Designer Spin-Orbit Interaction in graphene on TMDs &

Electron-hole scattering in charge neutral bilayer graphene

Alberto Morpurgo UNIVERSITÉ DE GENÈVE

Spin-orbit: Electron-hole scattering:

Z. Wang, D.-K. Ki, D. Mauro Y. Nam, D.-K. Ki, D. Soler

Collaborations Theory:

Materials:

A. MacDonald, H. Chen (UTexas) L. Levitov, J. Khoo (MIT) H. Berger (EPFL)

Outline

• Very strong spin-orbit interaction in graphene-on-TMDs Spin-dependent band-structure modification due to interfacial interactions

• Ballistic transport in charge neutral graphene is prevented by electron-hole collisions

> e-e scattering is does not normally limit the conductivity of a material; e-h scattering is drastically different

Spin-orbit interaction in graphene

Kane, C.L. & Mele, E.J. Phys. Rev. Lett. 95 226801 (2005)

$\mathcal{H} = -i\hbar v_F \psi^{\dagger} (\sigma_x \tau_z \partial_x + \sigma_y \partial_y) \psi + \Delta_{SO} \psi^{\dagger} \sigma_z \tau_z s_z \psi$

Graphene is a topological insulator due to intrinsic spin-orbit interaction (SOI)
 Intrinsic SOI is too small to experimentally observe topological properties

Can we induce strong SOI in graphene while preserving Dirac nature of electrons and material quality?

Idea: exploit interfacial interactions on semiconducting TMD substrates

Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides

PRL 108, 196802 (2012) Di Xiao,^{1,*} Gui-Bin Liu,² Wanxiang Feng,^{1,3,4} Xiaodong Xu,^{5,6} and Wang Yao^{2,†}

Hexagonal lattice without inversion symmetry

Spin-valley coupling

Close to K, K' point = massive Dirac fermions with huge SOI

$$\hat{H} = at(\tau k_x \hat{\sigma}_x + k_y \hat{\sigma}_y) + \frac{\Delta}{2} \hat{\sigma}_z - \lambda \tau \frac{\hat{\sigma}_z - 1}{2} \hat{s}_z$$

Finite Berry curvature close to K,K' points

$$\Omega_n(\mathbf{k}) \equiv \hat{z} \cdot \nabla_{\mathbf{k}} \times \langle u_n(\mathbf{k}) | i \nabla_k | u_n(\mathbf{k}) \rangle$$

$$\Omega_c(k) = -\tau \frac{2a^2t^2\Delta'}{[\Delta'^2 + 4a^2t^2k^2]^{3/2}}.$$

with circularly polarized light

Graphene-on-WS₂: first generation devices

For V_g>8V, conductance saturates because charges are accumulated in WS₂
 For V_g<8V, device shows typical behavior of high quality graphene: half-integer quantum Hall effect with mobility of 13 000 cm²/VS

Weak localization in graphene on hBN

Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices

Nuno J. G. Couto,¹ Davide Costanzo,¹ Stephan Engels,² Dong-Keun Ki,¹ Kenji Watanabe,³ Takashi Taniguchi,³ Christoph Stampfer,² Francisco Guinea,⁴ and Alberto F. Morpurgo^{1,*}

PHYSICAL REVIEW X 4, 041019 (2014)

Same behavior seen earlier for graphene on SiO₂ by several groups

Weak antilocalization **Graphene on WS**₂:

Z. Wang, AM, et al. Nat Comms (2015)

Low-energy band structure from DFT calculations

Ab-initio band structure maps onto the continuum Hamiltonian (close to K) $H = H_{Dirac} + \frac{\lambda}{2}\tau_z s_z + \frac{\lambda_R}{2} (\tau_z \sigma_x s_y - \sigma_y s_x) \text{ with } \lambda, \lambda_R \approx \text{few meV}$

