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A paradigm for topological states of matter

… works when things are sufficiently smooth.

@(@M) = ?
(the boundary of a boundary is empty)

Crystals have no smooth surface!
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Step edges on topological crystalline insulators
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Fig. 1. Electronic properties of Pb0.67Sn0.33Se terraces and step edges
probed by STS. (A) Rock-salt crystal structure and (B) schematic band struc-
ture of (Pb,Sn)Se. (C) Topographic STM image of a cleaved Pb0.67Sn0.33Se
surface (scan parameters: U = −75 mV; I = 50 pA). (Inset) Atomic resolution
image of the Se sublattice.Two steps are visible in themain panel.The line section
(bottom panel) measured along the gray line shows that their heights correspond
to a single- (right) and a double-atomic step (left), respectively.Whereas the
periodicity is maintained for even step edges (D), odd step edges lead to a struc-

tural p shift (E). (F) dI/dUmap (top) measured at the same location as (C).The
line section (bottom) revealsanenhancedconductanceat thepositionof thesingle-
atomic step edge. (G) Local tunneling spectra measured with the STM tip posi-
tioned at the locations indicated in (F). The spectra measured on atomically flat
terraces (1, 3, and 5) and at even step edges (2) display the typical V shape with a
minimumat theDiracenergy (ED=−75meV)surroundedby twomaxima indicating
van Hove singularities (L– = −110meVand L+= −30meV); the spectrummeasured
at the position of the odd step (4) exhibits a strong peak at the Dirac energy.

Fig. 2. Sn concentration-dependent electronic
properties of (Pb,Sn)Se. Topography (left), dI/dU
maps (right), and their corresponding profiles taken
along the indicated line (bottom of each panel),
measured on Pb1−xSnxSe crystals with different Sn
content—i.e., (A and B) x = 0, (C and D) x = 0.24,
and (E and F) x = 0.33—thereby spanning the range
from trivial to topological surfaces. Step edges on
the trivial compound (x = 0) carry no particular edge
feature, irrespective of their even- or oddness. In
contrast, a weak and strong enhancement of the
local DOS is indicated by the high dI/dU signal mea-
sured at odd step edges for x = 0.24 and x = 0.33,
respectively. Scan parameters: U = −310 mV, I =
30 pA (x = 0); U = −115 mV, I = 50 pA (x = 0.24);
U = −70 mV, I = 100 pA (x = 0.33). T= 4.8 K.
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Fig. 1. Electronic properties of Pb0.67Sn0.33Se terraces and step edges
probed by STS. (A) Rock-salt crystal structure and (B) schematic band struc-
ture of (Pb,Sn)Se. (C) Topographic STM image of a cleaved Pb0.67Sn0.33Se
surface (scan parameters: U = −75 mV; I = 50 pA). (Inset) Atomic resolution
image of the Se sublattice.Two steps are visible in themain panel.The line section
(bottom panel) measured along the gray line shows that their heights correspond
to a single- (right) and a double-atomic step (left), respectively.Whereas the
periodicity is maintained for even step edges (D), odd step edges lead to a struc-

tural p shift (E). (F) dI/dUmap (top) measured at the same location as (C).The
line section (bottom) revealsanenhancedconductanceat thepositionof thesingle-
atomic step edge. (G) Local tunneling spectra measured with the STM tip posi-
tioned at the locations indicated in (F). The spectra measured on atomically flat
terraces (1, 3, and 5) and at even step edges (2) display the typical V shape with a
minimumat theDiracenergy (ED=−75meV)surroundedby twomaxima indicating
van Hove singularities (L– = −110meVand L+= −30meV); the spectrummeasured
at the position of the odd step (4) exhibits a strong peak at the Dirac energy.

Fig. 2. Sn concentration-dependent electronic
properties of (Pb,Sn)Se. Topography (left), dI/dU
maps (right), and their corresponding profiles taken
along the indicated line (bottom of each panel),
measured on Pb1−xSnxSe crystals with different Sn
content—i.e., (A and B) x = 0, (C and D) x = 0.24,
and (E and F) x = 0.33—thereby spanning the range
from trivial to topological surfaces. Step edges on
the trivial compound (x = 0) carry no particular edge
feature, irrespective of their even- or oddness. In
contrast, a weak and strong enhancement of the
local DOS is indicated by the high dI/dU signal mea-
sured at odd step edges for x = 0.24 and x = 0.33,
respectively. Scan parameters: U = −310 mV, I =
30 pA (x = 0); U = −115 mV, I = 50 pA (x = 0.24);
U = −70 mV, I = 100 pA (x = 0.33). T= 4.8 K.
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[Hsieh et al., Nature Comm., 2012]

(Pb,Sn)Se: TCI with two pairs of Dirac cones, 

protected by mirror Chern numbers

+i-i



Step edges on topological crystalline insulators

Study step edges on the surface with 
STM

Step edges on topological crystalline insulators

employ STM to analyze step edges on
(Pb,Sn)Se surfaces

pick a (0,1) step edge orientation and
distinguish even from odd steps

Tuesday, November 22, 16

Pick (0,1) step edge orientation and 
distinguish even and odd steps



Large 1D DOS at odd steps only
Large 1D DoS only at odd step widths!

