1D edge modes of
3D topological insulators



A paradigm for topological states of matter

O(OM) = &

(the boundary of a boundary is empty)

... works when things are sufficiently smooth.

Crystals have no smooth surface!
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Edge modes at
TCI surface steps

P. Sessi et al.,

Robust spin-polarized midgap states at step edges of
topological crystalline insulators

Science, 354, 1269-1273 (2016)



Step edges on topological crystalline insulators

Pb/Sn  Se B E}

T WX

(Pb,Sn)Se: TCI with two pairs of Dirac cones,
protected by mirror Chern numbers
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[Hsieh et al., Nature Comm., 2012]



Step edges on topological crystalline insulators

Study step edges on the surface with
STM

Pick (0,1) step edge orientation and
distinguish even and odd steps
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Large 1D DOS at odd steps only
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Atomistic approach: DF1

(1) (4)

(2) (5)

Reason: Berry phase mismatch
between surface states
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empirical confirmation: 1D DoS only at odd step edges

other dispersive features stem from finite size



. Higher-order topological
- Insulators



Higher-order topological insulators

(d-m)-dimensional boundary components of a d-dimensional system
are gapless for m = N, and are generically gapped for m < N
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Construction of a 2nd order 3D TI

Protecting symmetry: C4T (breaks T, C4 individually)

surface construction from 3D TI:
decorate surfaces alternatingly with outward and inward pointing
magnetization, gives chiral 1D channels at hinges

Adding C4T respecting IQHE layers on
surface can change number of hinge
modes by multiples of 2

against any C4T respecting surface

Odd number of hinge modes stable ‘I
manipulation R4

_ Chern h Ay
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Construction of a 2nd order 3D TI

Protecting symmetry: CsT
(breaks T, C4 individually)

Y

Bulk construction
Tl band structure plus (sufficiently weak)
doble-qg (r,7,0) magnetic order

Toy model

H4(E) — (M + Z COS kz) 7,00 + Ay Z sin k; 7,0; + Aa(cos ky — cosk,) 7,00

3D TI T, C4 breaking term

Spectrum of column
geometry




Topological invariant of a 2nd order 3D TI

Topological invariant of 3D TI

dk 2
Topological invariant: 0 = —€abe / (%)3131’ [AaabAc + 1§Aa,AbAC
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0 = 0,7 with time-reversal symmetry

Topological invariant with inversion: H & = (—1)"
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at time-reversal invariant momenta q"



Topological invariant of a 2nd order 3D TI

Same quantization with C4T as with T alone: oy .

0 = 0,7 is topological invariant Ziop = € 8n2 Jd'=E-B
Different from existing indices, because |(C4T)* = —1
Case of additional inversion times TRS, IT, symmetry: £ = +1
use (IC4)* = —1 with eigenvalues §E{e”/4, e "T/AY Sk
Dueto |[[C4,IT| =0 ‘Kramers’ pairs with same §z = %1 are
degenerate.
Band inversion formula for topological index a la Fu Kane
for C4T invariant momenta
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Gapless surfaces?

consider adiabatically inserting a hinge

e

chlral
gapless

surface turns gapless hinge

at some critical angle

H4(E) — (M + Z COS kz> 7,00 + Ay Z sin k; 7,0, + Ag(cos ky — cos ky, + risin k, sin k) 7,00

Critical angle nonuniversal, not fixed to particular crystallographic
direction. Different from gapless surfaces of TCls.



2nd order 3D topological superconductor

H4(E) = (M + Z COS ]{?z) .00 + Ay Z sin k; 7,0; + Aa(cos ky — cosk,) 7,00

has a particle hole symmetry P° = 7,0, K

Interpretation: Superconductor with generic dispersion and
superposition of two order parameters

A1  spin triplet, p-wave dk = 1A sin k;
Balian-Werthamer state in superfluid Helium-3-B

Ao  spin singlet dxey--wave I

p + id superconductor with chiral
Majorana hinge modes




Time-reversal symmetric 2nd order 3D TI

Stabilized by mirror symmetries and TRS

One Kramers pair of modes on each hinge
Example:
helical
hinge
| | mode




Summary

Edge modes at TCI surface steps

200 meV bulk gap
- no backscattering observable in QPI

- temperature: almost unaltered at T = 80K
- TRS breaking: almost unaltered at B = 11T
- only 10 nm wide

Higher-order topological insulators

new paradigm for topological phases protected by spatial
symmetries

- hinge modes protected by 3D bulk invariant

- superconducting variant with Majorana hinges

TRB version

- single hinge like edge of QHE

- realizations in AFM spin-orbit coupled semiconductors?

TRS version
- single hinge like edge of QSHE




