

Quantum soliton friction and soliton diffusion

Johannes Hofmann

work with Dmitry Efimkin and Victor Galitski

Theory of Condensed Matter Group, Cavendish Laboratory

Mainz, May 2017

- 1. Introduction: Excitations in Bose-Einstein condensates
- 2. Absence of classical soliton friction
- 3. Quantum friction of bright solitons
- 4. Conclusion

1. Introduction: Excitations in Bose-Einstein condensates

2. Absence of classical soliton friction

3. Quantum friction of bright solitons

4. Conclusion

Interacting Bose gases

Universal many-body system: independent of microscopic details

Lagrangian:

$$L = \int dx \left[\phi^* i\hbar \partial_t \phi - \frac{\hbar^2}{2m} |\nabla \phi|^2 + \mu |\phi|^2 - \frac{g}{2} |\phi|^4 \right]$$

 $g\,$: strength of contact interaction

- ϕ^\dagger : Bose creation operator
- \boldsymbol{m} : atom mass

<u>Feshbach resonance</u>: tune interaction strength with external magnetic field

Interacting Bose gases

Universal many-body system: independent of microscopic details

T

Lagrangian:

$$L = \int dx \left[\phi^* i\hbar \partial_t \phi - \frac{\hbar^2}{2m} |\nabla \phi|^2 + \mu |\phi|^2 - \frac{g}{2} |\phi|^4 \right]$$

- $g\,$: strength of contact interaction
- ϕ^{\dagger} : Bose creation operator
- \boldsymbol{m} : atom mass

<u>Feshbach resonance</u>: tune interaction strength with external magnetic field

quantum degeneracy: $n\lambda_T^3\gtrsim 1$

Bose-Einstein condensate

Cornell, J. Res. Natl. Inst. Stand. Technol. (1996)

Bogoliubov excitations

Bose-Einstein condensate: $\phi = \phi_0 + \delta \phi$

$$\left[-\frac{\hbar^2 \partial_x^2}{2m} - \mu + g |\phi_0(x)|^2\right] \phi_0(x) = 0 \qquad \text{Gross-Pitaevskii equation}$$

excitations:

$$\delta L = \frac{1}{2} \int dx \,\Psi^{\dagger} \left(i\hbar\sigma_{3}\partial_{t} - K_{\text{BdG}} \right) \Psi \qquad \Psi = \begin{pmatrix} \delta\phi\\ \delta\phi^{*} \end{pmatrix}$$
$$K_{\text{BdG}} = \begin{pmatrix} -\frac{\hbar^{2}\nabla^{2}}{2m} - \mu + 2g_{1}|\phi_{0}|^{2} & g_{1}\phi_{0}^{2}\\ g_{1}\phi_{0}^{*2} & -\frac{\hbar^{2}\nabla^{2}}{2m} - \mu + 2g_{1}|\phi_{0}|^{2} \end{pmatrix}$$

repulsive interaction: g > 0

Bogoliubov dispersion:
$$\varepsilon_k = \sqrt{\frac{\hbar^2 k^2}{2m} \left(\frac{\hbar^2 k^2}{2m} + 2gn_0\right)}$$
 $g = \frac{4\pi\hbar^2 a}{m}$ interaction strength n_0 condensate density

Bogoliubov excitations

dilute quantum gas

14 -12 00(k)/2π (kHz) 10 free 8 particle 6 4. phonon 2-0 12 14 10 0 2 6 8 k (μm⁻¹) Steinhauer et al., Phys. Rev. Lett (2002)

quantum fluid ⁴He

Cowley et al., J. Low Temp. Phys. (1986)

repulsive interaction: g > 0

Bogoliubov dispersion:
$$\varepsilon_k = \sqrt{\frac{\hbar^2 k^2}{2m} \left(\frac{\hbar^2 k^2}{2m} + 2gn_0\right)}$$
 $g = \frac{4\pi\hbar^2 a}{m}$ interaction strength n_0 condensate density

