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• Prototypical many-body system 

‣ Gain insight into more complicated quantum systems 

• Mobile impurity: 

‣ “Dressed” impurity, quasiparticle, polaron … 

• Fixed impurity: 

‣ Orthogonality catastrophe 

• Possibility of doing controlled experiments with cold atoms 

‣ Quasiparticle states and dynamics 

‣ Bosonic or fermionic mediums

WHY IMPURITIES?

h 0| inti = 0



The “dressed” impurity (polaron)
• A mobile impurity will move in a cloud of excitations of its 

environment, yielding a quasiparticle or “dressed” impurity

ar
X

iv
:0

90
2.

30
21

v2
  [

co
nd

-m
at

.o
th

er
]  

9 
Ju

n 
20

09

Observation of Fermi Polarons in a Tunable Fermi Liquid of Ultracold Atoms

André Schirotzek, Cheng-Hsun Wu, Ariel Sommer, and Martin W. Zwierlein
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

We have observed Fermi polarons, dressed spin down impurities in a spin up Fermi sea of ultracold
atoms. The polaron manifests itself as a narrow peak in the impurities’ rf spectrum that emerges
from a broad incoherent background. We determine the polaron energy and the quasiparticle residue
for various interaction strengths around a Feshbach resonance. At a critical interaction, we observe
the transition from polaronic to molecular binding. Here, the imbalanced Fermi liquid undergoes a
phase transition into a Bose liquid coexisting with a Fermi sea.

PACS numbers: 05.30.Fk,03.75.Ss, 32.30.Bv, 67.60.Fp

The fate of a single impurity interacting with its en-
vironment determines the low-temperature behavior of
many condensed matter systems. A well-known exam-
ple is given by an electron moving in a crystal lattice,
displacing nearby ions and thus creating a localized po-
larization. The electron, together with its surrounding
cloud of lattice distortions, phonons, forms the lattice
polaron [1]. It is a quasiparticle with an energy and
mass that differ from that of the bare electron. Polarons
are central to the understanding of colossal magnetoresis-
tance materials [2], and they affect the spectral function
of cuprates, the parent material of High-TC superconduc-
tors [3]. Another famous impurity problem is the Kondo
effect, where immobile spin impurities give rise to an en-
hanced resistance in metals below the Kondo tempera-
ture [4]. In contrast to the electron moving in a phonon
bath, a bosonic environment, in the latter case the im-
purity interacts with a fermionic environment, the Fermi
sea of electrons.

Here we study a small concentration of spin down
impurities immersed in a spin up Fermi sea of ultra-
cold atoms. This system represents the limiting case
of spin-imbalanced Fermi gases and has been recog-
nized to hold the key to the quantitative understand-
ing of the phase diagram of imbalanced Fermi mix-
tures [1, 2, 3, 6, 6, 7, 7, 8, 12, 13, 14, 17]. Unlike in liquid
3He, the s-wave interaction potential between the impuri-
ties and the spin up atoms in this novel spin-imbalanced
Fermi liquid is attractive. The vicinity of a Feshbach
resonance allows to tune the interaction strength at will,
characterized by the ratio of the interparticle distance
∼ 1/kF to the scattering length a, where kF is the spin up
Fermi wavevector [5]. Fig. 1 depicts the scenario for a sin-
gle impurity: For weak attraction (1/kF a ≪ −1) the im-
purity propagates freely in the spin up medium of density
n↑ = k3

F /6π2 (Fig. 1a). It merely experiences the familiar
attractive mean field energy shift E↓ = 4π!2an↑/m < 0.
However, as the attractive interaction grows, the im-
purity can undergo momentum changing collisions with
environment atoms, and thus starts to attract its sur-
roundings. The impurity “dressed” with the localized
cloud of scattered fermions constitutes the Fermi polaron

FIG. 1: From polarons to molecules. a) For weak attraction,
an impurity (blue) experiences the mean field of the medium
(red). b) For stronger attraction, the impurity surrounds it-
self with a localized cloud of environment atoms, forming a
polaron. c) For strong attraction, molecules of size a form
despite Pauli blocking of momenta !k < !kF ≪ !/a by the
environment.

