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• Dynamical	phase	transi0ons	

•  Integrable	Floquet	dynamics	



High	temperature	expansion	and	Lee-Yang	(Fisher)	zeros.	

Equilibrium:	all	informa0on	about	observables	is	contained	in	the	
par00on	func0on	

High	temperature	(small	interac0ons):	can	use	high	temperature	
expansion	

Phase	transi0ons:	free	energy	becomes	a	non-analy0c	func0on	
of	temperature	(tuning	parameter).	High	temperature	expansion	
breaks	down.			



Lee-Yang	theorem	(1952):	understood	non-analy0city	through	the		
condensa0on	of	zeros	of	the	par00on	func0on	in	the	complex	plane.		

Lee-Yang:	all	zeros	zi	are	complex.	They	condense	near	
real	axis	at	the	phase	transi0on.	Taylor	expansion	breaks.			

M.	Fisher	(1965).	Extension	of	these	
ideas	to	the	high	temperature	
expansion.	Consider	h=0.	

Singulari0es	develop	in	the	complex	
temperature	(coupling)	plane:	
breakdown	of	the	Taylor	expansion		
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Near S = 1, one finds for the density of zeros on this circle g ( S )  - IIm SI, consistent 
with the logarithmic singularity in the specific heat (see Fisher 1965). The behaviour 
near the antiferromagnetic intersection at S = -1 is similar. 

In agreement with the arguments given in the introduction, ( 6 )  immediately shows 
that the zeros of Z fall in areas whenever K 1  # K2:  while the zeros depend only on 
the single parameter a + p in the isotropic case K ,  = K2 (and so fall on lines), they 
depend on the two parameters a and p separately as soon as the symmetry is broken. 
Therefore lines bifurcate to areas in the anisotropic case. This can most easily be 
illustrated explicitly by investigating the case when K 1  = K,  K2  = 3K. Since sinh 6 K  = 
3 sinh 2K + 4  sinh3 2K and cosh 6 K  = -3 cosh 2K + 4  cosh3 2K, we have 

cosh 2K cosh 6K - a sinh 2K - p  sinh 6 K  = 4S4-4pS3+5S2-(a +3p)S+ 1. ( 9 )  

Thus, for K ,  = K = f K 2 ,  the partition function is a polynomial in S = sinh 2K which 
can according to ( 6 )  and ( 9 )  be written as a product of factors of the form (9 ) .  For 
every value of a and p, there are therefore four zeros in the complex S plane, two in 
the upper half plane and two in the lower half plane. By varying a and p, one obtains 
the various locations of the zeros, and since la1 d 1 and IpI d 1, the areas in which they 
fall are generally bounded. This is illustrated in figure 1, where the shaded areas 

ImS 

Re 8 

Figure 1. Location of the zeros in the upper half of the complex S = sinh 2K plane for 
the square Ising model with reduced interactions K and 3K. The zeros are everywhere 
dense in the shaded areas, which touch the real axis at S = *+. At the boundaries of the 
areas, where a = *1 or p = * l ,  the density of zeros diverges as p-”* where p is the 
distance from the boundary. 

contain the zeros. Obviously, the zeros become everywhere dense within these areas 
in the thermodynamic limit. However, since according to (7) a = cos 41 and p = cos 42 
with 41 and 42 equally distributed on the interval [ 0 , 2 ~ ] ,  the density of zeros per 
unit area g diverges at the boundaries of the areas, where a = f 1 or p = * 1. This is 
also apparent from the explicit behaviour of g near the point where the areas ‘pinch 
off’ the real axis. This occurs at the critical values of the square Ising model where 
sinh 2K1 sinh 2K2 = 1 (in the case K 1  = f K 2  = K,  this yields S, = i). For small SS = S -  S, 

2D	anisotropic	
Ising	model	
W.	Saarloos	and	
D.	Kurtze	(1984)	
	



Physical	interpreta0on	of	the	complex	temperature	plane	

Imaginary	temperature	par00on	func0on	is	the	
Fourier	transform	of	the	density	of	states.		

Complex	temperature	par00on	func0on	is	the	Fourier	transform	of	the	
energy	distribu0on.		

Energy	distribu0on	at	inverse	temperature	τ.	

Transi0on	happens	at	non-extensive	0mes	but	the	average	energy	is	
extensive.	So	Fisher	zeros	=	singularity	developing	in	a	large	
devia0on	func0onal:	



Alterna0ve	(nonequilibrium)	view:	consider	a	quench	protocol	from		
																to																		.	Equivalently	start	from	a	random	state.		

Work	distribu0on	=	energy	distribu0on:	

Similarly	

Inverse	temperature	here	is	the	postselected	temperature	as	the	
ini0al	temperature	is	infinite.		Large	inverse	temperature	implies	
projec0on	to	the	ground	state	of	the	final	Hamiltonian	H.	



Summary	so	far	about	equilibrium	Fisher	zeros	

Different	“quench”	interpreta0on				

Natural	generaliza0on	

Return	amplitude(Loschmidt	echo)	=	Fourier	transform	of	the	work	
distribu0on	(A.	Silva	2008)	–	natural	nonequilibrium	extension	of	the	
complex	temperature	par00on	func0on.	Can	consider	complex	t	plane.	



Even	simpler	summary:	con0nuous	pass	from	equilibrium	par00on	
func0on	to	the	Loschmidt	echo	through	work	distribu0on	

In	both	cases	complex	0me	=	postselected	work	probability	distribu0on	

Zeros	of	the	Loschmidt	echo	define	dynamical	phase	transi0ons	(M.	
Heyl,	A.P.	S.	Kehrein	2013)	

Equilibrium	phase	transi0ons	–	breakdown	of	high	temperature	expansion.		
Dynamical	phase	transi0ons	–	breakdown	of	short	0me	expansion	



Dynamical	phase	transi0on	in	the	transverse	field	Ising	model	
(M.	Heyl,	A.	P.,	S.	Kehrein,	2013)	 2

RESULTS

The key quantity of interest in this work is the parti-
tion function

Z(z) = ⌅�i| e�zH |�i⇧ (3)

in the complex plane z ⇤ C. For imaginary z = it this
just describes the overlap amplitude (2). For real z = R
it can be interpreted as the partition function of the
field theory described by H with boundaries described
by boundary states |�i⇧ separated by R [6]. In the ther-
modynamic limit one defines the free energy (apart from
a di⇥erent normalization)

f(z) = � lim
N⇥⇤

1

N
ln Z(z) (4)

where N is the number of degrees of freedom. Now sub-
ject to a few technical conditions one can show that the
partition function (3) is an entire function of z since in-
serting an eigenbasis of H yields sums of terms e�zEj ,
which are entire functions of z. According to the Weier-
strass factorization theorem an entire function with ze-
roes zj ⇤ C can be written as

Z(z) = eh(z)
�

j

�
1� z

zj

⇥
(5)

with an entire function h(z). Thus

f(z) = � lim
N⇥⇤

1

N

⇤

⇧h(z) +
⌥

j

ln

�
1� z

zj

⇥⌅

⌃ (6)

and the non-analytic part of the free energy is solely de-
termined by the zeroes zj . A similar observation was
originally made by M. E. Fisher [1], who pointed out that
the partition function (1) is an entire function in the com-
plex temperature plane. This observation is analogous to
the Lee-Yang analysis of equilibrium phase transitions in
the complex magnetic field plane [7]. For example in the
2d Ising model the Fisher zeroes in the complex temper-
ature plane approach the real axis at the critical temper-
ature z = �c in the thermodynamic limit, indicating its
phase transition [8].