1. Introduction: Excitations in Bose-Einstein condensates

2. Absence of classical soliton friction

3. Quantum friction of bright solitons

4. Conclusion

Bright solitons

attractive interaction: g < 0

1D: bright soliton

 $\phi(x, \mathbf{r}_{\perp}) = \Phi_{\rm ho}(\mathbf{r}_{\perp})\phi_0(x)$

$$\phi_0(x) = \sqrt{\frac{N_0}{2\xi}} e^{i\theta} \operatorname{sech}\left(\frac{x-X}{\xi}\right)$$

Bright solitons

Absence of Ohmic friction

Bogoliubov excitations:

Absence of Ohmic friction

Bogoliubov excitations:

<u>'Classical friction'</u>: Brownian motion of heavy particle

effective Fokker-Planck description $\gamma \sim \int dk \, |r|^2 (\ldots)$

BUT: integrable problem, soliton reflectionless potential

Absence of Ohmic friction in the integrable setup.

Absence of Ohmic friction

Bogoliubov excitations:

1) scattering solutions
$$\varepsilon_{k} = \frac{\hbar^{2}k^{2}}{2m} + |\mu|$$

$$\phi_{0}(x) = \sqrt{\frac{N_{0}}{2\xi}} e^{i\theta} \operatorname{sech}\left(\frac{x-X}{\xi}\right)$$

$$n(k-mV) e^{ikx} \qquad te^{ikx}$$

$$re^{-ikx} \qquad V = |\phi_{0}(x)|^{2}$$

Classical friction for explicit breaking of integrability

BUT: integrable problem, soliton reflectionless potential

'Classical friction': Brownian motion of heavy particle

Absence of Ohmic friction in the integrable setup.

$$g_{\perp}|\phi_0|^4$$

Brand, Shlyapnikov,...

1. Introduction: Excitations in Bose-Einstein condensates

2. Absence of classical soliton friction

3. Quantum friction of bright solitons

D. Efimkin, J. Hofmann, and V. Galitski, Phys. Rev. Lett. 116, 225301 (2016)

4. Conclusion

Zero modes and collective coordinates

Bogoliubov excitations:

 $\varepsilon_k = \frac{\hbar^2 k^2}{2m} + |\mu|$ 1) scattering solutions $|\eta|/3$ $\phi_0(x) = \sqrt{\frac{N}{2\xi}} e^{i\theta} \operatorname{sech}\left(\frac{x-X}{\xi}\right)$ -20 -1 3 kξ 2) zero modes Xlarge degeneracy of ground state configurations collective coordinates: $X \to X(t) \qquad \qquad \theta \to \theta(t)$ promote to dynamical variables

Collective coordinate quantization

promote to dynamical variables $\phi(x,t) = \phi_0(x - X(t)) + \delta\phi(x,t)$

$$\delta L = \frac{1}{2} \int dx \, \Psi^{\dagger} \left(i\hbar\sigma_3 \partial_t - K_{\rm BdG} \right) \Psi \qquad \Psi = \begin{pmatrix} \delta\phi\\ \delta\phi^* \end{pmatrix}$$

effective Lagrangian:

$$L = \frac{M_{\text{eff}}\dot{X}^2}{2} + \pi_{\text{qp}}\dot{X} + \sum_k c_k^*[i\hbar\partial_t - \epsilon_k]c_k$$

<u>phase</u>: Lewenstein and You, PRL (1997) <u>dark soliton coordinate</u>: Dziarmaga, PRA (2004)

Collective coordinate quantization

promote to dynamical variables $\phi(x,t) = \phi_0(x - X(t)) + \delta\phi(x,t)$

$$\delta L = \frac{1}{2} \int dx \,\Psi^{\dagger} \left(i\hbar\sigma_{3}\partial_{t} - K_{\rm BdG} \right) \Psi \qquad \Psi = \begin{pmatrix} \delta\phi\\ \delta\phi^{*} \end{pmatrix}$$

effective Lagrangian:

interaction between moving soliton and quasiparticles

$$L = \frac{M_{\text{eff}}\dot{X}^2}{2} + \pi_{\text{qp}}\dot{X} + \sum_k c_k^*[i\hbar\partial_t - \epsilon_k]c_k$$

$$\pi_{\rm qp} = \frac{1}{2} \sum_{k,k'} (c_k^*, c_k) \begin{pmatrix} \langle k | \sigma_z \hat{p} | k' \rangle & -\langle k | \sigma_z \hat{p} \overline{| k' \rangle} \\ -\overline{\langle k | \sigma_z \hat{p} | k' \rangle} & \overline{\langle k | \sigma_z \hat{p} \overline{| k' \rangle}} \end{pmatrix} \begin{pmatrix} c_{k'} \\ c_{k'}^* \end{pmatrix}$$