(Fig. 1b). Dressing becomes important once the mean
free path ∼ 1/n↑a2 of the bare impurity in the medium
becomes comparable to the distance ∼ 1/kF between en-
vironment particles or when (kF a)2 ∼ 1. Collisions then
reduce the bare impurity’s probability of free propaga-
tion, the quasiparticle residue Z, from unity. The dressed
impurity can instead move freely through the environ-
ment, with an energy E↓ shifted away from the simple
mean field result. This polaronic state is stable until, for
strong attraction (1/kF a ∼ 1), equivalent to a deep ef-
fective potential well, the spin down impurity will bind
exactly one spin up atom, thus forming a tightly bound
molecule (Fig. 1c). This molecule is itself a dressed im-
purity, albeit a bosonic one [13].

To prepare and observe Fermi polarons, we start with a
spin-polarized cloud of 6Li atoms in the lowest hyperfine
state |1⟩ (spin up), confined in a cylindrically symmetric
optical trap (125 µm waist, 145 Hz/22.3 Hz radial/axial
trapping frequency) at a magnetic field of 690 G [5]. A
two-photon Landau-Zener sweep transfers a small frac-
tion into state |3⟩ (spin down), and further cooling re-
sults in a cloud containing 2% |3⟩ impurities immersed
in a degenerate Fermi gas of 5 million |1⟩ atoms at a tem-
perature T = 0.14(3)TF , where TF is the Fermi temper-
ature. A 100 G wide Feshbach resonance for scattering
between these states is centered at 690 G. For various
fields around the resonance, we perform rf spectroscopy

• How an impurity changes its character (mass, charge …) is a 
fundamental problem, relevant to many areas of physics

electrons in a solid interaction-driven transitions



OUTLINE

M. Cetina, …, J. Levinsen, MMP et al., Science 354, 96 (2016)  
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✦ Quench dynamics of Fermi polaron 

✦ Li-K experiments 

✦ Theoretical description 

✦ Quasiparticle states & spectrum

MMP & J. Levinsen, PRB 94, 184303 (2016)  



Impurity in a Fermi sea 

t = 0
spinless impurity  
non-interacting

kF
"F =

~2k2F
2m



spinless impurity  
strongly interactingt > 0

h (0)| (t)i = ?

kF
"F =

~2k2F
2m

Impurity in a Fermi sea 

Birth,	life	and	fate	of	a	quasiparticle



• Low energies compared to electron systems 

‣ Low particle density: 1013cm-3   (NB. air has 1019cm-3) 

‣ fast time scales 

The cold-atom system

• Tunable short-range interactions

t . ~/"F

Probe “ultrafast” dynamics of fermionic systems

microseconds ~100 attoseconds



Innsbruck experiment 

6Li

40K

Our Experimental System

T ≈ 300 nK
NLi ≈ 300 × 103

NK        ≈ 15 × 103

nK <   0.2 nLi

Tunable Li degeneracy:
T/‚TF-LiÚ = 0.15 – 0.80

K is non-degenerate:
T/‚TF-K Ú > 2

!"#$%!&'(%)*!")

6Li|1〉 -40K|3〉 interaction described 
by the scattering length a

%)#$+,!-)
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6Li|1〉 -40K|2〉 non-interacting
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6Li|1〉 -40K|2〉 non-interacting

• Small cloud of 40K atoms in a 6Li Fermi gas

• Hyperfine states:

k F
a

6Li |1i 40K |2i
40K |3i

-            : non-interacting
6Li |1i-            : tunable interactions

�B (µT)

C. Kohstall, et al., Nature 485, 615 (2012)  



Innsbruck experiment 

S(t) = h 0| e�iĤt/~ | 0i =
X

j
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• Interference of states gives:

= |S(t)|e�i�(t)

π/2
rotation

interaction
parameter

π/2
rotation

measure-
ment

1.5 μs 10.0 μs

X1 X1X

interacting state

non-interacting state

N3

N2

φrf

time t

M. Cetina et al., Science 354, 96 (2016)  



Theoretical description
• Hamiltonian for 40K atom in a 6Li Fermi gas:

Ĥ =
X

k
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✏kf

†
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†
kdk
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– Closed channel (d) fixes a and effective range R*

• Restrict Hilbert space to wavefunctions of the form:

c     f

g

|�i = + ...
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• Restrict Hilbert space to wavefunctions of the form:

| 0i ⌘ c†0 |FSi

S(t) = h 0| e�iĤt/~ | 0i =
X

j

|h 0|�ji|2 e�iEjt/~

• Diagonalize Hamiltonian within this truncated basis and 
determine response (at zero T ):

where non-interacting state

c     f

g

= |S(t)|e�i�(t)



