The kicked rotor: from classical chaos to integer quantum Hall effect

Chushun Tian

Institute of theoretical Physics Chinese Academy of Sciences

Outline

- A review of kicked rotor
- Planck's quantum-driven IQHE from chaos
- formulation of problem and summary of main results
- 2. analytic theory
- 3. numerical confirmation
- 4. chaos origin
- Conclusion and outlook

Outline

- A review of kicked rotor
- Planck's quantum-driven IQHE from chaos
- formulation of problem and summary of main results
- 2. analytic theory
- 3. numerical confirmation
- 4. chaos origin
- Conclusion and outlook

What is kicked rotor? What is the problem?

 $\hat{H} = \frac{l^2}{2I} + K \cos \theta \sum_m \delta(t - mT)$ $\hbar T/I \to h_e$ $KT/I \to K$ $lT/I \to l$ $t/T \to t$

a free rotating particle under the influence of sequential timeperiodic driving

controlled by two parameters:

- Planck's quantum h_e
- nonlinear parameter K

$$E(t) = \langle \psi(t) | \left(-\frac{\hbar^2}{2I} \frac{\partial^2}{\partial \theta^2} \right) | \psi(t) \rangle?$$

h_e→0 :Chirikov standard map - the birth of classical KR

NUCLEAR PHYSICS INSTITUTE OF THE SIMUL-SECTION OF THE USSR ACADEMY OF SCIENCE Report 267

RESEARCH CONCERNING THE THEORY OF NON-LINEAR RESONANCE AND STOCHASTICIT'S

B.V. Chirikov

Novosibirsk, 1969

Why "Chirikov standard map" standard?

or

$$\begin{split} \omega_{n+1} &= \omega_n + \varepsilon \cdot \cos 2\pi \psi_n \\ \psi_{n+1} &= \left\{ \psi_n + \frac{T}{2\pi} \omega_{n+1} \right\} \end{split} (2.1.15)$$

Here the curly brackets represent the fractional part of the argument -- a convenient way of specifying the periodic dependence. The coefficients of the model equations (2.1.14) and (2.1.15) are selected so that the Jacobian $|\partial(\omega_{n+1}, \psi_{n+1})/\partial(\omega_n, \psi_n)| = 1$ exactly. The reasons for the choice of two forms of dependence on ψ will be clear from what follows (see Section 2.4).

We chose for our basic model (2.1.11) a perturbation in the form of short kicks, essentially in the form of a δ -function. This choice is not very special or exceptional; on the contrary, it is typical, since the sum in the right-hand part (2.1.6), when there are a large number of terms, actually represents either a short kick (or series of kicks) or frequency-modulated perturbation. In the latter case periodic crossing of the resonance takes place, which according to the results of Section 1.5 is also equivalent to some kick [(1.5.7) and (1.5.9)]. Thus it can be expected that the properties of model (2.1.11) will be in a sense typical for the problem of the interaction of the resonances and stochasticity.

classical KR

$$l_{n+1} = l_n + K \sin \theta_{n+1} \qquad K=0 \qquad l_{n+1} = l_n$$

$$\theta_{n+1} = \theta_n + l_n \qquad \theta_{n+1} = \theta_n + l_n$$

Liouville integrability: •regular foliation of phase space •action variables = complete sets of invariants of Hamiltonian flow

classical KR

 $l_{n+1} = l_n + K \sin \theta_{n+1}$ $\theta_{n+1} = \theta_n + l_n$

from B. Chirikov and D. Shepelyansky, Scholarpedia 3, 3550 (2008)

transition from weak chaoticity (KAM, confined motion in angular momentum *l* space) to strong chaoticity (deconfined motion in *l* space)

classical KR

 $l_{n+1} = l_n + K \sin \theta_{n+1}$ large and general K : lose memory on θ random walk in *l*-space $\theta_{n+1} = \theta_n + l_n$ $\frac{E(t)}{t} = const.$

from B. Chirikov and D. Shepelyansky, Scholarpedia 3, 3550 (2008)

transition from "classical insulator" to "classical normal metal"

h_e>0 :QKR

Casati, G., Chirikov, B. V., Ford, J. and Izrailev, F. M. Lecture Notes in Physics 93, 334-352 (1979).

take a cloud of cold atoms, each of which is a two-level system

mass: M dipole moment:

K

 •subjected to two counterpropagating laser beams → dipole-electric field coupling

 $\mu E_o \cos(k_L x) e^{-i\omega_L t} |e\rangle \langle g| + H.c.$

field amplitude: E₀ wavenumber: k_L wave frequency: 0_L

 $\hbar\omega_0$

|g
angle

 $|e\rangle$

mass: M dipole moment:

•Schroedinger equation of ground state wave function

field amplitude: E₀ wavenumber: k_L wave frequency: 0_L

 $\hbar\omega_0$

 $|e\rangle$

 $|g\rangle$

$$= -\frac{\hbar^2}{2M} \frac{\partial^2}{\partial x^2} \psi_g + \frac{\hbar \Omega^2}{4\delta_L} \cos^2(k_L x) \psi_g$$

