Quantum Hall physics in photonic systems

Mohammad Hafezi

Outline of this talk

- Review of topological ring resonators
 - Measuring topological invariants
- Quantum directions
 - Topological photonic crystals
- Photons and electronic quantum Hall states

Synthetic Magnetic Field

In analogy to electrons on a magnetic lattice:

$$H_{0} = -J \sum_{x,y} \hat{a}_{x+1,y}^{\dagger} \hat{a}_{x,y} e^{-i2\pi\alpha y} + \hat{a}_{x,y}^{\dagger} \hat{a}_{x+1,y} e^{i2\pi\alpha y} + \hat{a}_{x,y}^{\dagger} \hat{a}_{x+1,y} e^{i2\pi\alpha y} + \hat{a}_{x,y+1}^{\dagger} \hat{a}_{x,y} + \hat{a}_{x,y}^{\dagger} \hat{a}_{x,y+1}$$

- Tight-binding form
- Magnetic phase

$$H_{eff} = -\kappa \hat{a}_{x+1}^{\dagger} \hat{a}_x e^{-2\pi i\alpha} - \kappa \hat{a}_x^{\dagger} \hat{a}_{x+1} e^{2\pi i\alpha}$$

Nat. Phys. 7, 907 (2011) see also Microwave : Haldane PRL (2008), Soljacic Nat. (2009) Koch PRA (2010) Carusotto PRA (2011)

Experimental realization of the gauge field

Silicon-on-Insulator technology

Observation of topological edge states

Robustness against an introduced disorder

Kraus, Zilberberg PRL (2012)

Rechtsman, Segev Nature (2013)

Simon's group Nature (2016)

A. Khanikaev, G. Shvets Nature Material (2012)

Fan's group - Nature Photonics (2012)

Transport statistics

2D Long Edge 1D -10-20 T (dB) -30 -40-50 -60 20 40 60 0 No. of Resonators

15x15 arrays Different colors: different samples

S. Mittal et al. Phys. Rev. Lett. 113, 087403 (2014)

Outline of this talk

- Review of ring resonators
 - Measuring topological invariants
- Quantum directions
 - Topological photonic crystals
- Photons and electronic quantum Hall states and other activities

Topological invariants in photons

Laughlin's argument

MH, PRL 112, 210405 (2014) see also: Ozawa et al. PRL 2014, Bardyn et al., Y. Chong

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, MH Nature Photonics 10, 180 (2016)

Quantum directions

Linear/weakly nonlinear

Strong photonemitter interaction

Quantum transport of non-classical light

Quantum transport in topological photonics systems

Theory: S. Mittal, V. Vikram Orre, and M. H., Optics Expres 24, 15632 (2016) see also Rechtsman et al. arXiv:1605.02053

Quantum directions

Linear/weakly nonlinear

Strong photonemitter interaction

Quantum transport of non-classical light

Topologically robust generation and amplification of photons

Quantum directions

Linear/weakly nonlinear

Quantum transport of non-classical light

Topologically robust generation of photons

Strong photonemitter interaction

Fractional Quantum Hall states

Fractional Quantum Hall state of light

Atomic case: MH, Sorensen, Demler, Lukin (2007) Exp: Spielman, Ketterle, Dalibard, Bloch,....

Fractional Quantum Hall state of light

$$H = -J \sum_{x,y} \hat{a}_{x+1,y}^{\dagger} \hat{a}_{x,y} e^{i2\pi\alpha y} + \hat{a}_{x,y+1}^{\dagger} \hat{a}_{x,y} + h.c.$$
$$+ U \hat{n}_{x,y} (\hat{n}_{x,y} - 1)$$

U >> J : photon blockade regime

Starting with a fixed number of photons, we can prepare a Laughlin state at $\nu = \frac{N_{ph}}{N_{mag}} = \frac{1}{2}$ $\Psi_m(z_1, z_2, ..., z_N) \propto \prod_{j < k}^{N_e} (z_j - z_k)^m \prod_{j=1}^{N_e} e^{-|z_j|^2/4}$

How to make fixed photon number states and also combat loss?