Static case

Vlietinck et al., PRB 87, 115133 (2013) 
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JONAS VLIETINCK, JAN RYCKEBUSCH, AND KRIS VAN HOUCKE PHYSICAL REVIEW B 87, 115133 (2013)
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FIG. 11. (Color online) The two-particle self-energy ! at external
momentum 0 as a function of imaginary time for kF a = 1. !n values
are the contributions of all nth-order diagrams and are shown for
various n. As n increases, !n keeps on growing. We work in units
kF = 1, m = 1, h̄ = 1, and µ/ϵF = −3.2. The noise in the curves
indicates the magnitude of the statistical error.

unitary gas.20 Upon application of the Abelian resummation
techniques and extrapolation to ϵ = 0+ at 1/(kF a) = 0,
the correct polaron energy is retrieved. This constitutes an
independent check for the resummation of the skeleton series.

IV. QUASIPARTICLE PROPERTIES

As an independent cross-check of Ref. 3, which uses
alternate ways of resumming the diagrammatic series, we cal-
culate the ground-state energies of the polaron and molecule.
Figure 13 shows these energies shifted by the vacuum molecule
energy Eb = −1/(ma2) in units of the Fermi energy ϵF . A
selection of the polaron and molecule energies is also reported
in Table II. We find the transition point at (kF a)c = 1.15(3),
in agreement with Ref. 3. Close to the transition point, we
find polaron energies that differ about 1% from the polaron
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FIG. 12. (Color online) Abelian resummation of the bare series of
two-particle self-energy diagrams at kF a = 1. The molecule energy
Emol/ϵF is extracted in the limit ϵ = 0+ for different choices of λn.
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FIG. 13. (Color online) The extracted polaron and molecule
energies as a function of the interaction strength 1/(kF a). Energies are
expressed as (E − Eb)/ϵF , with Eb = −1/(ma2) the molecule energy
in vacuum. FN-DMC results are from Ref. 6; variational results for
the polaron, from Ref. 9; and variational results for the molecule,
from Ref. 11. DiagMC results of Prokof’ev and Svistunov3 are also
shown.

energies in Ref. 3, which, we believe, is due to a small
systematic error in the lowest order diagram in Ref. 3. The
variational energies obtained from a wave-function ansatz for
the polaron9 and the molecule11 are very close to the MC
results. Note that Chevy’s variational ansatz for the polaron
state is completely equivalent with the non-self-consistent
T -matrix approximation,12 which is exactly our bare series at
N∗ = 1. Fixed node-diffusion MC (FN-DMC) results are also
in good agreement with the DiagMC data. For 1/(kF a) = 2
it seems that systematic errors in the FN-DMC results were

TABLE II. Selection of DiagMC data for the polaron energy Ep ,
molecule energy Emol, and polaron residue Zp for several values of
the interaction strength parameter 1/(kF a).

1/(kF a) Ep/EF Emol/EF Zp

−1.8 −0.1793(1) 0.9727(4)
−1.6 −0.1961(1) 0.9665(5)
−1.4 −0.2159(2) 0.9590(3)
−1.2 −0.2393(2) 0.9502(3)
−1.0 −0.2687(2) 0.9376(4)
−0.8 −0.3052(2) 0.9209(5)
−0.6 −0.3526(2) 0.8978(8)
−0.4 −0.4141(2) 0.8670(10)
−0.2 −0.4976(2) 0.8237(15)
0.0 −0.615(1) 0.7586(27)
0.2 −0.782(1) 0.6720(42)
0.4 −1.028(2) 0.5672(28)
0.6 −1.385(2) −1.180(13) 0.4410(32)
0.8 −1.880(2) −1.830(8) 0.3258(58)
1.0 −2.540(3) −2.618(6) 0.2283(70)
1.2 −3.372(4) −3.554(6) 0.1559(69)
1.4 −4.373(5) −4.633(5) 0.1102(68)
1.6 −5.554(8) −5.867(6) 0.0771(58)
1.8 −6.889(12) −7.251(5) 0.0578(35)

115133-8
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FIG. 14. (Color online) The effective mass m∗ of the polaron in
units of the bare mass m as a function of the interaction parameter
1/(kF a). Our DiagMC results (open circles) are shown together with
DiagMC results of Prokof’ev and Svistunov3 [filled (blue) circles],
FN-DMC results6,7 [filled (black) triangles], ENS experiment5 [filled
(red) square], and a variational calculation up to two particle-hole
excitations12 (solid black line). We also show m∗ values calculated
from the lowest order self-energy diagram (i.e., N∗ = 1) for the bare
series (solid gray line) and for the fully bold G-! series (solid blue
line), which are equivalent to the non-self-consistent and the self-
consistent T -matrix approximations, respectively.

underestimated, since the FN-DMC should, in principle, give
an upper bound to the true ground-state energy.