Rabi frequency: $\Omega = \frac{\mu E_0}{\hbar}$

detuning : $\delta_L = \omega_0 - \omega_L$

mass: M dipole moment: []

dynamical-Anderson localization analogy

Bloch-Floquet theory mapping to Anderson-like model

$$\begin{split} \hat{U}|\phi_{\alpha}\rangle &= e^{i\omega_{\alpha}}|\phi_{\alpha}\rangle\\ \hat{U}|\phi_{\alpha}(t)\rangle &= e^{i\omega_{\alpha}t}|\phi_{\alpha}(t)\rangle\\ |\phi_{\alpha}(t+1)\rangle &= |\phi_{\alpha}(t)\rangle\\ \phi_{\alpha}(n) &= \langle n|\phi_{\alpha}\rangle \end{split}$$

 \hat{U} : Floquet operator $\phi_{\alpha}(t)$: eigenstate ω_{α} : quasi - eigen energy
$$\begin{split} \bar{\phi}_{\alpha}(n) &= \frac{1}{2} (\langle n\tilde{h} | \phi_{\alpha}^{+} \rangle + \langle n\tilde{h} | \phi_{\alpha}^{-} \rangle) \\ |\phi_{\alpha}^{+} \rangle &= e^{iK\cos\hat{\theta}/\tilde{h}} | \phi_{\alpha}^{-} \rangle \\ \frac{\tan(\omega - \tilde{h}n^{2}/2)\bar{\phi}_{\alpha}(n) + \sum_{r} W_{n-r}\bar{\phi}_{\alpha}(r) = 0 \\ \hat{W} &= -\tan(K\cos\hat{\theta}/2\tilde{h}) \\ W_{n} \text{ rapidly decays away at } |n| > K/\tilde{h} \end{split}$$

 $\phi_{\alpha}^{\pm}(t)$: the value of $\phi_{\alpha}(t)$ right after (before) kicking

pseudo-randomness at irrational $h/(4\pi)$

Fishman, S., DR. Grempel and RE. Prange, Phys. Rev. Lett. 49 (1982) 508.

dynamical-Anderson localization analogy

???

Bloch-Floquet theory mapping to Anderson-like model

 $\begin{aligned} \hat{U}|\phi_{\alpha}\rangle &= e^{i\omega_{\alpha}}|\phi_{\alpha}\rangle\\ \hat{U}|\phi_{\alpha}(t)\rangle &= e^{i\omega_{\alpha}t}|\phi_{\alpha}(t)\rangle\\ |\phi_{\alpha}(t+1)\rangle &= |\phi_{\alpha}(t)\rangle\\ \phi_{\alpha}(n) &= \langle n|\phi_{\alpha}\rangle \end{aligned}$

 \hat{U} : Floquet operator $\phi_{\alpha}(t)$: eigenstate ω_{α} : quasi - eigen energy
$$\begin{split} \bar{\phi}_{\alpha}(n) &= \frac{1}{2} (\langle n\tilde{h} | \phi_{\alpha}^{+} \rangle + \langle n\tilde{h} | \phi_{\alpha}^{-} \rangle) \\ |\phi_{\alpha}^{+} \rangle &= e^{iK\cos\hat{\theta}/\tilde{h}} | \phi_{\alpha}^{-} \rangle \\ \frac{\tan(\omega - \tilde{h}n^{2}/2)\bar{\phi}_{\alpha}(n) + \sum_{r} W_{n-r}\bar{\phi}_{\alpha}(r) = 0 \\ \hat{W} &= -\tan(K\cos\hat{\theta}/2\tilde{h}) \\ W_{n} \text{ rapidly decays away at } |n| > K/\tilde{h} \end{split}$$

 $\phi_{\alpha}^{\pm}(t)$: the value of $\phi_{\alpha}(t)$ right after (before) kicking no disorders! highly nonlinear!

Fishman, S., DR. Grempel and RE. Prange, Phys. Rev. Lett. 49 (1982) 508.

Ehrenfest time effects

CT, A. Kamenev, and A. Larkin, Phys. Rev. Lett. 93, 124101 (2004); Phys. Rev. B 72, 045108 (2005).

Ehrenfest time effects

transition in C(t)before Ehrenfest time:C(t) grows exponentiallywith a constant rate 00.

•after Ehrenfest time:
 The growth rate decays in t.

out-of-time-ordered correlator: $C(t) = h_e^2 \langle [\hat{n}(t), \hat{n}(0)]^2 \rangle$

E. B. Rozenbaum, S. Ganeshan, and V. Galitski, Phys. Rev. Lett. 118, 086801 (2017)

sensitivity to the value of $h_e/(4\pi)$: $h_e/(4\pi) = p/q$ small q: nonuniversal

Izrailev and Shepelyansky '79 '80

$E(t) \sim t^2$

supermetal

 \hat{U} invariant under the translation : $\hat{n} \rightarrow \hat{n} + q$

perfect crystal, no dissipation

sensitivity to the value of $h_e/(4\pi)$: $h_e/(4\pi) = p/q$ large q: universal

Rescaled E(t) exhibits a universal metal-supermetal dynamics crossover:

$$F(\tilde{t}) = \frac{1}{8} \int_{1}^{\infty} d\lambda_1 \int_{1}^{\infty} d\lambda_2 \int_{-1}^{1} d\lambda \delta(2\tilde{t} + \lambda - \lambda_1\lambda_2)$$

$$\times \frac{(1-\lambda^2)(1-\lambda^2-\lambda_1^2-\lambda_2^2+2\lambda_1^2\lambda_2^2)^2}{(\lambda^2+\lambda_1^2+\lambda_2^2-2\lambda\lambda_1\lambda_2-1)^2}.$$
 (23)