Use incompressibility (blockade) to prepare many-body states of photons

$$E(N) - E(N-1) \neq E(N+1) - E(N)$$

How to prepare a cavity in the single photon state:

et al. 2017

Other methods to prepare FQH states of light

see also: Angelakis et al. PRL (2008), Carusotto, Umucalilar PRL (2012) Greentree et al. PRL (2012)

Grusdt, Letscher, MH, Fleischhauer PRL (2014)

<u>Three-body interaction</u> <u>and Pfaffian states</u>

Greiter, Wen, Wilczek Phys. Rev. Lett (1991) The parent Hamiltonian for Pfaffian state has three-body short range interaction

For bosons:

$$\nu = N/N_{\phi} = 1$$

The lattice version of their model:

$$H = -J\sum_{x,y} \hat{a}_{x+1,y}^{\dagger} \hat{a}_{x,y} e^{-i2\pi\alpha y} + \hat{a}_{x,y}^{\dagger} \hat{a}_{x+1,y} e^{+i2\pi\alpha y} + \hat{a}_{x,y+1}^{\dagger} \hat{a}_{x,y+1} + \hat{a}_{x,y+1}^{\dagger} \hat{a}_{x,y+1} + \underbrace{U_3 \hat{a}_{x,y}^{\dagger 3} \hat{a}_{x,y}^{3}}_{a_{x,y}} \hat{a}_{x,y}^{\dagger}$$

$$V = \sum \delta^{(2)} (z_i - z_j) \delta^{(2)} (z_i - z_k)$$

MH, P. Adhikari, J. Taylor PRB (2014) Artificial magnetic field: Koch et al (2010), Kamal (2011) Kapit (2013) Zakka-Bajjani (2011) atoms: Cooper et al PRL (2001), Mazza et al PRA (2010)

Quantum directions

Linear/weakly nonlinear

Quantum transport of non-classical light

Topologically robust generation of photons

Strong photonemitter interaction

Fractional Quantum Hall states

Chiral Quantum Optics

Review: P. Lodahl et al. Nature (2017)

Outline of this talk

- Review of ring resonators
 - Measuring topological invariants
- Quantum directions
 - Topological photonic crystals
- Photons and electronic quantum Hall states and other activities

Topological photonic crystals

• Synthesize spin-orbit in photonic crystals

Challenges:

Find a compatible structure with solid-state emitters in optical domain

S. Barik, H. Miyake, W. DeGottardi, E. Waks, M.H. NJP (2016)

previous works: Rechtsman/Segev Nat. Photon (2012) Shvets/Khanikaev PRL (2014), <u>Wu/Hu PRL (2015)</u>

Tight-binding approximation

✓ Obtain band inversion, requirement for non-trivial topology

$$\mathcal{H}_{+} = \frac{\sqrt{3}}{2} t_{2} a \left(-k_{x} \sigma_{x} + k_{y} \sigma_{y} \right) + \left[t_{2} - t_{1} + \mathcal{O}(k_{x}^{2} + k_{y}^{2}) \right] \sigma_{z} \qquad \left(|p_{+}\rangle, |d_{+}\rangle \right)$$
$$\mathcal{H}_{-} = \frac{\sqrt{3}}{2} t_{2} a \left(k_{x} \sigma_{x} + k_{y} \sigma_{y} \right) + \left[t_{2} - t_{1} + \mathcal{O}(k_{x}^{2} + k_{y}^{2}) \right] \sigma_{z} \qquad \left(|p_{-}\rangle, |d_{-}\rangle \right)$$

S. Barik, H. Miyake, W. DeGottardi, E. Waks, M.H. NJP (2016)

helical/chiral topological edge states

- ✓ Interface between two distinct band structure
 ✓ Topological edge state appear in the bulk gap
- \checkmark 2D version/topological version of Lodahl/Rauschenbeutel

different polarization propagate in different directions

 \checkmark robustness against deformation of edge

Topological Photonic Crystal

Ordinary waveguide

Measuring topological invariants

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, MH Nature Photonics 10, 180 (2016)

topological quantum optics

Topological photonic crystals

S. Mittal, Vikram Orre, and M. H., OP. EXP. 24, 15632 (2016)

S. Barik, H. Miyake, W. DeGottardi, E. Waks, M.H. NJP (2016)

E. Kapit, MH and S. Simon PRX 2014

- Review of ring resonator
 - Measuring topological invariants
- Quantum directions
 - Topological photonic crystals
- Photons and electronic quantum Hall states