Figure 14 shows the effective mass of the polaron as
calculated with the DiagMC. We compare it with the
ENS experiment5 at unitarity, the DiagMC calculations by
Prokof’ev and Svistunov,3 the FN-DMC,6,7 a variational
calculation up to two particle-hole excitations,12 and the
first-order (N∗ = 1) result in the bare scheme and the fully
bold G-! scheme. The experimental effective mass, which
is in perfect agreement with DiagMC,3 was extracted from
the low-frequency breathing modes, in particular, the Fermi
polaron breathing mode. The lowest order bare calculation,
also known as the T -matrix approximation, is equivalent to
the Chevy ansatz, while the lowest order bold calculation
corresponds to the self-consistent T -matrix approximation.
These results show that including only single particle-hole pair
excitations does not lead to accurate results for the effective
mass, while the variational calculation based on diagrams
taking into account at most two particle-hole pairs excitations
agrees with the DiagMC results.12

Experimental and theoretical quasiparticle residues are
shown in Fig. 15. To create and probe polarons, the MIT
experiment4 starts from a cloud of 6Li atoms, with most atoms
occupying the lowest hyperfine state |1⟩ (spin-up) and about
2% of the atoms occupying the hyperfine state |3⟩ (spin-down)
in the degenerate regime T ≈ 0.14TF , with TF the Fermi
temperature. A broad Feshbach resonance is used to enhance
the scattering between atoms in state |1⟩ and those in state
|3⟩. The radio-frequency spectra of the spin-up and spin-down
components are measured. The atoms are transferred to a third
empty state with very weak final-state interactions. Therefore,
the measured transition rate I can be connected with the

0

 0.2

 0.4

 0.6

 0.8

1

-1.5 -1 -0.5 0  0.5 1  1.5 2

Z p

1/kFa

DiagMC
Chevy’s ansatz

N*=1, bold
MIT experiment

FIG. 15. (Color online) The polaron quasiparticle residue Zp as a
function of the interaction parameter 1/(kF a). DiagMC results (open
circles) are compared with variational ansatz11 (solid black line),
the fully bold G-! series at N∗ = 1 or the self-consistent T -matrix
approximation (solid blue line), and the MIT experiment4 [filled
(blue) circles].

impurity’s spectral function ρ↓ in linear response theory,22,23

I (ωL) ∝
∑

k

nF (ϵk − µ − ωL)ρ↓(k,ϵk − µ − ωL), (32)

with ωL the frequency of the radio-frequency photons
and nF (x) = 1/(1 + eβx) the Fermi distribution. Note that
the spectral function depends on the temperature. Density
inhomogeneities are taken care of through tomographic
reconstruction.4 At sufficiently weak attractions, the Fermi
polaron is observed as a narrow peak in the impurity spectrum
that is not matched by the broad environment spectrum. The
peak position gives the polaron energy Ep and was found to
be in perfect agreement with the DiagMC results in Ref. 3.
The polaron Z factor was measured by determining the ratio
of the area under the impurity peak that is not matched by the
environment to the total area under the impurity’s spectrum.
The experimental Z factor from Ref. 4 is shown in Fig. 15,
together with the Z factor calculated from Chevy’s ansatz,11,24

the fully self-consistent result to lowest order (N∗ = 1), and
our DiagMC simulation. DiagMC data for the Z factor are also
listed in Table II.

The results obtained via DiagMC simulation agree ex-
tremely well with Chevy’s variational ansatz. This is very
surprising in the strongly interacting regime where Zp is
significantly less than 1. Here, one would expect multiple
particle-hole excitations to be important since the overlap
with the noninteracting wave function is small. Remarkably,
including just single particle-hole excitations on top of the
FS produces almost the exact Zp. When the lowest order
diagram is calculated in a fully self-consistent way, however,
the agreement with DiagMC is less good. This hints at the fact
that the almost-perfect agreement with Chevy’s ansatz (i.e.,
the lowest order bare result) is rather accidental. The Z factors
computed with Chevy’s ansatz and the DiagMC both exceed
the measured ones.