Collective coordinate quantization

promote to dynamical variables $\phi(x,t) = \phi_0(x - X(t)) + \delta\phi(x,t)$

$$\delta L = \frac{1}{2} \int dx \,\Psi^{\dagger} \left(i\hbar\sigma_{3}\partial_{t} - K_{\rm BdG} \right) \Psi \qquad \Psi = \begin{pmatrix} \delta\phi\\ \delta\phi^{*} \end{pmatrix}$$

effective Lagrangian:

interaction between moving soliton and quasiparticles

 $(\pi_{k,-k}^{\rm sc}=0)$

$$L = \frac{M_{\text{eff}}\dot{X}^2}{2} + \pi_{\text{qp}}\dot{X} + \sum_k c_k^*[i\hbar\partial_t - \epsilon_k]c_k$$

$$\pi_{\rm qp} = \frac{1}{2} \sum_{k,k'} (c_k^*, c_k) \begin{pmatrix} \langle k | \sigma_z \hat{p} | k' \rangle & -\langle k | \sigma_z \hat{p} \overline{| k' \rangle} \\ -\overline{\langle k |} \sigma_z \hat{p} | k' \rangle & \overline{\langle k |} \sigma_z \hat{p} \overline{| k' \rangle} \end{pmatrix} \begin{pmatrix} c_{k'} \\ c_{k'}^* \end{pmatrix}$$

soliton-quasiparticle coupling:

scattering

absorption

emission

Effective soliton action

Revised 4 January 1983

Effective soliton action

Effective soliton action

Meaning? Markovian approximation:

$$t) = \gamma \delta(t) + \tau_{\rm AL} \delta''(t) + \dots \qquad \ddot{X} - \tau_{\rm AL} \ddot{X} + \omega_{\rm t}^2 X = f_{\rm s}(t) / M_{\rm eff}$$

no Ohmic term!

 $\eta($

new type of friction

Abraham-Lorentz force $t\hbar/\mu$

electrodynamics: radiation field backreaction of accelerated charge here: scattering of quasiparticles

Soliton motion in a trap

$$\ddot{X} - \tau_{\rm AL}\ddot{X} + \omega_{\rm t}^2 X = f_{\rm s}(t)/M_{\rm eff}$$

Abraham-Lorentz force

Landau-Lifshitz: $\ddot{X} + \omega_t^2 \tau_{AL} \dot{X} + \omega_t^2 X = f_s(t)/M$

effective damping term: $\gamma = \omega_t^2 \tau_{AL}$

 $-\omega_t \gamma_{AL}$ scales with trap frequency

damping time $1/\gamma$ should be observable

Soliton motion in a trap

$$\ddot{X} - \tau_{\rm AL}\ddot{X} + \omega_{\rm t}^2 X = f_{\rm s}(t)/M_{\rm eff}$$

Abraham-Lorentz force

Landau-Lifshitz:
$$\ddot{X} + \omega_t^2 \tau_{AL} \dot{X} + \omega_t^2 X = f_s(t)/M$$

effective damping term: $\gamma = \omega_t^2 \tau_{AL}$ scales with trap frequency

damping time $1/\gamma$ should be observable

HOME > NEWS

Ultra-cold atoms may wade through quantum friction

JUNE 24, 2016

- **1. Introduction: Excitations in Bose-Einstein condensates**
- 2. Absence of classical soliton friction
- **3. Quantum friction of bright solitons**
- 4. Conclusion

Summary

- The motion of solitons is damped due to a retarded interaction with thermal quasiparticles: Non-Markovian quantum friction.
- The damping resembles the Abraham-Lorentz force of a charged particle.
- The damping for motion in a trap has a distinct signature that distinguishes it from damping due to an explicit breaking of integrability.

JQI popular article