P. Fang, CT, and J. Wang, Phys. Rev. B 92, 235437 (2015).

sensitivity to the value of $h_e/(4\pi)$: $h_e/(4\pi) = p/q$ large q: universal

P. Fang, CT, and J. Wang, Phys. Rev. B 92, 235437 (2015).

Rescaled E(t) exhibits a universal metal-supermetal dynamics crossover:

$$F(\tilde{t}) = \frac{1}{8} \int_{1}^{\infty} d\lambda_1 \int_{1}^{\infty} d\lambda_2 \int_{-1}^{1} d\lambda \delta(2\tilde{t} + \lambda - \lambda_1\lambda_2)$$

$$\times \frac{(1-\lambda^2)(1-\lambda^2-\lambda_1^2-\lambda_2^2+2\lambda_1^2\lambda_2^2)^2}{(\lambda^2+\lambda_1^2+\lambda_2^2-2\lambda\lambda_1\lambda_2-1)^2}.$$
 (23)

universality class of metalsupermetal dynamics crossover = universality class of RMT QKR can simulate:
1D disordered solids;
1D perfect crystal.

QKR can simulate: 1D disordered solids; •1D perfect crystal. beyond 1D?

exploring d-dimensional physics in 1D

$$i\hbar\frac{\partial\psi}{\partial t} = \left[H_0(\hat{n}_1) + V(\hat{\theta}_1, \theta_2 + \widetilde{\omega}_2 t, \dots, \theta_d + \widetilde{\omega}_d t)\sum_k \delta(t-k)\right]\psi = \hat{H}\psi$$

 $\widetilde{\omega}_2, ..., \widetilde{\omega}_d$: modulation frequencies

$$\psi \to e^{-\sum_{i=2}^{d} \widetilde{\omega}_{i} t} \frac{\partial}{\partial \theta_{i}} \psi, \quad \hat{H} \to e^{-\sum_{i=2}^{d} \widetilde{\omega}_{i} t} \frac{\partial}{\partial \theta_{i}} \hat{H} e^{\sum_{i=2}^{d} \widetilde{\omega}_{i} t} \frac{\partial}{\partial \theta_{i}}$$

$$i\hbar\frac{\partial\psi}{\partial t} = \left[H_0(\hat{n}_1) + \sum_{i=2}^d \hbar\widetilde{\omega}_i \hat{n}_i + V(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_d) \sum_k \delta(t-k)\right] \psi, \ \hat{n}_i = -i\frac{\partial}{\partial\theta_i}$$

1D quasiperiodic QKR driven by (d-1)frequencies = d-D periodic QKR

G. Casati, I. Guarneri, and D. L. Shepelyansky, Phys. Rev. Lett. 62, 345 (1989).

quasiperiodic QKR: irrational $h_e/(4\pi)$

experiment (QKR): $v = 1.63 \pm 0.05$ simulations (QKR): $v = 1.59 \pm 0.01$ simulations (Anderson transition): $v = 1.571 \pm 0.008$

 $H = \frac{p^2}{2} + K \cos x \left(1 + \varepsilon \cos(\omega_2 t) \cos(\omega_3 t)\right) \sum_n \delta(t - n)$ J. Chabe et al., Phys. Rev. Lett. 101, 255702 (2008); G. Lemarie et al., ibid. 105, 090601 (2010).

quasiperiodic QKR: rational $h_e/(4\pi)$

- Anderson insulator turned into supermetal $(E \sim t^2)$;
- Anderson metal-insulator transition turned into metalsupermetal transition

CT, A. Altland, and M. Garst, Phys. Rev. Lett. 107, 074101 (2011) J. Wang, CT, and A. Altland, Phys. Rev. B 89, 195105 (2014) rich Planck's quantum-driven phenomena in spinless kicked rotors;

associated with the restoration (breaking) of translation symmetry in the angular momentum space.

spinful kicked rotor?

Outline

- A review of kicked rotor
- Planck's quantum-driven IQHE from chaos
- 1. formulation of problem and summary of main results
- 2. analytic theory
- 3. numerical confirmation
- 4. chaos origin
- Conclusion and outlook

Outline

- A review of kicked rotor
- Planck's quantum-driven IQHE from chaos
- formulation of problem and summary of main results
- 2. analytic theory
- 3. numerical confirmation
- 4. chaos origin
- Conclusion and outlook

$$\hat{H} = rac{\hat{l}_1^2}{2} + \sum_m V(heta_1, heta_2 + ilde{\omega}t)\delta(t-m)$$

 $\hbar T/I \rightarrow h_e$

 $l_1T/I \rightarrow l_1$

 $t/T \rightarrow t$

 $\widetilde{\omega}T \to \widetilde{\omega}$

incommensurate with 2π

$$V(\theta_1, \theta_2 + \widetilde{\omega}t) = \sum_{i=1}^{i} V_i(\theta_1, \theta_2 + \widetilde{\omega}t)\sigma^i$$
$$\equiv \vec{V} \cdot \vec{\sigma}$$