It was suggested in Ref. 11 that the disagreement between
the experiment and the Chevy ansatz is an artifact of

115133-9

|↵
0
|2



Short-time dynamics

• For small t, the coherent dynamics is determined by 2-body properties:

• Truncated basis method accurately describes behaviour at short times
– few-body correlations expected to dominate

S(t) = h 0| e�iĤt/~ | 0i ' 1� it

~ h 0| Ĥ | 0i �
t2

~2 h 0| Ĥ2 | 0i+ . . .

MMP & J. Levinsen, PRB 94, 184303 (2016)  

2

Here, m (m
im

) is the mass of a majority (impurity)
particle, and mr = mm

im

/(m + m
im

) is the reduced
mass. Note that Eq. (2) does not depend on the scat-
tering length and, furthermore, it does not display the
short-time behavior expected from a simple expansion of
the time evolution operators, where we have 1 � S(t) /
t2. Such a quadratic dependence on time is also ex-
pected for a Loschmidt echo [20], which is defined as a
time-dependent wave function overlap similar to Eq. (1)
and which yields information about an imperfect time-
reversal procedure applied to a quantum system. Instead,
the non-analytic behavior of S(t) is a direct consequence
of the renormalization of the contact interactions. For
resonances where the e↵ective range r

e↵

greatly exceeds
the van der Waals range of the interatomic interactions,
r
e↵

must be taken into account in the short time evolu-
tion. In this case, we find

S(t)'1� (m/mr)2

3⇡kF R⇤

✓
t

⌧F

◆
2

+
16ei⇡/4(m/mr)5/2

45⇡3/2(kF R⇤)2

✓
t

⌧F

◆ 5
2

,

(3)

where kF =
p

2m"F is the Fermi momentum and we
define the positive range parameter R⇤ = �r

e↵

/2. Again,
the Ramsey response is independent of scattering length,
and while the leading order contribution has the expected
form of a Loschmidt echo, the next order correction is
non-analytic.

The TBM provides us with a framework in which im-
purity dynamics can be explored systematically. To il-
lustrate this point, we apply it to two scenarios of co-
herent impurity dynamics beyond the Ramsey response:
Rabi oscillations between quasiparticle branches, and the
dynamical preparation of strongly interacting quantum
states. We also show how the TBM allows the straight-
forward calculation of the impurity spectral function.

The paper is organized as follows. In Sec. II, we de-
scribe the model Hamiltonian, while in Sec. III we out-
line the truncated basis method. In Sec. IV we present
our results for the Ramsey response, including the an-
alytic short and long-time behavior, as well as for the
impurity spectral function. Sections V and VI discuss,
respectively, Rabi oscillations and how the initial quan-
tum state can be modified. Section VII then examines
the role played by multiple particle-hole excitations, fo-
cussing for simplicity on a static impurity. We conclude
in Sec. VIII.

II. MODEL

In the following, we consider the dynamics of a single
impurity immersed in a Fermi gas. For this purpose, it is
convenient to consider two impurity spin states, � =#, ",
of which one (") is strongly interacting with the Fermi
sea, while the other (#) is non-interacting. To model
interactions, we employ a two-channel Hamiltonian. Re-
stricting ourselves at first to the part of the Hamilto-

nian describing the interacting " impurity state and the
medium, we have

Ĥ
int

=
X

k

✏k,imĉ†
k"ĉk" +

X

k

✏kf̂†
kf̂k +

X

k

[✏k,M + ⌫] d̂†
kd̂k

+ g
X

k,q

⇣
d̂†
qf̂q/2+kĉq/2�k," + ĉ†

q/2�k,"f̂
†
q/2+kd̂q

⌘
.

