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* Dynamical phase transitions

* Integrable Floguet dynamics



High temperature expansion and Lee-Yang (Fisher) zeros.

Equilibrium: all information about observables is contained in the
partition function

High temperature (small interactions): can use high temperature
expansion

Phase transitions: free energy becomes a non-analytic function
of temperature (tuning parameter). High temperature expansion
breaks down.



Lee-Yang theorem (1952): understood non-analyticity through the
condensation of zeros of the partition function in the complex plane.

Lee-Yang: all zeros z; are complex. They condense near
real axis at the phase transition. Taylor expansion breaks.

M. Fisher (1965). Extension of these e 2D anisotropic

. . 121 .

ideas to the high temperature Ising model
expansion. Consider h=0. ., W. Saarloos and

D. Kurtze (1984)

Singularities develop in the complex
temperature (coupling) plane:
breakdown of the Taylor expansion




Physical interpretation of the complex temperature plane

Imaginary temperature partition function is the
Fourier transform of the density of states.

Energy distribution at inverse temperature t.

Complex temperature partition function is the Fourier transform of the
energy distribution.

Transition happens at non-extensive times but the average energy is
extensive. So Fisher zeros = singularity developing in a large
deviation functional:



Alternative (nonequilibrium) view: consider a quench protocol from
H; =0 to Hy = H. Equivalently start from a random state.

Work distribution = energy distribution:

Similarly

Inverse temperature here is the postselected temperature as the
initial temperature is infinite. Large inverse temperature implies
projection to the ground state of the final Hamiltonian H.



Summary so far about equilibrium Fisher zeros

Different “quench” interpretation

Natural generalization

Send S — oo

Return amplitude(Loschmidt echo) = Fourier transform of the work
distribution (A. Silva 2008) — natural nonequilibrium extension of the
complex temperature partition function. Can consider complex t plane.



Even simpler summary: continuous pass from equilibrium partition
function to the Loschmidt echo through work distribution

In both cases complex time = postselected work probability distribution

Zeros of the Loschmidt echo define dynamical phase transitions (m.
Heyl, A.P. S. Kehrein 2013)

Equilibrium phase transitions — breakdown of high temperature expansion.
Dynamical phase transitions — breakdown of short time expansion



Dynamical phase transition in the transverse field Ising model

it

(M. Heyl, A. P., S. Kehrein, 2013)

(maps to free fermions)

Quench across the phase
transition. Study:
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Emergent time (energy) scale, not the gap
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Physical origin of the transition (spin language)

Consider a special limit of a quench across QCP
(any spatial dimension):

>

Time evolution is a spin precession
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1) Prepare the 2) Apply strong magnetic 3) Project back to the
FM ground state field for time t low energy manifold

The dynamical phase transition iszSESEFéigheSﬂﬁn”the
dynamical topological order in the post-selected system

Need to work with the Loschmidt matrix (not amplitude).

Inverse quench: mapping of DQPT to the complex temperature partition function of the
Ising model (M. Heyl, 2015)



Magnetization s, (t)

Non-equilibrium topological order parameter
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The jumps can be associated with
“phase slips” in Loschmidt current

These oscillations are very robust



Observing DQPT through post-selection cooling

Expectation values of of common observables are analytic in time.

Physically L(t)=0 implies a state orthogonal to the initial state. Expect Small return
probability for a double quench.
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Define work probability after a double quench
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W plays the role of temperature. At zero
work recover guantum phase transition.

General idea: can use post-selection as a
non-equilibrium cooling. |.e. analyze

4 . %
only experiments withw < w .

Expect quantum critical behavior of
post-selected observables asw™ — 0.



Dynamical phase transitions in non-integrable systems
(C. Karrasch; D. Schuricht, 2013)

Same setup but with different integrability breaking interactions
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Two recent experiments observing DQPT
(P. Jurcevic et. al. 2016; N. Flaschner et. al. 2016)
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Dynamical phase transitions and OTOC
(out of time order correlation functions)

OTOC many recent works, related to chaos etc. Simplest examples of OTOC:

Break causality and can not appear in any dynamical response (Kubo,...)

Loschmidt echo is an example of OTOC, can be measured if we have
two copies of the system, very similar to entanglement Renyi entropy
measurements (A. Daley, P. Zoller; R. Islam, A, Kaufman, M. Greiner,...)

P, is an exponent of a local operator (product type operator)



Summary part |

DQPT are the natural extension of Lee-Yang, Fisher approach to
equilibrium transitions.

Loschmidt echo is related to the large deviation functional of the
work distribution after a quench. Fisher zeros indicate
breakdown of the short time expansion

DQPT are topological and can be enhanced through post-
selection.

DQPTs are not limited to integrable systems, quenches (as
opposed to more generic protocols), low dimensions, ....



Integrable Floquet systems and periodic many-body revivals.
(with V. Gritsev)

Time crystals (aka frequency generators,
clocks, parametric down converters,
oscillators, ...) spontaneously break time
translational symmetry. Can be realized
only as transients.

Usual problem: dissipate energy (heat up if
driven) with some interesting exceptions.
Challenge - reduce, eliminate dissipation.

a) H(t) , b) H(t)
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Time evolution is like a single
qguench to the Floquet
Hamiltonian. Emergent energy
conservation preventing heating.




Problem: Floquet Hamiltonians is generically non-local (non-physical)
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Possible ways out
e High driving frequencies (reduced or even zero heating)

 Weak coupling to environment (experiments + theory)

 MBL (strongly disordered systems).



Alternative idea: use protocols which approximately realize integrable
stat. mech. transfer matrices. Here specifically Boost models.

Take an integrable Hamiltonian H, with integrals of motion Q,, Q,=H,
One can define the boost operator B:

Example: XXZ model

Boost operator is an analogue of electric field. Has
commensurate spectrum (M. P. Grabowski and P. Mathieu, 1995).



Consider a general (periodic or not protocol)

Go to the rotating frame:

Transformation is periodic with period T if

Examples: periodic Floquet driving

Quench



Periodic rotating frame Hamiltonian

The BCH series can be resummed because only commutators of the type

survive

No heating and realization of many body energy revivals (but can
have nontrivial phases). Period of revivals can be unrelated to the
driving period

Revivals at Extension of Bloch oscillations to a nontrivial model



Summary Part |

* There are nontrivial Floquet protocols which do not lead to heating

* One can realize periodic or not many-body revivals (generalization of

Bloch oscillations) in Boost models. Related ideas (L. vidmar, M. Rigol, PRX
2017)

* Possible extensions to generic nonintegrable systems realizing
approximate, prethermalized type, dissipationless regimes.
Connections with counterdiabatic driving (D. Sels poster).