 σ^i : Pauli matrix

Y. Chen and CT, Phys. Rev. Lett. 113, 216802 (2014) CT, Y. Chen, and J. Wang, Phys. Rev. B 93, 075403 (2016) (38 pages)

$$\hat{H} = \frac{\hat{l}_1^2}{2} + \sum_m V(\theta_1, \theta_2 + \tilde{\omega}t)\delta(t-m)$$

incommensurate with 2π $V(\theta_1, \theta_2 + \widetilde{\omega}t) = \sum_{i=1}^{3} V_i(\theta_1, \theta_2 + \widetilde{\omega}t)\sigma^i$ $\equiv \vec{V} \cdot \vec{\sigma}$ σ^i : Pauli matrix

$$\hat{H} = rac{\hat{l}_1^2}{2} + \sum_m V(heta_1, heta_2 + ilde{\omega}t)\delta(t-m)$$

incommensurate with 2π

even

	H I I I I I I I I I I I I I I I I I I I

2	TABLE I	II. Parities	of V_i .
	$V_1(\theta_1, \theta_2)$	$V_2(heta_1, heta_2)$	$V_3(heta_1, heta_2)$
h_1	odd	even	even

odd

even

symmetry class A

$$\hat{H} = rac{\hat{l}_1^2}{2} + \sum_m V(heta_1, heta_2 + ilde{\omega}t)\delta(t-m)$$

 θ_1

incommensurate with 2π

$$V(\theta_1, \theta_2 + \widetilde{\omega}t) = \sum_{i=1}^3 V_i(\theta_1, \theta_2 + \widetilde{\omega}t)\sigma^i$$
$$\equiv \vec{V} \cdot \vec{\sigma}$$

$$E(t)\equiv -rac{1}{2}\langle\!\langle ilde{\psi}_t|\partial^2_{ heta_1}| ilde{\psi}_t
angle\!
angle_{ heta_2}$$

$$\hat{H} = rac{\hat{l}_1^2}{2} + \sum_m V(heta_1, heta_2 + ilde{\omega}t)\delta(t-m)$$

incommensurate with 2π

$$V(\theta_1, \theta_2 + \widetilde{\omega}t) = \sum_{i=1}^3 V_i(\theta_1, \theta_2 + \widetilde{\omega}t)\sigma^i$$
$$\equiv \vec{V} \cdot \vec{\sigma}$$

Microscopically, controlled by single parameter – Planck's quantum $h_{e.}$

$$\hat{H} = rac{\hat{l}_1^2}{2} + \sum_m V(heta_1, heta_2 + ilde{\omega}t)\delta(t-m)$$

incommensurate with 2π

$$V(\theta_1, \theta_2 + \widetilde{\omega}t) = \sum_{i=1}^3 V_i(\theta_1, \theta_2 + \widetilde{\omega}t)\sigma^i$$
$$\equiv \vec{V} \cdot \vec{\sigma}$$

Macroscopically, controlled by two phase parameters – energy growth rate (EGR) and (hidden) quantum number namely quantized topological theta angle.
Planck's quantum-driven IQHE (I) Planck's quantum dependence of EGR – E(t)/t

EGR at large t

for almost all Planck's quantum, EGR vanishes at large *t* limit \rightarrow insulator

Planck's quantum-driven IQHE (I)

Planck's quantum-driven IQHE(II)

Planck's quantum-driven IQHE (III)

Planck's quantum-driven IQHE (III)

Planck's quantum-driven IQHE(VI)

Planck's quantum-driven IQHE(VI)

Integer quantum Hall effect

two dimensional electron gas (MOSFET) strong magnetic field

quantized Hall conductance

Claus von Klitzing

phenomenological analogy to conventional IQHE

- energy growth rate → longitudinal conductivity
- inverse Planck's quantum → filling fraction

fundamental differences from conventional IQHE

- no magnetic field, no electromagnetic response, driven by Planck's quantum
- strong chaoticity origin
- one-body system → no concept such as integer filling
- one-dimensional, far-from equilibrium system
- no translation symmetry, no adiabatic parameter cycle → TKNN?
- semiclassical regime (small Planck's quantum)

fundamental differences from conventional IQHE

- no magnetic field, no electromagnetic response, driven by Planck's quantum
- modulation frequency commensurate with $2\pi \rightarrow$ always insulator
- one-body system → no concept such as integer filling
- one-dimensional, far-from equilibrium system
- no translation symmetry, no adiabatic parameter cycle → TKNN?
- semiclassical regime (small Planck's quantum)

fundamental differences from conventional IQHE

- no magnetic field, no electromagnetic response, driven by Planck's quantum
- modulation frequency commensurate with $2\pi \rightarrow$ always insulator

 $I = -\frac{1}{4\pi} \iint d\theta_1 d\theta_2 \left(\partial_{\theta_1} \frac{V}{V} \times \partial_{\theta_2} \frac{V}{V} \right) \cdot \frac{V}{V}$

- one-body system → no concept such as integer filling
- one-dimensional, far-from equilibrium system

• semiclassical regime (small Planck's quantum)