We now work out these analytic properties explicitly for
the one dimensional transverse field Ising model

H(g) = �
N�1⌥

i=1

⇤z
i ⇤

z
i+1 + g

N⌥

i=1

⇤x
i (7)

For magnetic field g < 1 the system is ferromagnetically
ordered at zero temperature, and a paramagnet for g > 1
[5]. These two phases are separated by a quantum critical

Figure 1: Left: Phase diagram of the transverse field Ising
model. � = |g � 1| is the excitation (mass) gap, which van-
ishes at the quantum critical point. Right: A quench across
the quantum critical point (green arrow) generates a new non-
equilibrium energy scale �k� (10), which is plotted here for a
quench starting at g0 = 0.
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Figure 2: Lines of Fisher zeroes for a quench within the same
phase g0 = 0.4 ! g1 = 0.8 (left) and across the quantum
critical point g0 = 0.4 ! g1 = 1.3 (right). Notice that
the Fisher zeroes cut the time axis for the quench across the
quantum critical point, giving rise to non-analytic behavior
at t⇤n (the times t⇤n are marked with dots in the plot).

point at g = gc = 1 (Fig. 1). The Hamiltonian (7) can be
mapped to to a free fermion model [9–11] with dispersion

relation ⇥k(g) =
 
(g � cos k)2 + sin2 k. In a quantum

quench experiment the system is prepared in the ground
state at magnetic field g0, |�i⇧ = |�GS(g0)⇧, while its
time evolution is driven with a Hamiltonian H(g1) with
a di⇥erent magnetic field g1. Partition function (3) and
free energy (4) describing this sudden quench g0 ⇥ g1
can be calculated analytically [12] (see Methods).

In the thermodynamic limit the zeroes zj of the parti-
tion function in the complex plane coalesce on a family
of lines, which are depicted in Fig. 2 for a quench within
the same phase or across the quantum critical point. As
expected there are no cuts across the real axis, other-
wise one would have an equilibrium phase transition for
a certain boundary separation. However, for a quench
across the quantum critical point there are unavoidably
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phase g0 = 0.4 ! g1 = 0.8 (left) and across the quantum
critical point g0 = 0.4 ! g1 = 1.3 (right). Notice that
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quantum critical point, giving rise to non-analytic behavior
at t⇤n (the times t⇤n are marked with dots in the plot).

point at g = gc = 1 (Fig. 1). The Hamiltonian (7) can be
mapped to to a free fermion model [9–11] with dispersion

relation ⇥k(g) =
 
(g � cos k)2 + sin2 k. In a quantum

quench experiment the system is prepared in the ground
state at magnetic field g0, |�i⇧ = |�GS(g0)⇧, while its
time evolution is driven with a Hamiltonian H(g1) with
a di⇥erent magnetic field g1. Partition function (3) and
free energy (4) describing this sudden quench g0 ⇥ g1
can be calculated analytically [12] (see Methods).

In the thermodynamic limit the zeroes zj of the parti-
tion function in the complex plane coalesce on a family
of lines, which are depicted in Fig. 2 for a quench within
the same phase or across the quantum critical point. As
expected there are no cuts across the real axis, other-
wise one would have an equilibrium phase transition for
a certain boundary separation. However, for a quench
across the quantum critical point there are unavoidably

Quench	across	the	phase	
transi0on.	Study:	
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point at g = gc = 1 (Fig. 1). The Hamiltonian (7) can be
mapped to to a free fermion model [9–11] with dispersion

relation ⇥k(g) =
 
(g � cos k)2 + sin2 k. In a quantum

quench experiment the system is prepared in the ground
state at magnetic field g0, |�i⇧ = |�GS(g0)⇧, while its
time evolution is driven with a Hamiltonian H(g1) with
a di⇥erent magnetic field g1. Partition function (3) and
free energy (4) describing this sudden quench g0 ⇥ g1
can be calculated analytically [12] (see Methods).

In the thermodynamic limit the zeroes zj of the parti-
tion function in the complex plane coalesce on a family
of lines, which are depicted in Fig. 2 for a quench within
the same phase or across the quantum critical point. As
expected there are no cuts across the real axis, other-
wise one would have an equilibrium phase transition for
a certain boundary separation. However, for a quench
across the quantum critical point there are unavoidably

Within	FM	phase	 From	FM	to	PM	phase	

Fisher	zeros	crossing	real	0me	
axis	implies		

is	nonanaly0c	in	0me.	Breakdown	
of	short	0me	expansion.		
Phase	transi0on	in	0me!	

(maps	to	free	fermions)	
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point at g = gc = 1 (Fig. 1). The Hamiltonian (7) can be
mapped to to a free fermion model [9–11] with dispersion

relation ⇥k(g) =
 
(g � cos k)2 + sin2 k. In a quantum

quench experiment the system is prepared in the ground
state at magnetic field g0, |�i⇧ = |�GS(g0)⇧, while its
time evolution is driven with a Hamiltonian H(g1) with
a di⇥erent magnetic field g1. Partition function (3) and
free energy (4) describing this sudden quench g0 ⇥ g1
can be calculated analytically [12] (see Methods).

In the thermodynamic limit the zeroes zj of the parti-
tion function in the complex plane coalesce on a family
of lines, which are depicted in Fig. 2 for a quench within
the same phase or across the quantum critical point. As
expected there are no cuts across the real axis, other-
wise one would have an equilibrium phase transition for
a certain boundary separation. However, for a quench
across the quantum critical point there are unavoidably

Emergent	0me	(energy)	scale,	not	the	gap		

3

non-analyticities on the time axis due to the limiting be-
havior of the lines of Fisher zeroes for R ⌃ ±�.
Now the free energy (4) is just the rate function of the

return amplitude (2)

G(t) =  �i|�i(t)⌦ =  �i|e�iH(g1)t|�i⌦ = e�N f(it) (8)

Likewise for the return probability (Loschmidt echo)

L(t)
def
= |G(t)|2 = exp(�N l(t)) one has l(t) = f(it) +

f(�it). The behavior of the Fisher zeroes for quenches
across the quantum critical point therefore translates into
non-analytic behavior of the rate functions for return am-
plitude and probability at certain times t⇥n. For sudden
quenches one can work out these times easily

t⇥n = t⇥
�
n+

1

2

⇥
, n = 0, 1, 2, . . . (9)

with t⇥ = ⇤/⇥k�(g1) and k⇥ determined by

cos k⇥ =
1 + g0 g1
g0 + g1

(10)

We conclude that for any quench across the quantum crit-
ical point the short time expansion for the rate function
of the return amplitude and probability breaks down in
the thermodynamic limit, analogous to the breakdown of
the high-temperature expansion at an equilibrium phase
transition. In fact, the non-analytic behavior of l(t)
at the times tn has already been derived by Pollmann
et al. [13] for slow ramping across the quantum critical
point. For a slow ramping protocol ⇥k�(g1) becomes the
mass gap m(g1) = |g1�1| of the final Hamiltonian, but in
general it is a new energy scale generated by the quench
and depending on the ramping protocol. In the universal
limit for a quench across but very close to the quantum
critical point, g1 = 1 + �, |�| ⇧ 1 and fixed g0, one finds
⇥k�(g1)/m(g1) ⌥ 1/

⌅
|�|. Hence in this limit the non-

equilibrium energy scale ⇥k� becomes very di⇥erent from
the mass gap, which is the only equilibrium energy scale
of the final Hamiltonian (compare Fig. 1).
The interpretation of the mode k⇥ follows from the

observation n(k⇥) = 1/2 (see methods), where n(k) is
the occupation of the excited state in the momentum
k-mode in the basis of the final Hamiltonian Hf (g1).
Modes k > k⇥ have thermal occupation n(k) < 1/2, while
modes k < k⇥ have inverted population n(k) > 1/2 and
therefore formally negative e⇥ective temperature. The
mode k⇥ corresponds to infinite temperature. In fact,
the existence of this infinite temperature mode and thus
of the Fisher zeroes cutting the time axis periodically
is guaranteed for arbitrary ramping protocols across the
quantum critical point. For example, for slow ramping
across the quantum critical point the existence of this
mode and the negative temperature region in relation to
spatial correlations was discussed in Ref. [23].
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Figure 3: The bottom plot shows the work distribution func-
tion r(w, t) for a double quench across the quantum critical
point (g0 = 0.5, g1 = 2.0). The dashed line depicts the ex-
pectation value of the work performed, r(w, t) = 0. The top
plot shows various cuts for fixed values of the work density w.
The line w = 0 is just the Loschmidt echo: Its non-analytic
behavior at t⇤n becomes smooth for w > 0, but traces of the
non-analytic behavior extend into the work density plane.