- λ , λ_R approximately 100 x the strength of SOI in graphene on SiO₂
- If $\lambda > \lambda_R$ a gap opens at charge neutrality (~ λ_R) graphene-on-WS₂ is a topological insulator (different from the Kane&Mele one)

How to remove atomic crumbs: "Floor sweeping" with an atomic force broom....microscope

Second generation devices: Graphene-on-WSe₂, MoS₂, WS₂

1', (V)

From top quality "AFM" annealed (μ up to 200.000 cm²/Vs) To large area with "bubbles" ($\mu \sim 3.000$ cm²/Vs)

V, (V)

New +: Graphene on WSe2 has Dirac point fully exposed

-20

1, (V)

-40

20

On TMD substrated: In all cases only WAL and never WL

On all TMDs, for all μ values, and for 1L, 2L, 3L...**only WAL is observed**

Remove "classical background" to estimate τ_{so}

WAL in high-quality bilayers and trilayers

Fitting WAL gives an upper limit for $\tau_{so} \sim 0.2 \text{ ps}$

Seems compatible only with SOI modifying the band structure of G How can we prove it?

Spin splitting in bilayer Graphene on Wse₂

SOI modifies band-structure: How?

Quantitative determination of type and magnitude of SOI

Z. Wang et al PRX 2016

Ballistic transport limited by e-h collisions in charge neutral suspended bilayer graphene

What limits ballistic transport in suspended bilayers?

Suspended bilayer devices of very high quality

- Charge fluctuations < 10⁹ cm⁻²
- Quantum Hall plateaus starting from 300 Gauss
- Observed
 even-denominator FQHE

Strongly T & n dependent scattering mechanism

Onset of negative resistance (=ballistic transport) depends strongly on temperature and carrier density

- Onset of negative resistance transport at $E_F \sim kT$
- Ballistic transport for $E_F > kT$

Hint for the role of e-h collisions

Can e-h collisions explain transport in the diffusive regime?

<u>At charge neutrality</u> $(= kT > E_F)$ we have electron and holes

(1)
$$\sigma = n_e e \mu_e + n_h e \mu_h$$
 $\mu_{e/h} = \frac{e \tau_{e/h}}{m}$

<u>Assume: e-h collision determine velocity relaxation</u>

(2)
$$\frac{1}{\tau_e} = \Gamma \frac{n_h}{n_e + n_h}$$
 $\frac{1}{\tau_h} = \Gamma \frac{n_e}{n_e + n_h}$ $\Gamma = C \frac{kT}{\hbar}$ $C \sim 1$

<u>We obtain</u>:

(1) + (2)
$$\sigma(n,T) = C^{-1} \frac{\hbar}{kT} \frac{e^2}{m^*} (n_e + n_h) \frac{n_e^2 + n_h^2}{n_e n_h}$$

$$\frac{\sigma(n,T)}{\sigma(0,T)} = \frac{\pi\hbar^2}{8kTm^*\ln(2)} \frac{(n_e + n_h)(n_e^2 + n_h^2)}{n_e n_h} \qquad m^* = 0.033 \ m_o$$

No free parameters: either it reproduces the data or it does not

Perfect agreement with no free parameters when kT > E_F

Observed in 4 out of 4 samples investigated in detail - between 10 and 100 K,

- with $m^* = 0.031 - 0.034 m_o$

It also works on Bernal-stacked trilayer graphene

Bernal stacked trilayer

Bands: 1 x linear 1 x quadratic

- For $E \sim kT > E_F$ quadratic band DOS > 100 x linear band DOS
- Quadratic band dominates transport

Also quantitative agreement with no free parameters

- Quantiative agrement within a factor of 2-3 or better
- Expected due to indtermination on C and precise geometry

Conclusions

Very strong spin-orbit interaction from weak antilocalization

Band-structure of graphene-on-TMD contains a ~10 meV Rashba term

Ballistic motion near charge neutrality ($kT > E_F$) is limited by e-h collisions

e-h scattering of thermally activated carriers accounts for transport in 2LG and 3LG near the CNP