Outline

- A review of kicked rotor
- Planck's quantum-driven IQHE from chaos
- formulation of problem and summary of main results
- 2. analytic theory
- 3. numerical confirmation
- 4. chaos origin
- Conclusion and outlook

mapping onto 2D periodic quantum dynamics

$$\psi_t = \hat{U}^t \psi_0, \quad \hat{U} \equiv e^{-\frac{i}{h_e}V(\theta_1, \theta_2)} e^{-\frac{i}{2}(h_e \hat{n}_1^2 + 2\tilde{\omega}\hat{n}_2)}$$

 introduce supervector=(complex/bosonic number, Grassmann/fermionic number): ψ = (φ, χ)^T and express K_ω in terms a functional integral over ψ

 $K_{\omega} = \int D(\bar{\psi}, \psi) X[\bar{\psi}, \psi] \left\langle \exp\left(-\bar{\psi}G^{-1}\psi\right) \right\rangle_{\omega_{0}}$ $X[\bar{\psi}, \psi] = \bar{\psi}_{N's'_{+}b_{+}}\psi_{Ns_{+}b_{+}}\bar{\psi}_{Ns_{-}b_{-}}\psi_{N's'_{-}b_{-}}.$ $G^{-1} = \operatorname{diag}\left((1 - e^{i\omega_{+}}\hat{U})^{-1}, (1 - e^{-i\omega_{-}}\hat{U}^{\dagger})^{-1}\right)_{ar}$ $\pm : \operatorname{advanced/retarded space}$ $b/f : \operatorname{bosonic/fermionic}\left(\operatorname{supersymmetry}\right) \operatorname{space}$ $s : \operatorname{spin} \operatorname{index}$

 no Hubbard-Stratonovich transformation, instead, color-flavor transformation (Zirnbauer '96)

$$\left\langle e^{\Psi_1^{\mathsf{T}} e^{i\omega_0}\Psi_{2'} + \Psi_2^{\mathsf{T}} e^{-i\omega_0}\Psi_{1'}} \right\rangle_{\omega_0} = \int d\mu(\tilde{Z}, Z) e^{\Psi_1^{\mathsf{T}} Z \Psi_{1'} + \Psi_2^{\mathsf{T}} \tilde{Z} \Psi_2}$$
$$d\mu(Z, \tilde{Z}) \equiv d(Z, \tilde{Z}) \operatorname{sdet}(1 - Z\tilde{Z})$$

 $= d(Z, \tilde{Z}) \exp \operatorname{str} \ln(1 - Z\tilde{Z})$

 no Hubbard-Stratonovich transformation, instead, color-flavor transformation (Zirnbauer '96)

$$\left\langle e^{\Psi_{1}^{T}e^{i\omega_{0}}\Psi_{2'}+\Psi_{2}^{T}e^{-i\omega_{0}}\Psi_{1'}}\right\rangle_{\omega_{0}} = \int d\mu(\tilde{Z}, Z) e^{\Psi_{1}^{T}Z\Psi_{1'}+\Psi_{2}^{T}\tilde{Z}\Psi_{2'}}$$

 $d\mu(Z, \tilde{Z}) \equiv d(Z, \tilde{Z}) \operatorname{sdet}(1 - Z\tilde{Z})$ $= d(Z, \tilde{Z}) \operatorname{exp} \operatorname{str} \ln(1 - Z\tilde{Z})$

$$\int d\mu (Z, \widetilde{Z}) (\cdots) = \int_{M_B \times M_F} dQ (\cdots)$$

 $M_B = \frac{U(1,1)}{U(1) \times U(1)}$

$$T = \begin{pmatrix} 1 & Z \\ \tilde{Z} & 1 \end{pmatrix}_{ar}$$

 $Q \equiv T^{-1}\Lambda T$

$$\Lambda = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)_{ar}$$

 $M_F = \frac{U(2)}{U(1) \times U(1)}$

 no Hubbard-Stratonovich transformation, instead, color-flavor transformation (Zirnbauer '96)

$$\begin{aligned} \left\langle e^{\Psi_1^{\mathsf{T}} e^{i\omega_0} \Psi_{2'} + \Psi_2^{\mathsf{T}} e^{-i\omega_0} \Psi_{1'}} \right\rangle_{\omega_0} &= \int d\mu(\tilde{Z}, Z) e^{\Psi_1^{\mathsf{T}} Z \Psi_{1'} + \Psi_2^{\mathsf{T}} \tilde{Z} \Psi_{2'}} \\ d\mu(Z, \tilde{Z}) &\equiv d(Z, \tilde{Z}) \operatorname{sdet}(1 - Z\tilde{Z}) \\ &= d(Z, \tilde{Z}) \operatorname{exp} \operatorname{str} \ln(1 - Z\tilde{Z}) \\ \tilde{Z}_{b,b} &= Z_{b,b}^{\dagger} \\ |Z_{b,b} Z_{b,b}^{\dagger}| < 1 \end{aligned}$$

Supermatrix field Z describes the collective mode of coherent motion.