One measurable quantity in which the non-analytic be-
havior generated by the Fisher zeroes appears naturally
is the work distribution function of a double quench ex-
periment: We prepare the system in the ground state of
H(g0), then quench to H(g1) at time t = 0, and then
quench back to H(g0) at time t. The amount of work W
performed follows from the distribution function

P (W, t) =
⇤

j

� (W � (Ej � EGS(g0))) | Ej |�i(t)⌦|2

(11)
where the sum runs over all eigenstates |Ej⌦ of the initial
HamiltonianH(g0). P (W, t) obeys a large deviation form
[14]

P (W, t) ⌅ e�N r(w,t) (12)

with a rate function r(w, t) ⇤ 0 depending on the work
density w = W/N . In the thermodynamic limit one can
derive an exact result for r(w, t) (Methods section). Its
behavior for a quench across the quantum critical point is
shown in Fig. 3. For w = 0 the rate function just gives the
return probability to the ground state, r(w = 0, t) = l(t),
therefore the non-analytic behavior at the Fisher zeroes
shows up as non-analytic behavior in the work distribu-
tion function. However, from Fig. 3 one can see that these
non-analyticities at w = 0 also dominate the behavior for
w > 0 at t⇥n, corresponding to more likely values of the
performed work. The suggestive similarity to the phase
diagram of a quantum critical point, with temperature

2

RESULTS

The key quantity of interest in this work is the parti-
tion function

Z(z) = ⌅�i| e�zH |�i⇧ (3)

in the complex plane z ⇤ C. For imaginary z = it this
just describes the overlap amplitude (2). For real z = R
it can be interpreted as the partition function of the
field theory described by H with boundaries described
by boundary states |�i⇧ separated by R [6]. In the ther-
modynamic limit one defines the free energy (apart from
a di⇥erent normalization)

f(z) = � lim
N⇥⇤

1

N
ln Z(z) (4)

where N is the number of degrees of freedom. Now sub-
ject to a few technical conditions one can show that the
partition function (3) is an entire function of z since in-
serting an eigenbasis of H yields sums of terms e�zEj ,
which are entire functions of z. According to the Weier-
strass factorization theorem an entire function with ze-
roes zj ⇤ C can be written as

Z(z) = eh(z)
�

j

�
1� z

zj

⇥
(5)

with an entire function h(z). Thus

f(z) = � lim
N⇥⇤

1

N

⇤

⇧h(z) +
⌥

j

ln

�
1� z

zj

⇥⌅

⌃ (6)

and the non-analytic part of the free energy is solely de-
termined by the zeroes zj . A similar observation was
originally made by M. E. Fisher [1], who pointed out that
the partition function (1) is an entire function in the com-
plex temperature plane. This observation is analogous to
the Lee-Yang analysis of equilibrium phase transitions in
the complex magnetic field plane [7]. For example in the
2d Ising model the Fisher zeroes in the complex temper-
ature plane approach the real axis at the critical temper-
ature z = �c in the thermodynamic limit, indicating its
phase transition [8].

We now work out these analytic properties explicitly for
the one dimensional transverse field Ising model

H(g) = �
N�1⌥

i=1

⇤z
i ⇤

z
i+1 + g

N⌥

i=1

⇤x
i (7)

For magnetic field g < 1 the system is ferromagnetically
ordered at zero temperature, and a paramagnet for g > 1
[5]. These two phases are separated by a quantum critical

Figure 1: Left: Phase diagram of the transverse field Ising
model. � = |g � 1| is the excitation (mass) gap, which van-
ishes at the quantum critical point. Right: A quench across
the quantum critical point (green arrow) generates a new non-
equilibrium energy scale �k� (10), which is plotted here for a
quench starting at g0 = 0.
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Figure 2: Lines of Fisher zeroes for a quench within the same
phase g0 = 0.4 ! g1 = 0.8 (left) and across the quantum
critical point g0 = 0.4 ! g1 = 1.3 (right). Notice that
the Fisher zeroes cut the time axis for the quench across the
quantum critical point, giving rise to non-analytic behavior
at t⇤n (the times t⇤n are marked with dots in the plot).

point at g = gc = 1 (Fig. 1). The Hamiltonian (7) can be
mapped to to a free fermion model [9–11] with dispersion

relation ⇥k(g) =
 
(g � cos k)2 + sin2 k. In a quantum

quench experiment the system is prepared in the ground
state at magnetic field g0, |�i⇧ = |�GS(g0)⇧, while its
time evolution is driven with a Hamiltonian H(g1) with
a di⇥erent magnetic field g1. Partition function (3) and
free energy (4) describing this sudden quench g0 ⇥ g1
can be calculated analytically [12] (see Methods).

In the thermodynamic limit the zeroes zj of the parti-
tion function in the complex plane coalesce on a family
of lines, which are depicted in Fig. 2 for a quench within
the same phase or across the quantum critical point. As
expected there are no cuts across the real axis, other-
wise one would have an equilibrium phase transition for
a certain boundary separation. However, for a quench
across the quantum critical point there are unavoidably

Physical	origin	of	the	transi0on	(free	fermions):	emergence	of	
inverse	popula0on	(nega0ve	temperature)	for	some	modes	

�k(g)

g

✏k⇤

quench	

Divergent	cri0cal	0me.	
Different	from	equilibrium	
exponents	



Physical	origin	of	the	transi0on	(spin	language)	2

RESULTS

The key quantity of interest in this work is the parti-
tion function

Z(z) = ⌅�i| e�zH |�i⇧ (3)

in the complex plane z ⇤ C. For imaginary z = it this
just describes the overlap amplitude (2). For real z = R
it can be interpreted as the partition function of the
field theory described by H with boundaries described
by boundary states |�i⇧ separated by R [6]. In the ther-
modynamic limit one defines the free energy (apart from
a di⇥erent normalization)

f(z) = � lim
N⇥⇤

1

N
ln Z(z) (4)

where N is the number of degrees of freedom. Now sub-
ject to a few technical conditions one can show that the
partition function (3) is an entire function of z since in-
serting an eigenbasis of H yields sums of terms e�zEj ,
which are entire functions of z. According to the Weier-
strass factorization theorem an entire function with ze-
roes zj ⇤ C can be written as

Z(z) = eh(z)
�

j

�
1� z

zj

⇥
(5)

with an entire function h(z). Thus

f(z) = � lim
N⇥⇤

1

N

⇤

⇧h(z) +
⌥

j

ln

�
1� z

zj

⇥⌅

⌃ (6)

and the non-analytic part of the free energy is solely de-
termined by the zeroes zj . A similar observation was
originally made by M. E. Fisher [1], who pointed out that
the partition function (1) is an entire function in the com-
plex temperature plane. This observation is analogous to
the Lee-Yang analysis of equilibrium phase transitions in
the complex magnetic field plane [7]. For example in the
2d Ising model the Fisher zeroes in the complex temper-
ature plane approach the real axis at the critical temper-
ature z = �c in the thermodynamic limit, indicating its
phase transition [8].