(4)

The first line of Eq. (4) corresponds to the non-
interacting Hamiltonian Ĥ

0

, where ĉ†
k� (ĉk�) creates (an-

nihilates) an impurity particle with momentum k, spin �,

mass m
im

, and single particle energy ✏k,im = k2

2mim
. Like-

wise, the operators f̂†
k and f̂k respectively create and an-

nihilate a majority fermion with momentum k, mass m,
and single particle energy ✏k = k2

2m . The spin-" impurity
interacts with the fermions by forming a closed channel
molecule described by the creation and annihilation oper-
ators d̂†

k and d̂k with momentum k, single-particle energy

✏k,M = k2

2M , and mass M = m + m
im

. The detuning of
this closed channel molecule from the impurity-fermion
scattering threshold is denoted ⌫. The interaction —
second line of Eq. (4) — has a coupling strength g for
relative momenta with magnitude |k| < ⇤, where ⇤ is a
UV cut-o↵.

Using standard techniques (see, e.g., Ref. [21]), we re-
late the bare interaction parameters g, ⇤, and ⌫ to renor-
malized quantities by calculating the low-energy spin-"
impurity-fermion scattering amplitude at a relative mo-
mentum k within the model (4). We then compare the
resulting expression with the standard low-energy expan-
sion of the scattering amplitude

f(k) = � 1

a�1 � 1

2

r
e↵

k2 + ik
, (5)

where a and r
e↵

are the scattering length and e↵ective
range, respectively. This procedure yields the scattering
length a through

mr

2⇡a
= � ⌫

g2

+
⇤X

k

1

✏k + ✏k,im
, (6)

In particular, we see how the model allows us to tune the
scattering length to resonance, 1/a = 0. For resonances
where |r

e↵

| greatly exceeds the range of the bare inter-
action, r

e↵

is negative and we instead define the range
parameter [22]

R⇤ = �r
e↵

/2 =
⇡

m2

rg
2

. (7)

We emphasize that the model (4) reduces to the com-
monly used single-channel model with R⇤ = 0 by taking
g, ⌫ ! 1 in such a way that ⌫/g2 = mr⇤/⇡2�mr/(2⇡a).

The presence of the auxiliary # state enables one to
probe impurity dynamics starting from a non-interacting

• Non-analytic dependence on t that depends on range of interaction

kFR
⇤ & 1

kFR
⇤ = 0

S(t) ' 1� 8e�i⇡/4(m/mr)3/2

9⇡3/2

✓
t

⌧F

◆ 3
2



Accuracy of approach
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• Comparison with exact result for an infinitely massive impurity:

– Excellent agreement at short times 

– Multiple particle-hole pair excitations become relevant at longer times 

– Truncated basis method cannot capture orthogonality catastrophe 
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Dynamics of an impurity
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⇤ ⇠ 1 M. Cetina et al., Science 354, 96 (2016)  



Dynamics of an impurity ⌧F = ~/"F
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�0.23 0.08 0.86

T/TF ⇠ 0.2kFR
⇤ ⇠ 1



Relationship to spectrum

S(t) =

Z
d! e�i!tA(!)

• In ideal case, interference signal is Fourier transform 
of spectral function:

• Comparison with measurement of spectrum:

⇡/2– Discrepancy due to (weak) interactions during        pulse 

–  Initial state is dressed impurity: h 0| e�iHt/~ | 0i �! h P | e�iHt/~ | P i

M. Cetina et al., Science 354, 96 (2016)  



• Case of equal masses:

MMP & J. Levinsen, PRB 94, 184303 (2016)  
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0 1 2 3 0 1 2 3

FIG. 5. Spectral function I(!) calculated within the TBM with one particle-hole excitation for (a) kFR
⇤ = 0 and (b) kFR

⇤ = 1.
The Gaussian width is taken to be � = 0.1EF . The dressed dimer state is the ground state rather than the attractive polaron
when 1/kF a & 0.9 in (a) and 1/kF a & 0.4 in (b). In the bottom panels we show the spectral function for kFR

⇤ = 0 (solid) and
kFR

⇤ = 1 (dashed), at fixed 1/kF a: (c) �0.5, (d) 0.5, and (e) 1.5

Using Eq. (20), we can find an approximate spectral
function within the TBM,

A(!) '
X

j

|h 
0

|�ji|2
Z 1

�1

dt

2⇡
ei!te�i(Ej�E0)t

| {z }
�(!�Ej+E0)

. (23)

The Dirac delta function is easier to handle in the dis-
cretized basis if we first convolve A(!) with a Gaussian
of width �:

I(!) =

Z 1

�1
d!0A(! � !0)g(!0)

=
X

j

|h 
0

|�ji|2 g(! � Ej + E
0

), (24)

where

g(!) =
1p
2⇡�

e�!2/2�2

. (25)

Indeed, such a convolution mirrors experiment, where
the spectral response is determined using rf pulses of a
finite duration and hence a non-zero width in frequency
space. This width can typically be well approximated by
a Gaussian.