- express K_{ω} in terms a functional integral over ψ and Z, with an action quadratic in ψ
- functional integral expression for K_{ω} $K_{\omega}(Ns_{+}s_{-}, N's'_{+}s'_{-})$ $= \int D(Z, \widetilde{Z})e^{-S[Z,\widetilde{Z}]}((1 - Z\widetilde{Z})^{-1}Z)_{Ns_{+}b,Ns_{-}b}((1 - \widetilde{Z}Z)^{-1}\widetilde{Z})_{N's'_{+}b,N's'_{-}b}$

 $S[Z, \tilde{Z}] = -\operatorname{Str}\ln(1 - Z\tilde{Z}) + \operatorname{Str}\ln(1 - e^{i\omega}\hat{U}Z\hat{U}^{\dagger}\tilde{Z})$

- In general, Z_{NN}[,] is off-diagonal in angular momentum space;
- (N+N')/2 is center-of-mass coordinate of the coherent motion, while the off-diagonality encodes the information of the angular relaxation;
- Strong chaoticity renders the memory about the angle lost
 → off-diagonality is eliminated.

$$\pi_2\left(\frac{U(1,1)}{U(1)\times U(1)}\times \frac{U(2)}{U(1)\times U(1)}\right) = \mathbb{Z}$$

- In general, $Z_{NN'}$ is off-diagonal in angular momentum space;
- (N+N')/2 is center-of-mass coordinate of the coherent motion, while the off-diagonality encodes the information of the angular relaxation;
- Strong chaoticity renders the memory about the angle lost
 → off-diagonality is eliminated.

$$S[Q]|_{\omega=0} = \operatorname{Str}\ln\left(\epsilon + iQ\right),$$

$$\epsilon \equiv \epsilon_i \sigma^i, \quad \epsilon_i = \cot\frac{|V|}{2h_e} \frac{|V_i|}{|V|}.$$

Analytic theory (VI) 2nd order hydrodynamic expansion (supersymmetry version of Pruisken's replica field theory)

$$S[Q] = \frac{1}{4} \operatorname{Str} \left(-\sigma (\nabla Q)^2 + \sigma_{\mathrm{H}} Q \nabla_1 Q \nabla_2 Q - 2i \omega Q \Lambda \right)$$

topological θ -term: first time seen to emerge from microscopic chaos

bare coupling constants

$$\sigma = 2 \iint \frac{d\theta_1}{2\pi} \frac{d\theta_2}{2\pi} \frac{\partial_{\theta_1} \epsilon_i \partial_{\theta_1} \epsilon_i}{(\epsilon^2 + 1)^2},$$

$$\sigma_{\rm H} = 4\epsilon^{ijk} \iint \frac{d\theta_1}{2\pi} \frac{d\theta_2}{2\pi} \hat{O}\left(\frac{\partial_{\theta_1} \epsilon_j \partial_{\theta_2} \epsilon_k}{(\epsilon^2 + 1)^2}\right)$$

$$\epsilon_i = \cot \frac{|V|}{2h_e} \frac{V_i}{|V|} \quad \hat{O} \equiv \epsilon_i + \int d\mu \partial_\mu \epsilon_i$$

Analytic theory (VI) 2nd order hydrodynamic expansion (supersymmetry version of Pruisken's replica field theory)

$$S[Q] = \frac{1}{4} \operatorname{Str} \left(-\sigma (\nabla Q)^2 + \sigma_{\mathrm{H}} Q \nabla_1 Q \nabla_2 Q - 2i\omega Q \Lambda \right)$$

$$\sigma \sim h_e^{-2}$$

 $\sigma_{\rm H} \sim h_e^{-1}$

bare coupling constants

$$\sigma = 2 \iint \frac{d\theta_1}{2\pi} \frac{d\theta_2}{2\pi} \frac{\partial_{\theta_1} \epsilon_i \partial_{\theta_1} \epsilon_i}{(\epsilon^2 + 1)^2},$$

$$\sigma_{\rm H} = 4\epsilon^{ijk} \iint \frac{d\theta_1}{2\pi} \frac{d\theta_2}{2\pi} \hat{O}\left(\frac{\partial_{\theta_1} \epsilon_j \partial_{\theta_2} \epsilon_k}{(\epsilon^2 + 1)^2}\right)$$

$$\epsilon_i = \cot \frac{|V|}{2h_e} \frac{V_i}{|V|} \quad \hat{O} \equiv \epsilon_i + \int d\mu \partial_\mu \epsilon_i.$$

2nd order hydrodynamic expansion (supersymmetry version of Pruisken's topological field theory)

$$S[Q] = \frac{1}{4} \operatorname{Str}\left(-\sigma (\nabla Q)^2 + \sigma_{\mathrm{H}} Q \nabla_1 Q \nabla_2 Q - 2i\omega Q \Lambda\right)$$

short-time energy growth rate

"classical Hall conductivity"

bare coupling constants

$$\sigma = 2 \iint \frac{d\theta_1}{2\pi} \frac{d\theta_2}{2\pi} \frac{\partial_{\theta_1} \epsilon_i \partial_{\theta_1} \epsilon_i}{(\epsilon^2 + 1)^2},$$

$$\sigma_{\rm H} = 4\varepsilon^{ijk} \iint \frac{d\theta_1}{2\pi} \frac{d\theta_2}{2\pi} \hat{O}\left(\frac{\partial_{\theta_1} \epsilon_j \partial_{\theta_2} \epsilon_k}{(\epsilon^2 + 1)^2}\right)$$

$$\epsilon_i = \cot \frac{|V|}{2h_e} \frac{V_i}{|V|} \quad \hat{O} \equiv \epsilon_i + \int d\mu \partial_\mu \epsilon_i$$

renormalization group analysis
 recipe: background field formalism (Pruisken '80)

minimal coupling to the effective field theory -"virtual electromagnetic response"