We now work out these analytic properties explicitly for
the one dimensional transverse field Ising model

H(g) = �
N�1⌥

i=1

⇤z
i ⇤

z
i+1 + g

N⌥

i=1

⇤x
i (7)

For magnetic field g < 1 the system is ferromagnetically
ordered at zero temperature, and a paramagnet for g > 1
[5]. These two phases are separated by a quantum critical

Figure 1: Left: Phase diagram of the transverse field Ising
model. � = |g � 1| is the excitation (mass) gap, which van-
ishes at the quantum critical point. Right: A quench across
the quantum critical point (green arrow) generates a new non-
equilibrium energy scale �k� (10), which is plotted here for a
quench starting at g0 = 0.
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Figure 2: Lines of Fisher zeroes for a quench within the same
phase g0 = 0.4 ! g1 = 0.8 (left) and across the quantum
critical point g0 = 0.4 ! g1 = 1.3 (right). Notice that
the Fisher zeroes cut the time axis for the quench across the
quantum critical point, giving rise to non-analytic behavior
at t⇤n (the times t⇤n are marked with dots in the plot).

point at g = gc = 1 (Fig. 1). The Hamiltonian (7) can be
mapped to to a free fermion model [9–11] with dispersion

relation ⇥k(g) =
 
(g � cos k)2 + sin2 k. In a quantum

quench experiment the system is prepared in the ground
state at magnetic field g0, |�i⇧ = |�GS(g0)⇧, while its
time evolution is driven with a Hamiltonian H(g1) with
a di⇥erent magnetic field g1. Partition function (3) and
free energy (4) describing this sudden quench g0 ⇥ g1
can be calculated analytically [12] (see Methods).

In the thermodynamic limit the zeroes zj of the parti-
tion function in the complex plane coalesce on a family
of lines, which are depicted in Fig. 2 for a quench within
the same phase or across the quantum critical point. As
expected there are no cuts across the real axis, other-
wise one would have an equilibrium phase transition for
a certain boundary separation. However, for a quench
across the quantum critical point there are unavoidably

Consider	a	special	limit	of	a	quench	across	QCP	
(any		spa0al	dimension):	

Time	evolu0on	is	a	spin	precession	

1)	Prepare	the		
				FM		ground	state	

2)	Apply	strong	magne0c	
					field	for	0me	t	

3)	Project	back	to	the	
low	energy	manifold	
by	post-selec0on		

g	

A	

+B	

The	dynamical	phase	transi0on	is	associated	with	the	
dynamical	topological	order	in	the	post-selected	system	
	
Need	to	work	with	the	Loschmidt	matrix	(not	amplitude).		

Inverse	quench:	mapping	of	DQPT	to	the	complex	temperature	par00on	func0on	of	the	
Ising	model	(M.	Heyl,	2015)	
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Observing	DQPT	through	post-selec0on	cooling	
Expecta0on	values	of	of	common	observables	are	analy0c	in	0me.	
	
Physically	L(t)=0	implies	a	state	orthogonal	to	the	ini0al	state.	Expect	Small	return	
probability	for	a	double	quench.			

Define	work	probability	aker	a	double	quench	g

g0

g1

t

time
3

non-analyticities on the time axis due to the limiting be-
havior of the lines of Fisher zeroes for R ⌃ ±�.

Now the free energy (4) is just the rate function of the
return amplitude (2)

G(t) =  �i|�i(t)⌦ =  �i|e�iH(g1)t|�i⌦ = e�N f(it) (8)

Likewise for the return probability (Loschmidt echo)

L(t)
def
= |G(t)|2 = exp(�N l(t)) one has l(t) = f(it) +

f(�it). The behavior of the Fisher zeroes for quenches
across the quantum critical point therefore translates into
non-analytic behavior of the rate functions for return am-
plitude and probability at certain times t⇥n. For sudden
quenches one can work out these times easily

t⇥n = t⇥
�
n+

1

2

⇥
, n = 0, 1, 2, . . . (9)

with t⇥ = ⇤/⇥k�(g1) and k⇥ determined by

cos k⇥ =
1 + g0 g1
g0 + g1

(10)

We conclude that for any quench across the quantum crit-
ical point the short time expansion for the rate function
of the return amplitude and probability breaks down in
the thermodynamic limit, analogous to the breakdown of
the high-temperature expansion at an equilibrium phase
transition. In fact, the non-analytic behavior of l(t)
at the times tn has already been derived by Pollmann
et al. [13] for slow ramping across the quantum critical
point. For a slow ramping protocol ⇥k�(g1) becomes the
mass gap m(g1) = |g1�1| of the final Hamiltonian, but in
general it is a new energy scale generated by the quench
and depending on the ramping protocol. In the universal
limit for a quench across but very close to the quantum
critical point, g1 = 1 + �, |�| ⇧ 1 and fixed g0, one finds
⇥k�(g1)/m(g1) ⌥ 1/

⌅
|�|. Hence in this limit the non-

equilibrium energy scale ⇥k� becomes very di⇥erent from
the mass gap, which is the only equilibrium energy scale
of the final Hamiltonian (compare Fig. 1).

The interpretation of the mode k⇥ follows from the
observation n(k⇥) = 1/2 (see methods), where n(k) is
the occupation of the excited state in the momentum
k-mode in the basis of the final Hamiltonian Hf (g1).
Modes k > k⇥ have thermal occupation n(k) < 1/2, while
modes k < k⇥ have inverted population n(k) > 1/2 and
therefore formally negative e⇥ective temperature. The
mode k⇥ corresponds to infinite temperature. In fact,
the existence of this infinite temperature mode and thus
of the Fisher zeroes cutting the time axis periodically
is guaranteed for arbitrary ramping protocols across the
quantum critical point. For example, for slow ramping
across the quantum critical point the existence of this
mode and the negative temperature region in relation to
spatial correlations was discussed in Ref. [23].
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Figure 3: The bottom plot shows the work distribution func-
tion r(w, t) for a double quench across the quantum critical
point (g0 = 0.5, g1 = 2.0). The dashed line depicts the ex-
pectation value of the work performed, r(w, t) = 0. The top
plot shows various cuts for fixed values of the work density w.
The line w = 0 is just the Loschmidt echo: Its non-analytic
behavior at t⇤n becomes smooth for w > 0, but traces of the
non-analytic behavior extend into the work density plane.

One measurable quantity in which the non-analytic be-
havior generated by the Fisher zeroes appears naturally
is the work distribution function of a double quench ex-
periment: We prepare the system in the ground state of
H(g0), then quench to H(g1) at time t = 0, and then
quench back to H(g0) at time t. The amount of work W
performed follows from the distribution function

P (W, t) =
⇤

j

� (W � (Ej � EGS(g0))) | Ej |�i(t)⌦|2

(11)
where the sum runs over all eigenstates |Ej⌦ of the initial
HamiltonianH(g0). P (W, t) obeys a large deviation form
[14]

P (W, t) ⌅ e�N r(w,t) (12)

with a rate function r(w, t) ⇤ 0 depending on the work
density w = W/N . In the thermodynamic limit one can
derive an exact result for r(w, t) (Methods section). Its
behavior for a quench across the quantum critical point is
shown in Fig. 3. For w = 0 the rate function just gives the
return probability to the ground state, r(w = 0, t) = l(t),
therefore the non-analytic behavior at the Fisher zeroes
shows up as non-analytic behavior in the work distribu-
tion function. However, from Fig. 3 one can see that these
non-analyticities at w = 0 also dominate the behavior for
w > 0 at t⇥n, corresponding to more likely values of the
performed work. The suggestive similarity to the phase
diagram of a quantum critical point, with temperature

	W	plays	the	role	of	temperature.	At	zero	
work	recover	quantum	phase	transi0on.		

