SPICE Workshop Non-Equilibrium Quantum Matter, Mainz, 5/30/2017

Sound and Solitonic Excitations in Fermionic Superfluids

Martin Zwierlein

Massachusetts Institute of Technology Center for Ultracold Atoms

Strongly Interacting Fermi Systems

A good place to search for exotic physics

Nuclei

Ultracold Gases High-T_c Superconductors

Neutron Star

White dwarf

- A wealth of unusual quantum phases
- Many open qualitative questions (e.g. Pseudo-gap phase in High-Tc materials)
- Highly challenging theoretically ("Fermion Sign Problem")

Ultracold Atomic Fermi Gases

Ideal test-bed for Many-Body physics

Interactions

Geometry

Spin Composition etc...

Realize idealized models of many-body physics

 Benchmarking the many-body problem
 → Unitary Fermi Gas, Fermi-Hubbard Model...
 Create entirely new systems
 → Dipolar Fermi gases

→ Topological Superfluids?

Strong interactions via Feshbach resonances

Little Fermi Collider (LFC)

Without Interactions

Resonant Interactions

A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)

From BEC to BCS

Weakly Interacting Bosons

→ Strongly Interacting Bosons

→ Strongly Interacting Fermions

→ Weakly Interacting Fermions

Demonstration of superfluidity in a Fermi gas

Ultracold gas

Vortex lattices in the BEC-BCS crossover

Establishes *superfluidity* and *phase coherence* in gases of fermionic atom pairs

Do we understand (s-wave) strongly interacting Fermi gases?

e.g.: ground-state energy: $E = \xi \frac{3}{5} N E_F$ $\xi_{\text{Mean-Field}} = 0.59$ $\xi_{\text{Experiment}} = 0.37(1)$

Mark Ku, Ariel Sommer, Lawrence Cheuk, MWZ, Science 335, 563-567 (2012)

Equation of State of a Strongly Interacting Fermi Gas

Mark Ku, Ariel Sommer, Lawrence Cheuk, MWZ, Science **335**, 563-567 (2012) K. Van Houcke, F. Werner, E. Kozik, N. Prokofev, B. Svistunov, M. Ku, A. Sommer, L. Cheuk, A. Schirotzek, MWZ, Nature Physics **8**, 366 (2012)

How about excitations?

Vast body of work: Collective excitations, first sound, second sound, pair breaking excitations (PA, RF, PES), polarons (Innsbruck, Duke/NCSU, Rice, JILA, ENS, Swinburne, Heidelberg, MIT,...)

Regarding the superfluid wavefunction: We know we have matter waves...

But we do not know the wave equation

Solitary Waves as Microscopic Probe

A localized, highly non-linear excitation An excellent probe for the medium in which it propagates Ex: Fiber optics, BEC, Dirac Fields, Holographic Theories

Dark Solitons in Bose-Einstein Condensates

Solitons in a Fermionic Superfluid

T. Yefsah, A. Sommer, M. J.-H. Ku, L. Cheuk, W. Ji, W. Bakr, MWZ, Nature **499**, 426–430 (2013) M.J.H. Ku, W. Ji, B. Mukherjee, E. Guardado-Sanchez, L.W. Cheuk, MWZ, PRL 113, 065301 (2014) Mark J.H. Ku, Biswaroop Mukherjee, Tarik Yefsah, MWZ, PRL **116**, 045304 (2016)

BCS Pairing

Solitons in Fermionic Superfluids

Solitons in Fermionic Superfluids

Solitons in Fermionic Superfluids

Dark Solitons in a Fermionic Superfluid

Limit of small gap: Andreev equation

$$\left(-i\hbar v_F \frac{\partial}{\partial z}\sigma_z + \Delta(z)\sigma_x\right) \begin{pmatrix} u_n \\ v_n \end{pmatrix} = E_n \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$

Dirac equation with spatially varying mass Solitons with fermion number ½, Jackiw, Rebbi 1976 = continuum version of Su-Schrieffer-Heeger model 1979/80

Recent solution for finite velocity soliton: V. Galitski, D.K. Efimkin, PRA 91, 023616 (2015)

Generalization in 3D: Solitary Waves

 $\varphi \mod 2\pi$ N $\frac{\mu}{h\omega_{\perp}}$ Soliton π =1.17 $h\omega_{\perp}$ = 2.89Solitonic Vortex $\frac{\mu}{h\omega_{\perp}}$ π = 6.67Vortex VR 2S\ Ring After Brand, Reinhardt (1.0)(0.2)PRA 65, 043612 (2002) 3SV 2VR 5SV All examples of **Chladni Solitons** (0.3)Mateo, Brand, PRL 113, 255302 (2014)

Snake Instability in a Fermionic Superfluid

Theory: Cetoli, Brand, Scott, Dalfovo, Pitaevskii Phys. Rev. A 88, 043639 (2013)

Making Solitons by phase imprinting

Solitons in BECs by phase imprinting: Hannover, Hamburg, NIST,...