"transport parameters"

$$\begin{aligned} \mathscr{U} &= e^{i(n_1 j_1 \tau_1 + n_2 j_2 \tau_2)}, \\ \tau_i &= \sigma^i_{ar} \otimes \mathbb{E}_{ff}, \end{aligned}$$
$$\nabla_{\alpha} \to \nabla_{\alpha} + [\mathscr{U} \nabla_{\alpha} \mathscr{U}^{-1},]. \end{aligned}$$

$$\tilde{\sigma} \equiv -\frac{1}{4\Omega} \partial_{j_1}^2 \mathcal{Z}[\mathscr{U}]|_{j_{1,2}\to 0,\omega\to 0}$$

$$\tilde{\sigma}_{\rm H} \equiv \frac{1}{2i\Omega} \partial_{j_1 j_2}^2 \mathcal{Z}[\mathcal{U}]|_{j_{1,2}\to 0, \omega\to 0},$$

renormalization group analysis
 recipe: background field formalism (Pruisken '80)

minimal coupling to the effective field theory -"virtual electromagnetic response"

"transport parameters"

$$\begin{aligned} \mathscr{U} &= e^{i(n_1 j_1 \tau_1 + n_2 j_2 \tau_2)}, \\ \tau_i &= \sigma_{ar}^i \otimes \mathbb{E}_{ff}, \end{aligned}$$
$$\begin{aligned} \nabla_\alpha \to \nabla_\alpha + [\mathscr{U} \nabla_\alpha \mathscr{U}^{-1},]. \\ \tilde{\sigma} &= -\frac{\sigma}{4\Omega} \langle \operatorname{Str} \left(Q \tau_1 Q \tau_1 - \tau_1^2 \right) \rangle_\eta \\ &+ \frac{\sigma^2}{4\Omega} \langle \left(\operatorname{Str} \left(\tau_1 Q \nabla_1 Q \right) \right)^2 \rangle_\eta, \end{aligned}$$
$$\tilde{\sigma}_{\mathrm{H}} &= \sigma_{\mathrm{H}} - \frac{\sigma}{4\Omega} \langle \operatorname{Str} \left(\tau_3 Q \varepsilon_{\alpha\beta} n_\alpha \nabla_\beta Q \right) \rangle_\eta \\ &+ \frac{i\sigma^2}{2\Omega} \langle \operatorname{Str} \left(\tau_1 Q \nabla_1 Q \right) \operatorname{Str} \left(\tau_2 Q \nabla_2 Q \right) \rangle_\eta \end{aligned}$$

 $\langle \cdot \rangle_{\eta} \equiv \int D(Q)(\cdot)e$

perturbative + nonperturbative instanton corrections

 $\tilde{\sigma} = \sigma + \delta \sigma_p + \delta \sigma_{np}$

 $\delta\sigma_p = \sigma\left(\frac{1}{2} - \frac{1}{d}\right) \langle 0|(-\sigma\nabla^2)^{-1}|0\rangle^2,$

 $\tilde{\sigma}_{\rm H} = \sigma_{\rm H} + \delta \sigma_{{\rm H},np}$

renormalization of short-time energy growth rate

$$\delta\sigma_{np} = -\frac{32\pi}{e} \int \frac{d\lambda}{\lambda} (\sigma^2 + \mathcal{O}(\sigma)) \\ \times e^{-4\pi\sigma \left(1 + \frac{A_2}{\sigma^2}\right)} \cos 2\pi\sigma_{\rm H}.$$

renormalization of topological angle

$$\begin{aligned} \delta\sigma_{\mathrm{H},np} &= -\frac{64\pi}{e} \int \frac{d\lambda}{\lambda} (\sigma^2 + \mathcal{O}(\sigma)) \\ &\times e^{-4\pi\sigma \left(1 + \frac{A_2}{\sigma^2}\right)} \sin 2\pi\sigma_{\mathrm{H}}. \end{aligned}$$

two-parameter renormalization group flow

$$\frac{d\tilde{\sigma}}{d\ln\tilde{\lambda}} = \beta_{\mathrm{L},p}(\tilde{\sigma}) + \beta_{\mathrm{L},np}(\tilde{\sigma},\tilde{\sigma}_{\mathrm{H}}) \equiv \beta_{\mathrm{L}}(\tilde{\sigma},\tilde{\sigma}_{\mathrm{H}}),$$

$$\frac{d\tilde{\sigma}_{\rm H}}{d\ln\tilde{\lambda}} = \beta_{\rm H}(\tilde{\sigma}, \tilde{\sigma}_{\rm H}),$$

two-parameter renormalization group flow

•estimation of critical energy growth rate

$$\beta_L\Big|_{\widetilde{\sigma}_H = n + \frac{1}{2}} = 0$$

$$\int_{\sigma^*}^{\sigma^*} \approx 0.44.$$

•estimation of critical exponent

$$\begin{split} \xi &\sim |\sigma_{\rm H}(h_e) - \sigma_{\rm H}(h_e^*)|^{-\nu}, \\ \nu &= \left(\frac{d\beta_{\rm H}}{d\tilde{\sigma}_{\rm H}}\right)^{-1} \Big|_{(\tilde{\sigma}_{\rm H}=n+\frac{1}{2},\tilde{\sigma}=\sigma^*)} \approx 2.75, \end{split}$$