General	idea:	can	use	post-selec0on	as	a	
non-equilibrium	cooling.	I.e.	analyze	
only	experiments	with																			.		
	
Expect	quantum	cri0cal	behavior	of	
post-selected	observables	as																		.	

w < w⇤

w⇤ ! 0



Dynamical	phase	transi0ons	in	non-integrable	systems	
(C.	Karrasch;	D.	Schuricht,	2013)	

Same	setup	but	with	different	integrability	breaking	interac0ons	
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FIG. 2. (Color online) The same as in Fig. 1 but for quenches from the FM to the PM phase in the Ising model. In the
thermodynamic limit, the ground state |±⟩ within the FM phase is two-fold degenerate. (a) Quench performed starting from
the polarized state |+⟩. The return amplitude shows non-analytic behavior which, however, does not occur at the times t∗n
defined in Eq. (11). Inset: Time evolution of the order parameter ⟨σz

i (t)⟩, which at sufficiently late times oscillates with the
frequency 2t∗. (b) Quench starting from the mixed state |NS⟩ = (|+⟩− |−⟩)/

√
2. The DMRG data agree well with the analytic

result obtained for the corresponding quench in the fermionic model6 of Eq. (5). The return amplitude shows non-analytic
behavior at the times t∗n. Inset: Comparison of the return amplitudes starting from the mixed and polarized states |NS⟩ and
|+⟩, respectively.

return amplitude possesses non-analyticities at the times
t∗n. As the initial state is an equal superposition of |+⟩
and |−⟩, the order parameter ⟨σz

i (t)⟩ vanishes identically
at all times.
In the inset to Fig. 2(b) we compare the return ampli-

tude for quenches starting from the polarized state |+⟩
and the mixed state |NS⟩. We observe that for half of
the time the return amplitudes are identical. This can
again be understood by considering the simple quench
introduced above. One finds that (if L is divisible by
four)

lNS(t) = −
2

L
ln
[

cosL(Jg1t) + sinL(Jg1t)
]

. (14)

For large systems this shows a switching behavior6 de-
pending on whether the first or the second term in the
argument of the logarithm dominates, in complete anal-
ogy with the DMRG data for generic quenches from the
FM to the PM. The non-analyticities of Eq. (14) follow
from cosL(Jg1t) + sinL(Jg1t) = 0, which in the thermo-
dynamic limit L → ∞ yields t = t∗n.
With this we conclude our analysis of quenches in the

Ising model. In the remainder of this paper we address
the question whether non-analytic behavior in the return
amplitude can be observed for quenches across quantum
critical points in other models. We begin by considering
the ANNNI model in the following section.

III. ANNNI MODEL

As second model we investigate the transverse axial
next-nearest-neighbour Ising (ANNNI) model14 defined

by the Hamiltonian

HANNNI = −J
∑

i

[

σz
i σ

z
i+1 +∆σz

i σ
z
i+2 + gσx

i

]

. (15)

Again we assume J > 0 and g ≥ 0, while ∆ can be pos-
itive or negative. Obviously, for ∆ = 0 we recover the
quantum Ising chain of Eq. (4). We note that Eq. (15)
is invariant under g → −g due to the transformation
σx,z
i → −σx,z

i . Using a Jordan-Wigner transformation,
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FIG. 3. (Color online) Sketch of the phase diagram14,15 of
the ANNNI model defined in Eq. (15) as a function of ∆
and g. There are four phases: a paramagnetic (PM) phase, a
ferromagnetic (FM) phase, an anti phase (AP), and a floating
phase (FP). The PM and FM phases are separated by an Ising
transition located at gc(∆) defined in Eq. (16). We study
quenches across the Ising transition as indicated by the solid
arrow [see Fig. 4(a)], the dashed arrow [see Fig. 4(b)], and the
dashed-dotted arrow (see Fig. 5).
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i (t)⟩, which at sufficiently late times oscillates with the
frequency 2t∗. (b) Quench starting from the mixed state |NS⟩ = (|+⟩− |−⟩)/

√
2. The DMRG data agree well with the analytic

result obtained for the corresponding quench in the fermionic model6 of Eq. (5). The return amplitude shows non-analytic
behavior at the times t∗n. Inset: Comparison of the return amplitudes starting from the mixed and polarized states |NS⟩ and
|+⟩, respectively.

return amplitude possesses non-analyticities at the times
t∗n. As the initial state is an equal superposition of |+⟩
and |−⟩, the order parameter ⟨σz

i (t)⟩ vanishes identically
at all times.

In the inset to Fig. 2(b) we compare the return ampli-
tude for quenches starting from the polarized state |+⟩
and the mixed state |NS⟩. We observe that for half of
the time the return amplitudes are identical. This can
again be understood by considering the simple quench
introduced above. One finds that (if L is divisible by
four)

lNS(t) = −
2

L
ln
[

cosL(Jg1t) + sinL(Jg1t)
]

. (14)

For large systems this shows a switching behavior6 de-
pending on whether the first or the second term in the
argument of the logarithm dominates, in complete anal-
ogy with the DMRG data for generic quenches from the
FM to the PM. The non-analyticities of Eq. (14) follow
from cosL(Jg1t) + sinL(Jg1t) = 0, which in the thermo-
dynamic limit L → ∞ yields t = t∗n.
With this we conclude our analysis of quenches in the

Ising model. In the remainder of this paper we address
the question whether non-analytic behavior in the return
amplitude can be observed for quenches across quantum
critical points in other models. We begin by considering
the ANNNI model in the following section.

III. ANNNI MODEL

As second model we investigate the transverse axial
next-nearest-neighbour Ising (ANNNI) model14 defined

by the Hamiltonian

HANNNI = −J
∑

i

[

σz
i σ

z
i+1 +∆σz

i σ
z
i+2 + gσx

i

]

. (15)

Again we assume J > 0 and g ≥ 0, while ∆ can be pos-
itive or negative. Obviously, for ∆ = 0 we recover the
quantum Ising chain of Eq. (4). We note that Eq. (15)
is invariant under g → −g due to the transformation
σx,z
i → −σx,z

i . Using a Jordan-Wigner transformation,
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FIG. 4. (Color online) Return amplitude for a quench from the PM to the FM phase of the quantum Ising model in presence
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transverse field g (indicated by the solid arrow in the phase diagram shown in Fig. 3). (b) Quench in the next-nearest neighbor
interaction ∆ (dashed arrow in Fig. 3). In complete analogy with the integrable ‘non-interacting’ Ising chain (∆ = 0), the
return amplitude exhibits non-analytic behavior as a function of time in the thermodynamic limit if one quenches across a
critical point [note that the curve in (b) for ∆1 = 0.2 corresponds to a quench within the PM phase].

the ANNNI model can be mapped to a model of interact-
ing fermions. To the best of our knowledge, the resulting
system is not integrable and does not allow an exact so-
lution like the quantum Ising chain.

The phase diagram of the ANNNI model contains four
phases (see Fig. 3):14,15 A paramagnetic phase (PM) with
a unique ground state satisfying ⟨σz

i ⟩ = 0; a ferromag-
netic phase (FM) with doubly degenerate ground state
with ⟨σz

i ⟩ ̸= 0; an “anti phase” (AP) that schematically
looks like ↑↑↓↓↑↑↓↓; and a “floating phase” (FP) between
the PM and the AP. The phase transition between the
PM and the FM is in the Ising universality class with
ν = 1. For ∆ < 0 it is located at

1 + 2∆ = gc +
∆g2c

2(1 +∆)
. (16)

We will restrict ourselves to quenches across this phase
transition in the following (see the arrows in Fig. 3).