In Fig. 4, we illustrate the idea behind the method:
First we evaluate the raw spectrum of energy eigenvalues

and corresponding residues, which yields a large num-
ber of discrete peaks of variable heights. The convolved
spectral function, I(!), on the other hand, is a smooth
function of frequency and is what would be observed in
experiment. Such a spectral convolution is easier to gen-
erate using the TBM compared to the standard T matrix
approach [39].

We show the results of this procedure in Fig. 5 for
two values of kF R⇤. We see that the spectrum in both
cases is dominated by the attractive and repulsive po-
laron quasiparticles at positive and negative energy, re-
spectively. In between, there is a broad continuum of
states which all have a very small wave function overlap
with the non-interacting impurity state. In particular,
once 1/kF a & 1, the spectral weight of the continuum is
essentially negligible, as was also observed in Ref. [34].

The main e↵ect of the range parameter R⇤ is to shift
the energies of the polaron branches closer to zero, espe-
cially in the unitary regime shown in Fig. 5(d), and to
increase the lifetime of the repulsive polaron such that it
can be well-defined even on the attractive side of the res-
onance [41]. It also a↵ects the character of the impurity
ground state: With increasing 1/kF a, the impurity even-
tually undergoes a sharp transition from an attractive
polaron to a dressed dimer [27–29], and this transition oc-
curs at lower 1/kF a for larger kF R⇤ [33, 35, 42]. However,
this is not captured by the TBM with one particle-hole

Polaron interference kFR
⇤ ⇠ 1

• Well approximated by two 
quasiparticle branches

MEERA M. PARISH AND JESPER LEVINSEN PHYSICAL REVIEW B 00, 004300 (2016)

↓

N↑

N↓

π/2 π/2
↑

↓
ttrf trf

1/kF a01/kF a0

↑

FIG. 1. Illustration of experimental procedures used to probe
impurities in a Fermi gas. (a) In Ramsey interferometry, the impurities
are initially in the noninteracting |↓⟩ state. At time t = 0, they are
in a superposition of |↓⟩ and |↑⟩ states following a π/2 rf pulse of
duration trf . After a variable time t and a second π/2 rf pulse, the
number of particles, Nσ , in the two impurity spin states is measured as
a function of the phase of the second pulse. The interaction between
the ↑ impurity state and the majority fermions is characterized by
the interaction parameter 1/kF a0 during the rf pulses and 1/kF a

during the evolution time. (b) In inverse rf spectroscopy, the spectral
response of spin ↓ impurities to an rf pulse is measured as a function
of frequency ω relative to the bare ↓ - ↑ transition frequency (vertical
axis).

A. Dynamical response to an interaction quench267

We first consider the scenario where an impurity, initially268

in the noninteracting spin-↓ state, is suddenly coupled to269

an interacting spin-↑ state by an rf pulse. The many-body270

response to a rapidly introduced impurity into the Fermi gas271

can be probed by means of Ramsey interferometry [16,17],272

as illustrated in Fig. 1(a): Following an initial π/2 rf pulse,273

which creates a superposition of the impurity in ↓ and ↑ spin274

states, the system evolves under the interacting Hamiltonian275

for a time t , after which a second π/2 rf pulse is applied.276

For simplicity, in this section we consider a “perfect quench”277

where no interactions take place during the rf pulses, and278

thus at time t = 0 the impurities are in an equal superposition279
1√
2
(|↓⟩ + |↑⟩). In this case, a measurement of the impurity280

population difference at the end of the Ramsey procedure281

yields [32]282

N↑ − N↓

N↑ + N↓
= −Re[eiϕrf S(t)] + nd, (17)

where ϕrf is the phase of the second rf pulse with respect283

to the first, nd is the fraction of closed channel molecules284

at time t , and we have the overlap between interacting and285

noninteracting states286

S(t) = ⟨ψ0(t)|ψint(t)⟩ = eiE0t ⟨ψ0|e−iĤintt |ψ0⟩, (18)