Outline

- A review of kicked rotor
- Planck's quantum-driven IQHE from chaos
- 1. formulation of problem and summary of main results
- 2. analytic theory
- 3. numerical confirmation
- 4. chaos origin
- Conclusion and outlook

Numerical test (*t*<10²): chaoticity

 $V = \frac{2 \arctan 2d}{d} d \cdot \sigma,$ $d = \left(\sin \theta_1, \sin \theta_2, 0.8 (1 - \cos \theta_1 - \cos \theta_2)\right)$

Beenakker et. al. '11

Iinear energy growth in short times

blue dots are simulation results for the energy growth rate in short times;

red line is the theoretical prediction.

 fluctuations of eigen quasi-energies follow
 Wigner-Dyson statistics of unitary type.

Numerical test ($t < 6 \times 10^5$): transition between topological insulating phases Hall plateaux (n=0,1,2,...) critical points (n=1/2,3/2, ...)

• Analytic results for $\sigma_H(h_e)$ predict three transition points at $1/h_e = 0.73, 2.19, 3.60$ for $0.23 < h_e < 1.50$.

Simulations indeed show three transition points at $1/h_e$ =0.77,2.13,3.45.

Simulations show that the growth rate at the critical point is universal.

$$H_0 = (h_e n_1)^2$$
$$H_0 = (h_e n_1)^4$$

Numerical test ($t < 6 \times 10^5$): transition between topological insulating phases Hall plateaux (n=0,1,2,...) critical points (n=1/2,3/2, ...)

► Analytic results for $\sigma_H (h_e)$ predict three transition points at $1/h_e = 0.73, 2.19, 3.60$ for $0.23 < h_e < 1.50$.

Simulations indeed show three transition points at $1/h_e$ =0.77,2.13,3.45.

Simulations show that the growth rate at the critical point is universal.

Simulations show that the transition is robust against the change of H_0 .

Universality of critical energy growth rate

$H_0 = (-ih_e\partial_{\theta_1})^\alpha$	1 st peak	2 nd peak	3 rd peak
$\alpha = 2$	0.22	0.23	0.30
$\alpha = 4$	0.23	0.24	0.30

Universality of critical energy growth rate

 $\sigma^* = 0.25$

expectation from conventional IQHE:

Robustness of Planck's quantum-driven IQHE against the change of kicking potential

 $V = \frac{2 \arctan 2d}{d} d \cdot \sigma,$ $d = (\sin \theta_1, \sin \theta_2, 0.8(1) \cdot \cos \theta_1 - \cos \theta_2))$ μ

Outline

- A review of kicked rotor
- Planck's quantum-driven IQHE from chaos
- formulation of problem and summary of main results
- 2. analytic theory
- 3. numerical confirmation
- 4. chaos origin
- Conclusion and outlook

periodically kicked rotor, with a time period of *q*!

$$\hat{H} = rac{\hat{l}_1^2}{2} + \sum_m V(heta_1, heta_2 + ilde{\omega}t)\delta(t-m)$$

 θ_1

commensurate with 2π

$$\widetilde{\omega} = 2\pi \frac{p}{q}, (p,q)$$
 coprime

$$V(\theta_1, \theta_2 + \widetilde{\omega}t) = \sum_{i=1}^3 V_i(\theta_1, \theta_2 + \widetilde{\omega}t)\sigma^i$$

 $\equiv V \cdot \vec{\sigma}$

Analytic theory (I)

Equivalent 2D system is decomposed into a family of decoupled (quasi) 1D subsystems, each of which is governed by a good quantum number, namely, the Bloch momentum.

$$\pi_{1} \left(\frac{U(1,1)}{U(1) \times U(1)} \times \frac{U(2)}{U(1) \times U(1)} \right) = 0$$

Analytic theory (II)

effective field theory

$$S = \frac{1}{4} \operatorname{Str} \left(-E_q (\nabla_1 Q)^2 - 2i\omega Q\Lambda \right).$$
 NO topological term!

 E_q : energy growth within a single (q) period

energy growth at long times

$$E(\tilde{t}q) \stackrel{\tilde{t}\to\infty}{\sim} \langle E_q^2 \rangle_{\theta_2},$$

Numerical confirmation (I)

rational $\frac{\widetilde{\omega}}{2\pi} = \frac{p}{q}$

no localization-delocalization transitions occurs; the system is always insulating.

scaling behavior of the saturation value confirmed

Numerical confirmation (II)

The equivalent 2D system exhibits ballistic motion in the virtual (n_2) direction.

Conclusions

- a connection between chaos and IQHE
- Planck's quantum ↔ magnetic field;
 energy growth rate ↔ longitudinal conductivity;
 hidden quantum number ↔ quantized Hall

conductivity;

strong chaoticity origin

Outlook

Outlook

more surprises to come!