We first concentrate on quenches from the PM to the
FM phase. Fig. 4(a) illustrates the effect of successively
switching on the ‘interaction’∆ for a quench analogous to
the one shown in Fig. 1 (it corresponds to the solid arrow
in Fig. 3). The existence of non-analyticities is stable
against interactions ∆. However, the critical times t∗n do
not show any periodicity, i.e. it is not possible to write
t∗n = t∗(∆)(n + 1/2) with some interaction dependent
time scale t∗(∆) replacing Eq. (12). We have furthermore
investigated an interaction quench with fixed g0 = g1 =
1.3 and ∆0 = 0, ∆1 > 0 (depicted by the dashed arrow
in Fig. 3). The results are shown in Fig. 4(b). For ∆1 =
0.2, one does not leave the PM phase, and the return
amplitude is a smooth function of time. In contrast, for
∆1 = 0.6 and ∆1 = 1 one enters the FM phase and l(t)
becomes non-analytic as expected. Note that the model
is strongly non-integrable for those parameters.

Fig. 5 shows DMRG data for the opposite quench from
a polarized FM ground state to the PM phase (dashed-
dotted arrow in Fig. 3). The appearance of kinks is again
stable against interactions ∆ ̸= 0. Even for the quan-
tum Ising chain the kinks do not occur periodically if
one starts from a spin-polarized state; this behavior be-
comes more pronounced for ∆ ̸= 0. In particular, the
evolution between the kinks becomes highly non-trivial
including smooth maxima and inflection points, suggest-
ing that for such details interaction effects become im-
portant and a simple picture based on the time evolution
under a trivial Hamiltonian like H ′ is not sufficient to
describe the dynamics. The order parameter, however,
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the precise connection of its dynamics to l(t) remains elusive.
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the ANNNI model can be mapped to a model of interact-
ing fermions. To the best of our knowledge, the resulting
system is not integrable and does not allow an exact so-
lution like the quantum Ising chain.
The phase diagram of the ANNNI model contains four

phases (see Fig. 3):14,15 A paramagnetic phase (PM) with
a unique ground state satisfying ⟨σz

i ⟩ = 0; a ferromag-
netic phase (FM) with doubly degenerate ground state
with ⟨σz

i ⟩ ̸= 0; an “anti phase” (AP) that schematically
looks like ↑↑↓↓↑↑↓↓; and a “floating phase” (FP) between
the PM and the AP. The phase transition between the
PM and the FM is in the Ising universality class with
ν = 1. For ∆ < 0 it is located at

1 + 2∆ = gc +
∆g2c

2(1 +∆)
. (16)

We will restrict ourselves to quenches across this phase
transition in the following (see the arrows in Fig. 3).
We first concentrate on quenches from the PM to the

FM phase. Fig. 4(a) illustrates the effect of successively
switching on the ‘interaction’∆ for a quench analogous to
the one shown in Fig. 1 (it corresponds to the solid arrow
in Fig. 3). The existence of non-analyticities is stable
against interactions ∆. However, the critical times t∗n do
not show any periodicity, i.e. it is not possible to write
t∗n = t∗(∆)(n + 1/2) with some interaction dependent
time scale t∗(∆) replacing Eq. (12). We have furthermore
investigated an interaction quench with fixed g0 = g1 =
1.3 and ∆0 = 0, ∆1 > 0 (depicted by the dashed arrow
in Fig. 3). The results are shown in Fig. 4(b). For ∆1 =
0.2, one does not leave the PM phase, and the return
amplitude is a smooth function of time. In contrast, for
∆1 = 0.6 and ∆1 = 1 one enters the FM phase and l(t)
becomes non-analytic as expected. Note that the model
is strongly non-integrable for those parameters.

Fig. 5 shows DMRG data for the opposite quench from
a polarized FM ground state to the PM phase (dashed-
dotted arrow in Fig. 3). The appearance of kinks is again
stable against interactions ∆ ̸= 0. Even for the quan-
tum Ising chain the kinks do not occur periodically if
one starts from a spin-polarized state; this behavior be-
comes more pronounced for ∆ ̸= 0. In particular, the
evolution between the kinks becomes highly non-trivial
including smooth maxima and inflection points, suggest-
ing that for such details interaction effects become im-
portant and a simple picture based on the time evolution
under a trivial Hamiltonian like H ′ is not sufficient to
describe the dynamics. The order parameter, however,
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Two	recent	experiments	observing	DQPT		
(P.	Jurcevic	et.	al.	2016;	N.	Fläschner			et.	al.	2016)	
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FIG. 2: Observation of dynamical quantum phase transition.
a. Measured rate function �(⌧) for three di↵erent system sizes at
J/B ⇡ 0.42, showing a non-analytical behaviour (with ⌧ = tB the
dimensionless time). Dots are experimental data with error bars es-
timated from quantum projection noise, lines are numerical simula-
tions with experimental parameters. Inset: The transition between
the normalized ground-state probabilities P),(/P becomes sharper
for larger N. b. The critical time ⌧crit, i.e., the occurrence of the first
DQPT, is linear as a function of (J/B)2 for small J/B, and approx-
imately independent of interaction range. b. The critical time ⌧crit,
i.e., the occurrence of the first DQPT, is linear as a function of (J/B)2

for small J/B, and approximately independent of interaction range.
Errorbars are 1� confidence intervals of the fits on log[P),((⌧)] from
which we extract ⌧crit (see Methods). Inset: DQPT exemplified for
(J/B) = 0, 0.392, and 0.734. The grey dashed lines indicate ⌧crit for
(J/B) = 0.

This connection is tightened by resolving the magnetization
Mx(", t) as a function of energy density " (see Methods and
Ref. [24]), where " = E/N and E is the energy measured with
the initial Hamiltonian H0. The measured data is displayed
in Fig. 3b. The dynamics along " = 0 (ground-state mani-
fold) is directly understood from the previous discussion. In
large systems, as long as t < tc one has P(t) ⇡ P)(t), yield-
ing Mx(" = 0, t < tc) ⇡ 1. For t > tc, P((t) takes over, and
Mx(" = 0, t) jumps to �1. With increasing energy densities
this sudden change smears out. Its influence, however, per-
sists up to the system’s mean energy density "(t) (solid line in
Fig. 3b), where observables such as Mx(t) acquire their dom-
inant contribution [24]. In this way, as sketched in Fig. 1, an
extended region of the dynamics is controlled by the DQPT,
reminiscent of a quantum critical region at an equilibrium
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FIG. 3: Control of the magnetisation dynamics by a DQPT.
DQPTs, indicated by kinks in �(⌧) (a), control the average magne-
tization in x-direction, Mx (c). (b) This connection becomes appar-
ent when resolving the magnetization against energy density ✏, with
the non-analyticity at ✏ = 0 radiating out to ✏ > 0. (b) This con-
nection becomes apparent when resolving the magnetization against
energy density ✏, with the non-analyticity at ✏ = 0 radiating out to
✏ > 0. For details on the measurement of the energy-resolved mag-
netization, see Methods. In (a)+(c), dots indicate experimental data
with errors derived from quantum projection noise, solid lines denote
numerical simulations (J/B = 0.5). In (a)+(c), dots indicate experi-
mental data with errors derived from quantum projection noise, solid
lines denote numerical simulations(J/B) = 0.5.

