene are well studied [39–43] both
in single-component and multicomponent regimes. Re-
cently, bilayer 2/3 filling system has received renewed
interest because of the possibility of obtaining additional
non-Abelian phases by engineering special type of inter-
action potentials [44–46]. We have considered the system
to initially occupy the LL0 or LL1 and then optically cou-
ple these levels to LL1 and LL2 respectively. We denote
these two cases as the 0�1 and 1�2 transitions, respec-
tively (Fig. 1 (b)). In the calculations, we take the unit of
the energy to be e2/✏lB . All calculations are performed
for non-zero detuning (� = 0.02) to rule out singular be-
havior associated with driving exactly on resonance. Due
to the computational complexity, we disregard LL mix-
ing to other levels not involved in the optical transition,
which is a good approximation for graphene placed on a
substrate [47, 48].
In Fig. 2, the dependence of the low lying energy lev-

els and overlap with trial wave functions on the e↵ective
tunneling ⌦ is presented for di↵erent transitions 0 � 1
and 1 � 2. It is clear from the figure that these two
cases demonstrate di↵erent behavior, as we change the
tunneling ⌦. It should be noted that for both tran-
sitions and for all phases observed in the system the
obtained energy levels are triple degenerate. For the
0 � 1 case, there is no ground state crossing and the
system has finite gap for all values of ⌦, as shown in
Fig. 2(a). Therefore, the system always remains in the
same phase, which is the particle-hole conjugate 1/3
Laughlin phase. This claim is further justified by an-
alyzing the overlap between several trial wave functions
and the obtained exact wave functions, for di↵erent val-
ues of ⌦, as shown in Fig. 2(c). For particle-hole con-
jugate 1/3 Laughlin state, we consider three di↵erent
bases: (1) LL basis, when all the electrons reside in initial
LL, (2) the dressed state basis, when all electrons reside
in lower energy dressed orbitals with energy �⌦̃, i.e., a
Laughlin state formed of lower eigenstates of Eq. (5) or-
bitals: |±, ji / �

� ±p
�2 + 4⌦2

� |M + 1, ji + 2⌦|M, ji,
(3) symmetric-antisymmetric basis, when all electrons re-
side in the antisymmetric state, i.e., lower energy dressed
orbital when ⌦ � �, |�, ji = 1p

2
(�|M + 1, ji + |M, ji).

For weak tunnelings (⌦ ⌧ �), the state remains polar-
ized in lowest LL system and has a large overlap with
the particle-hole conjugate 1/3 Laughlin state. In this
regime, the dressed states coincides with orbitals in the
absence of the light coupling (|�, ji ⇡ |M, ji). As the
tunneling increases, the dressed state acquires a bigger
component from the opposite orbital, however, we ob-
serve that the overlap with the dressed Laughlin state
remains large. In the strong tunneling limit (⌦ � �),
the dressed orbital coincide with symmetric and anti-
symmetric states and the system develops a large over-
lap with antisymmetric wave function. In summery, for
0 � 1 case, the system remains in a particle-hole con-
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FIG. S2: The dependence of the expectation values of total spin operators in the ground state of the system on the e↵ective
tunneling ⌦ for the case of transition 0� 1 (a) and 1� 2 (b) for � = 0.02. Expectation value of Sy operator is always zero.

FIG. S3: Intra (a) and inter (b) LL Haldane pseudopotentials for the case of transition 0�1 and 1�2 as a function of relative
angular momentum m.
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when n1 < n2 and we use the notation q = qx + iqy and q̄ = qx � iqy in this section.
Following the notation of table S1 the pseudopotentials which correspond to inter LL direct interaction terms are

V n1n2n2n1
m , whereas the ones which correspond to inter LL cross interaction terms are V n1n2n1n2

m , where we took
n1 6= n2. As for the intra LL interaction there is just one type of pseudopotential denoted as V nnnn

m . The values of
appropriate pseudopotentials for both transitions 0� 1 and 1� 2 as a function of relative angular momentum m are
shown in Fig. S3. The nature of intra LL pseudopotentials for graphene was analyzed before [3–5]. To understand
why the physics is di↵erent for 0� 1 and 1� 2 we consider inter LL pseudopotentials shown in Fig. S3 (b). It is clear
from this figure that, for relative momentum m = 0, the pseudopotential responsible for direct interaction terms is
considerably bigger for the 0� 1 compared to the 1� 2 case, while the one responsible for cross interaction terms is
slightly smaller. Due to the fact that full wave function can have even parity for the interchange of particle coordinates
with di↵erent LL indices, the inter LL interaction V0 pseudopotential makes the biggest contribution to the total inter
LL interaction. The reason for the discrepancy between 0 � 1 and 1 � 2 stems from the two component form of the
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