where |ψ0⟩ ≡ ĉ
†
0↑|FS⟩ and Ĥ0|ψ0⟩ = E0|ψ0⟩. By varying the287

relative phase ϕrf, one can thus access both the amplitude and288

phase of S(t).289

According to the variational approach outlined in Sec. III A,290

we can determine an approximate Ramsey response S(t) by291

diagonalizing the Hamiltonian within the subspace of wave292

functions of the form (16). In the perfect quench scenario,293

we only need to consider the decoupled spin-up part of the294

Hamiltonian, Ĥint; thus we obtain the set of equations [33] 295

(E − E0)α0 = g
∑

q

αq,

(E − E0)αq = (ϵq,M − ϵq + ν)αq + gα0 + g
∑

k

αkq, (19)

(E − E0)αkq = (ϵq−k,im + ϵk − ϵq)αkq + gαq.

Solving these coupled equations yields the set of eigenstates 296

|φj ⟩ with corresponding energies Ej . We then obtain for the 297

Ramsey response 298

S(t) ≃
∑

j

|⟨ψ0|φj ⟩|2e−i(Ej −E0)t . (20)

This expression has a natural interpretation. Up to a trivial 299

phase, the contribution from the state |φj ⟩ rotates at an angular 300

frequency Ej , while the magnitude of the contribution is the 301

squared overlap with the noninteracting ground state, i.e., the 302

residue of j th state: Zj ≡ |⟨ψ0|φj ⟩|2. 303

The time evolution of the impurity after an interaction 304

quench is clearly intrinsically connected to the structure of 305

its energy spectrum. As we discuss in more detail in Sec. IV B, 306

the spectrum can contain well-defined quasiparticle states (the 307

attractive and repulsive polarons) as well as a broad continuum 308

of many-body states which have a vanishing overlap with 309

the noninteracting system. The interference of these different 310

states is, in general, expected to generate damped coherent 311

oscillations in |S(t)| as a function of time. 312

Figure 2 shows both the amplitude and the phase of 313

S(t) ≡ |S(t)|e−iφ(t) for different values of the interaction and 314

the range parameter. The slope of the phase φ(t) gives an 315

indication of whether the energies in the impurity spectrum are 316

predominantly positive or negative. In general, we observe that 317

the amplitude near t = 0 is characterized by an initial descent 318

that is independent of scattering length and is only sensitive 319

to R∗. The quantum evolution then displays oscillations on 320

a time scale which is set by the Fermi time τF = 1/εF . In 321

panels (c) and (f) and for weak interactions 1/kF a < 0, the 322

dynamics is dominated by the attractive ground-state polaron, 323

while for stronger attraction, the evolution can feature roughly 324

equal contributions from the attractive and repulsive branches 325

of the system, thus leading to pronounced oscillations in |S(t)| 326

and φ(t). 327

To quantify this further, we assume that the attractive and 328

repulsive branches are well-defined polaron quasiparticles, and 329

consider the regime where both of their residues—Zatt and 330

Zrep, respectively—are close to 1/2. We can then analyze the 331

Ramsey response in terms of the interference between the two 332

polarons. Assuming that we can ignore the contribution from 333

the continuum of states, we approximate the Ramsey response 334

by 335

S(t) ≃ Zatt e−iEattt + Zrep e−iErept , (21)

with Eatt (Erep) the attractive (repulsive) polaron energy with 336

respect to the noninteracting state. As illustrated in Fig. 3, 337

this approximation describes the response—in particular, the 338

period of the beats—very well. Thus, the effect of 1/kF a 339

and kF R∗ on the dynamics may be simply estimated from 340

their effect on the quasiparticle energies and residues. Sharp 341

jumps in the phase accompany the regions where the amplitude 342

004300-4
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Observation of a Bose polaron
• Spectral response:
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• Excellent agreement between theory and experiment
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Concluding remarks
• Cold-atom experiments can probe ultrafast non-equilibrium 

dynamics of fermionic systems 

- e.g. impurity problem 

• Observe formation of quasiparticles and quantum 
interference of different many-body branches 

• Accurate theoretical description involving only very few 
particle-hole excitations of Fermi sea 

• Universal short-time dynamics governed by few-body physics 

• Outlook: prepare and probe highly excited many-body states

M. Cetina, …, J. Levinsen, MMP et al., Science 354, 96 (2016)  

MMP & J. Levinsen, PRB 94, 184303 (2016)  