QPT.
As the final result of our work, we now show that DQPTs

in the simulated Ising models also control entanglement pro-
duction. In this way, we connect entanglement as an impor-
tant concept for the characterization of equilibrium phases and
criticality [25] to DQPTs. In Fig. 4a, we show the half-chain
entropy S(t) measured by quantum tomography (see Meth-
ods). S(t) exhibits its strongest growth in the vicinity of a
DQPT. While these data are suggestive of entanglement pro-
duction, S(t) is an entanglement measure only for pure states,
which does not account for the experimentally inevitable mix-
ing caused by decoherence. Therefore, we additionally mea-
sure a mixed-state entanglement witness, the Kitagawa–Ueda
spin-squeezing parameter ⇠s [26] (see Methods) signaling en-
tanglement whenever ⇠s < 1. As Fig. 4b shows, ⇠s presents a
behaviour qualitatively very similar to S(t). Related to com-
mon spin-squeezing scenarios [27], the spin squeezing is most
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This connection is tightened by resolving the magnetization
Mx(", t) as a function of energy density " (see Methods and
Ref. [24]), where " = E/N and E is the energy measured with
the initial Hamiltonian H0. The measured data is displayed
in Fig. 3b. The dynamics along " = 0 (ground-state mani-
fold) is directly understood from the previous discussion. In
large systems, as long as t < tc one has P(t) ⇡ P)(t), yield-
ing Mx(" = 0, t < tc) ⇡ 1. For t > tc, P((t) takes over, and
Mx(" = 0, t) jumps to �1. With increasing energy densities
this sudden change smears out. Its influence, however, per-
sists up to the system’s mean energy density "(t) (solid line in
Fig. 3b), where observables such as Mx(t) acquire their dom-
inant contribution [24]. In this way, as sketched in Fig. 1, an
extended region of the dynamics is controlled by the DQPT,
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QPT.
As the final result of our work, we now show that DQPTs

in the simulated Ising models also control entanglement pro-
duction. In this way, we connect entanglement as an impor-
tant concept for the characterization of equilibrium phases and
criticality [25] to DQPTs. In Fig. 4a, we show the half-chain
entropy S(t) measured by quantum tomography (see Meth-
ods). S(t) exhibits its strongest growth in the vicinity of a
DQPT. While these data are suggestive of entanglement pro-
duction, S(t) is an entanglement measure only for pure states,
which does not account for the experimentally inevitable mix-
ing caused by decoherence. Therefore, we additionally mea-
sure a mixed-state entanglement witness, the Kitagawa–Ueda
spin-squeezing parameter ⇠s [26] (see Methods) signaling en-
tanglement whenever ⇠s < 1. As Fig. 4b shows, ⇠s presents a
behaviour qualitatively very similar to S(t). Related to com-
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This connection is tightened by resolving the magnetization
Mx(", t) as a function of energy density " (see Methods and
Ref. [24]), where " = E/N and E is the energy measured with
the initial Hamiltonian H0. The measured data is displayed
in Fig. 3b. The dynamics along " = 0 (ground-state mani-
fold) is directly understood from the previous discussion. In
large systems, as long as t < tc one has P(t) ⇡ P)(t), yield-
ing Mx(" = 0, t < tc) ⇡ 1. For t > tc, P((t) takes over, and
Mx(" = 0, t) jumps to �1. With increasing energy densities
this sudden change smears out. Its influence, however, per-
sists up to the system’s mean energy density "(t) (solid line in
Fig. 3b), where observables such as Mx(t) acquire their dom-
inant contribution [24]. In this way, as sketched in Fig. 1, an
extended region of the dynamics is controlled by the DQPT,
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lines denote numerical simulations(J/B) = 0.5.

QPT.
As the final result of our work, we now show that DQPTs

in the simulated Ising models also control entanglement pro-
duction. In this way, we connect entanglement as an impor-
tant concept for the characterization of equilibrium phases and
criticality [25] to DQPTs. In Fig. 4a, we show the half-chain
entropy S(t) measured by quantum tomography (see Meth-
ods). S(t) exhibits its strongest growth in the vicinity of a
DQPT. While these data are suggestive of entanglement pro-
duction, S(t) is an entanglement measure only for pure states,
which does not account for the experimentally inevitable mix-
ing caused by decoherence. Therefore, we additionally mea-
sure a mixed-state entanglement witness, the Kitagawa–Ueda
spin-squeezing parameter ⇠s [26] (see Methods) signaling en-
tanglement whenever ⇠s < 1. As Fig. 4b shows, ⇠s presents a
behaviour qualitatively very similar to S(t). Related to com-
mon spin-squeezing scenarios [27], the spin squeezing is most



Dynamical	phase	transi0ons	and	OTOC		
(out	of	0me	order	correla0on	func0ons)	

OTOC	many	recent	works,	related	to	chaos	etc.	Simplest	examples	of	OTOC:	

Break	causality	and	can	not	appear	in	any	dynamical	response	(Kubo,…)	

Loschmidt	echo	is	an	example	of	OTOC,	can	be	measured	if	we	have	
two	copies	of	the	system,	very	similar	to	entanglement	Renyi	entropy	
measurements	(A.	Daley,	P.	Zoller;	R.	Islam,	A,	Kaufman,	M.	Greiner,…)	

P0	is	an	exponent	of	a	local	operator	(product	type	operator)	



Summary	part	I	

•  DQPT	are	the	natural	extension	of	Lee-Yang,	Fisher	approach	to	
equilibrium	transi0ons.		

•  Loschmidt	echo	is	related	to	the	large	devia0on	func0onal	of	the	
work	distribu0on	aker	a	quench.	Fisher	zeros	indicate	
breakdown	of	the	short	0me	expansion	

•  DQPT	are	topological	and	can	be	enhanced	through	post-
selec0on.	

•  DQPTs	are	not	limited	to	integrable	systems,	quenches	(as	
opposed	to	more	generic	protocols),	low	dimensions,	….		



Integrable	Floquet	systems	and	periodic	many-body	revivals.	
(with	V.	Gritsev)	

Time	crystals	(aka	frequency	generators,	
clocks,	parametric	down	converters,	
oscillators,	…)	spontaneously	break	0me	
transla0onal	symmetry.		Can	be	realized	
only	as	transients.	
	
Usual	problem:	dissipate	energy	(heat	up	if	
driven)	with	some	interes0ng	excep0ons.	
Challenge	–	reduce,	eliminate	dissipa0on.	

Time	evolu0on	is	like	a	single	
quench	to	the	Floquet	
Hamiltonian.	Emergent	energy	
conserva0on	preven0ng	hea0ng.		
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FIG. 2: Two equivalent description of the driving protocol: (left) sequence of sudden quenches between H0

and H1 and (right) single quench from H0 to the e�ective Floquet Hamiltonian Heff and back to H0.

external magnetic field and the Hamiltonian H1 to be interacting and ergodic:

H0 = BxHBx, H1 = JzHz + J �
zH

�
z + J⇥H⇥ + J �

⇥H
�
⇥ (7)

where, we have defined the shorthand notations::

HBx =
⇤

n sxn, Hz =
⇤

n

�
szns

z
n+1

⇥
, H⇥ =

⇤
n

�
sxns

x
n+1 + syns

y
n+1

⇥

H �
z =

⇤
n

�
szns

z
n+2

⇥
, H �

⇥ =
⇤

i

�
sxns

x
n+2 + syns

y
n+2

⇥

Let us point that this system is invariant under space translation and � � rotation around the

x � axis (sxn ⇥ sxn, s
y
n ⇥ �syn, szn ⇥ �szn). For numerical calculations we choose the following

parameters: Bx = 1, Jz = �J �
⇥ = 1

2 , J �
z = 1

40 , J⇥ = �1
4 . We checked that our results are not tied

to any particular choice of couplings.