Tomography: Slicing the Cloud

M.J.H. Ku, W. Ji, B. Mukherjee, E. Guardado-Sanchez, L.W. Cheuk, MWZ, PRL 113, 065301 (2014)

Tomography: Slicing the Cloud

Tomography: Slicing the Cloud

~Central slice

Mark J.-H. Ku, W. Ji, B. Mukherjee, E. Guardado-Sanchez, L. W. Cheuk, T. Yefsah, MWZ, PRL 113, 065301 (2014)

Bottom Slice

Cascade of Solitary Waves in a Unitary Fermi Gas

Planar soliton → vortex ring → vortex / anti-vortex pair → solitonic vortex

Mark J.H. Ku, Biswaroop Mukherjee, Tarik Yefsah, Martin W. Zwierlein PRL **116**, 045304 (2016)

Early time dynamics after imprint (central slice)

Early time dynamics after imprint (central slice)

1 slow solitary wave

Early time dynamics after imprint (central slice)

y in μm

Snake Instability in a Fermionic Superfluid

Theory: Cetoli, Brand, Scott, Dalfovo, Pitaevskii Phys. Rev. A 88, 043639 (2013)

Experiment: M.J.H. Ku, B. Mukherjee, T. Yefsah, MWZ PRL 116, 045304 (2016)

One excess fermion in the superfluid

The fate of a single impurity in 1D: Stuck in a soliton

Solitons as one limit of the FFLO state

from Lutchyn, Dzero, Yakovenko, PRA 84, 033609 (2011)

See Yoshida, Yip, PRA 75, 063601 (2007), Radzihovsky, PRA 84, 023611 (2011)

Fulde-Ferrell-Larkin-Ovchinnikov State

A. I. Larkin, Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. **47**, 1136 (1964) P. Fulde, R. A. Ferrell, Phys. Rev. 135, A550 (1964)

Fermions in a Box

Z. Yan, P. Patel, B. Mukherjee, Z. Hadzibabic, T. Yefsah, J. Struck, MWZ, PRL 2017

Measuring the Fermi-Dirac distribution

See also: Drake et al., PRA 2012, selectively probe the central portion of an inhomogeneous gas.

Z. Yan, P. Patel, B. Mukherjee, Z. Hadzibabic, T. Yefsah, J. Struck, MWZ, PRL 2017

Fermi superfluids in a box

Z. Yan, P. Patel, B. Mukherjee, Z. Hadzibabic, T. Yefsah, J. Struck, MWZ, PRL 2017

Shaking the box

Shaking the box

Shaking with gradient

Sinusoidal modulation of confining "end-caps"

Energy Spectra

Eigenmodes in the box

Example: n=6

Example: 2nd mode, non-linearities

Viscosity from Sound Attenuation

(see 70 years of work in Helium-4 and Helium-3...)

Equation for Sound:
$$\frac{\partial j_z}{\partial t} + \frac{\partial p}{\partial z} = \frac{4}{3}\eta \frac{\partial^2 v_z}{\partial z^2}$$

(Bulk viscosity=0) $\omega^2 = \frac{\partial p}{\partial \rho} \Big|_{S} k^2 + i\omega \frac{4}{3} \frac{\eta}{\rho} k^2$ Damping rate

Outlook

- Measurements of Viscosity across the Superfluid Transition
- Spin-Imbalanced Mixtures
- Shaking in the Fermi-Hubbard Model

Cheuk, Nichols, Lawrence, Okan, Zhang, Khatami, Trivedi, Paiva, Rigol, MWZ, Science 2016,

FFLO Superfluidity

Fermions in a Box

BEC 1

Fermions in a box

Biswaroop Mukherjee Parth Patel Zhenjie Yan Airlia Shaffer-Moag Cedric Wilson Dr. Julian Struck Dr. Richard Fletcher Visiting Professor: Zoran Hadzibabic Tarik Yefsah (\rightarrow ENS)

NaK Molecules

CLB

Fermi 1

NaK Dipolar Molecules

Jeewoo Peter Park (PhD 2016) Zoe Yan Yiqi Ni Dr. Huanqian Loh Dr. Sebastian Will (→ Columbia U.)

GORDON AND BETTY

FOUNDATI

Fermi-Hubbard Model under the Microscope

Fermi 2

Lawrence Cheuk Melih Okan Matthew Nichols Katherine Lawrence Dr. Hao Zhang

Former members: Waseem Bakr (Princeton U.) Thomas Lompe (Hamburg)