M. Gulllans

A. Gazaryan T. Grass

Use light to detect/manipulate electronic topological states

$$H_{\text{quad}} \propto (p + eA)^2 \to \hbar \omega_c a^{\dagger} a$$
$$H_{\text{lin}} \propto \begin{pmatrix} 0 & v_f(p_x - ip_y + eA_x - ieA_y) \\ v_f(p_x + ip_y + eA_x + ieA_y) & 0 \end{pmatrix} \to \frac{v_f}{l_b} \begin{pmatrix} 0 & a \\ a^{\dagger} & 0 \end{pmatrix}$$

M. Gullans, J. Taylor, A. Imamoglu, P. Ghaemi, and MH arXiv:1701.03464 GaAs works by Pinczuk,....

Recently in cavity: Imamoglu Science (2016) Dicke-superradiance: Ciuti, Fazio, McDonald .. Mapping disorder landscape

$$H_{\mathrm{dis}} = u_0(\boldsymbol{r})I + \boldsymbol{u}(\boldsymbol{r})\cdot\boldsymbol{\tau}$$

$$H_{\rm int} = (-1)^s \frac{ev}{\sqrt{2}c} [\tau_+ A^*_+(x, y) + \tau_- A^*_-(x, y)] e^{-i\omega t} + h.c.$$

Most cases: dipole approximation Multipole emission

Extended states of electrons, e.g. Quantum Hall, Rydberg excitations

 $(re^{i\theta})^m$ $(re^{-i\theta})^{m'}$ $ev_f \langle 1, m' | \tau_+ \mathbf{A} . \sigma | 0, m \rangle \to \delta_{m', m+l}$ $A \propto e^{ikz+il\theta} J_l(k_{\perp}r)$

Solutions of Maxwell's equations are given by Bessel functions:

 $k_{\perp}r_{vortex} = l$

$$k_{\perp} = \sqrt{(\omega/c)^2 - k_{\parallel}^2}$$

so the maximum OAM:

 $\frac{2\pi}{\lambda}r_{edge} = l_{max}$

Synthetic bilayer Graphene (?)

We use light to couple to LL and form a bilayer where:

(1) Different LL plays the role of layers(2) Light plays the role of tunneling

• What type of state one can engineering with light?

A. Ghazaryan, M. J. Gullans, P. Ghaemi, and M. H. arXiv:1612.08748

• Filling factor is $\nu = 2/3$

For bilayer: McDonald Haldane PRB (1996) Peterson, Barkeshli, Wen...

Dressed Laughlin
$$\Omega \ll e^2/l_B$$

 z_i^m $[(z_i - z_j)^m]$ $\overline{i < j}$

Outlook:

Thermalization in the driven system

H. Dehghani, T. Oka, and A. Mitra, PRB(2014) K. I. Seetharam, C.-E. Bardyn, N. H. Lindner, M. S. Rudner, and G. Refael, PRX (2015)

Engineering interaction

Constructing twist defects?

- Sunil Mittal
- Vikram Orre
- Mahmud Khan
- Hwanmun Kim
- Bin Cao
- Chris Flower
- Alireza Seif
- Sabyasachi Barik
- Wade DeGottardi
- Hiro Miyake
- T. Grass
- Guanyu Zhu

publications: hafezi.umd.edu

<u>JQI</u>

- A. Restelli
- E. Goldschmidt (ARL)
- J. Fan
- M. Gullans
- T. Huber

- Aziz Karahasin
- J. Taylor
- A. Migdall
- G. Solomon
- E. Waks
- S. Ganeshan (Stony Brook)
- P. Ghaemi, A. Ghazaryan (CUNY)
- A. Vaezi (Stanford)
- R. Salem (PicoLuz/Thorlabs)
- A. Imamoglu (ETHZ)