As pointed out earlier, we can expect two qualitatively di�erent regimes depending on the

period of the driving. At long periods the system has enough time to relax to the stationary state

between the pulses and thus is expected to constantly absorb energy until it reaches the infinite

temperature. This situation is similar to what happens for driving with random periods26. On the

contrary if the period is very short we can expect that the Floquet Hamiltonian converges to the

time averaged Hamiltonian. Since the whole time evolution can be viewed as a single quench to

the Floquet Hamiltonian (right panel in Fig. 2) we expect that the energy will be localized even in

the infinite time limit as long as the Floquet Hamiltonian is well defined and local. Noticing that

the commutator of two local extensive operators is local and extensive we see from Eq. (5) that

the Floquet Hamiltonian is local an extensive in each order of ME. Thus the question of whether

the energy of the system is localized in the infinite time limit or reaches the maximum possible



Problem:	Floquet	Hamiltonians	is	generically	non-local	(non-physical)	

3

FIG. 1: Periodic quench between non-commuting Hamiltoni-
ans H1 and H2 acting for durations T1 and T2 respectively.
The whole system is time periodic with period T = T1 + T2.

For the step like drive between Hamiltonians H1 of
duration T1 and H2 for duration T2 the Floquet Hamil-
tonian is defined as

exp(�iH
F

T ) = exp(�iH1T1) exp(�iH2T2), (1)

where T = T1 + T2. Generally, [H1, H2] 6= 0 which is
the source of complexity. Here we try to identify those
cases when the e↵ective Floquet operator (and therefore
the evolution operator) can be computed in a closed, yet
possibly nontrivial form.

For our discussion of the e↵ective Floquet Hamiltonian
we will need one of the forms of the Baker-Campbell-
Hausdor↵ (BCH) formula, namely

Z = log(eXeY ) = X + Y (2)

+
1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]])

� 1

24
[Y, [X, [X,Y ]]]

� 1

720
([Y, [Y, [Y, [Y,X]]]] + [X, [X, [X, [X,Y ]]]])

+
1

360
([X, [Y, [Y, [Y,X]]]] + [Y, [X, [X, [X,Y ]]]])

+
1

120
([Y, [X, [Y, [X,Y ]]]] + [X, [Y, [X, [Y,X]]]]) + . . .

where we identify X ⌘ �iH1T1, Y = �iH2T2 and Z =
�iH

F

T . From this general formula it becomes clear that
some internal structure of nested commutators must exist
in order to be able to evaluate it in the closed form.
Integrability of H

F

in this paper will be understood as
existence of enough conserved integrals of motion to be
able to diagonalize it.

In this paper we reveal several classes of integrable
Floquet many-body quantum systems. The first class
is formed by the models whose Hamiltonians are lin-
ear combinations of the generators of (in principle) ar-
bitrary Lie algebras. For this class of Hamiltonians there
is no distinction between quantum and classical dynam-
ics, both of which map to a closed system of linear dif-

ferential equations [30–34]. These generators can be al-
ways represented by the linear and bilinear forms of the
creation-annihilation operators, for example using the
bosons or fermions (see the second part of the book [30]
and Ref. [35] for applications). The essential property of
the Lie algebra formed by generators {J

k

} is existence of
the bilinear product (commutator) which maps bilinear
combinations to the linear one. One can generalize this
by considering the following structures for some opera-
tors {J

kj}

[J
k1 , [Jk2 , . . . [Jkn�1 , Jkn ] . . .] =

X

k

ck
k1,k2,...,kn

J
k

(3)

where we have n� 1 nested commutators on the left and
ck
k1,...kn

are the structure constants. In case when they
vanish for certain n the algebra is called nilpotent of order
n. The case of n = 2 defines the Lie algebra, while n > 2
would define more complicated algebraic structures. For
finite n one can regard the operators that are coming out
of n� 1 commutators as additional elements of the alge-
bra. Then if the Hamiltonian can be represented as a lin-
ear combination of these operators, the BCH expansion
is going to produce some closed result. When n = 3 one
can find, for example, a realization of the algebra in terms
of bosons (b

p

, b†
p

) where p = 1, . . . ,m and a Cli↵ord alge-
bra defined by the r-dimensional matrix representation
�µ and satisfying the relations {�µ,�⌫} = 2�µ⌫ where
µ, ⌫ = 1, . . . r. Indeed, defining J

µ

=
P

m

p,q=1(�
µ)

pq

b†
p

b
q

one can show that they satisfy the following condition

[J
µ

, [J
⌫

, J
�

]] = 4J
�

�
µ⌫

� 4J
⌫

�
µ�

(4)

We will not consider physical realizations of this math-
ematical structure here, which might be useful for some
parafermion models. The Lie algebras can also be
infinite-dimensional, like e.g. Kac-Moody, Virasoro or
W1 algebras [36]. In this work we will briefly dis-
cuss only one particular representative of these infinite-
dimensional families, namely the Onsager algebra real-
ized in the case of n = 4 and which is relevant for the
transverse field Ising model.

The second class of the integrable models we con-
sider here is realized by the non-commuting operators
V = exp(↵X) andW = exp(�Y ) for someX and Y , such
that they correspond to addition of rows of horizontal
and vertical edges in integrable classical 2D (square) lat-
tice models. By standard quantum-classical correspon-
dence this class of Floquet systems can be identified with
1D quantum integrable lattice models after the analytic
continuation of ↵ = �iT1 and � = �iT2 to the com-
plex plane. In the Floquet language these models cor-
respond to switching between the Hamiltonians realizing
the transfer matrices (see Fig. 1).

In the theory of classical integrable lattice models two
types of the transfer matrices are known: row-to row
transfer matrices related to the second class and the cor-
ner transfer matrices. So, the third class of models we
consider here is related to the corner transfer matrices

Believed	to	be	generically	
asympto0c	expansions	
unless	commutators	form	
a	closed	finite	dimensional	
algebra	(e.g.	non-
interac0ng	systems).		

Possible	ways	out	
	
•  High	driving	frequencies	(reduced	or	even	zero	hea0ng)	

	
•  Weak	coupling	to	environment	(experiments	+	theory)	

•  MBL	(strongly	disordered	systems).		



Alterna0ve	idea:	use	protocols	which	approximately	realize	integrable	
stat.	mech.	transfer	matrices.	Here	specifically	Boost	models.		

Take	an	integrable	Hamiltonian	H0	with	integrals	of	mo0on	Qn,	Q2=H0.		
One	can	define	the	boost	operator	B:	

Example:	XXZ	model	

Boost	operator	is	an	analogue	of	electric	field.	Has	
commensurate	spectrum	(M.	P.	Grabowski	and	P.	Mathieu,	1995).			



Consider	a	general	(periodic	or	not	protocol)	

Transforma0on	is	periodic	with	period	T	if		

Examples:	periodic	Floquet	driving		

Quench 		

Go	to	the	rota0ng	frame:	



Periodic	rota0ng	frame	Hamiltonian	

The	BCH	series	can	be	resummed	because	only	commutators	of	the	type	

survive	

No	hea0ng	and	realiza0on	of	many	body	energy	revivals	(but	can	
have	nontrivial	phases).	Period	of	revivals	can	be	unrelated	to	the	
driving	period		

Revivals	at																								Extension	of	Bloch	oscilla0ons	to	a	nontrivial	model		



Summary	Part	II	

•  There	are	nontrivial	Floquet	protocols	which	do	not	lead	to	hea0ng	

•  One	can	realize	periodic	or	not	many-body	revivals	(generaliza0on	of	
Bloch	oscilla0ons)	in	Boost	models.	Related	ideas	(L.	Vidmar,	M.	Rigol,	PRX	
2017)	

•  Possible	extensions	to	generic	nonintegrable	systems	realizing	
approximate,	prethermalized	type,	dissipa0onless	regimes.	
Connec0ons	with	counterdiaba0c	driving	(D.	Sels	poster).	