Tuesday, November 22, 16

Merging of step edgesMerging step edges

Tuesday, November 22, 16



Atomistic approach: DFT

empirical confirmation: 1D DoS only at odd step edges 


other dispersive features stem from finite size

Atomistic approach: DFT

empirical confirmation: 1D DoS only at odd step edges

x

z

(1)

(2)

(3)

(4)

(5)

(6)

remainder dispersive features are likely to stem from finite size and equal 
sublattice hybridization

Tuesday, November 22, 16

Step edges on topological crystalline insulators

employ STM to analyze step edges on
(Pb,Sn)Se surfaces

pick a (0,1) step edge orientation and
distinguish even from odd steps

Tuesday, November 22, 16

Reason: Berry phase mismatch 

between surface states



Higher-order topological 
insulators2.



Higher-order topological insulators

1 2 3 dimension

or
de

r

1

2

3

QHE

E

kSSH

TI

see [Benalcazar et al., 

arxiv:1611.07987]

Rest of 

this talk

Can only happen with 
spatial symmetries: 
generalizations of TCIs

(d-m)-dimensional boundary components of a d-dimensional system 

are gapless for m = N, and are generically gapped for m < N



Construction of a 2nd order 3D TI
Protecting symmetry: C4T    (breaks T, C4 individually)


surface construction from 3D TI:  
decorate surfaces alternatingly with outward and inward pointing 
magnetization, gives chiral 1D channels at hinges


Adding C4T respecting IQHE layers on 
surface can change number of hinge 
modes by multiples of 2


Odd number of hinge modes stable 
against any C4T respecting surface 
manipulation


Bulk         topological property Z2

a) b)

Chern

insulator

c)



Construction of a 2nd order 3D TI
Protecting symmetry: C4T    

(breaks T, C4 individually)


Bulk construction 
TI band structure plus (sufficiently weak) 

doble-q (𝜋,𝜋,0) magnetic order

Toy model
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Topological invariant of a 2nd order 3D TI

Topological invariant of 3D TI

Y

k2TRIM

⇠k = (�1)⌫

k
x

ky

kz

Topological invariant with inversion: 

product over inversion eigenvalues 
at time-reversal invariant momenta

3

(iii) The entanglement spectrum

14,15 is the spectrum of the
reduced density matrix ⇢A of a system that is obtained by sub-
dividing the single-particle Hilbert space into two parts A and
B and tracing out the degrees of freedom of B

⇢A = TrB | i h | ⌘ 1

Z
e

e�He , (7)

where | i is the gapped many-body ground state of ˆH(k).
The last equality then defines the entanglement Hamiltonian
H

e

, with Z
e

= Tr e�He a normalization constant. Here we
are interested in a real-space cut separating regions A and B
such that all lattice sites r with x > 0 are in A, say, and B is
the complement of A. In this case, ky and kz are good quan-
tum numbers which label the blocks of H

e

as H
e

(ky, kz). The
entanglement spectrum [or equivalently that of H

e

(ky, kz)] of
a topological state has been shown to be in direct correspon-
dence with the spectrum of H

slab

(ky, kz)
16.

Notice that all the definitions in (i)–(iii) apply equally well
if the starting point ˆH(k) would have been a 2D system, with
the only difference that the resulting spectra of H

slab

(ky),
H

W

(ky), and H
e

(ky) would have only one good momentum
quantum number.

We observe from direct numerical computation for both the
TRB and TRS higher order TIs defined in Eqs. (1) and (4)
that the slab, Wilson loop, and entanglement spectra are fully

gapped if we choose the geometry described above (giving up
the good quantum number kx). In other words, H

slab

(ky, kz),
H

W

(ky, kz), and H
e

(ky, kz) can be seen as Hamiltonians for
2D insulators. In fact, they describe topologically nontrivial
insulators, namely a Chern insulator in the TRB case and a 2D
Z
2

TI in the TRS case.
To support this claim, we can again compute the slab, Wil-

son loop, and entanglement spectra for these systems, but
this time one dimension lower, giving up the momentum ky
as a good quantum number. For example, we can compute
the Wilson loop spectrum of the Wilson loop Hamiltonian
H

W

(ky, kz), following the concept of nested Wilson loops of
Ref. 8. Any other of the nine possibilities of combining any of
H

slab

(ky, kz), HW

(ky, kz), and H
e

(ky, kz) with a slab, Wil-
son loop spectrum, or entanglement spectrum analysis will
lead to the same conclusion: We obtain an effective 1D sys-
tem with good momentum quantum number kz that shows a
gapless, symmetry protected spectral flow. To exemplify this,
we show in Fig. 2 a) and b) the gapped Wilson loop and entan-
glement spectra of H

W

(ky, kz) and H
e

(ky, kz), respectively,
and in panels (c) and (d) the Wilson loop spectrum of the
Wilson loop Hamiltonian and the entanglement spectrum of
the entanglement Hamiltonian. Evidently, these nested spec-
tral analysis are ideal to uncover the topological properties of
higher-order TIs.

Instead of computing the slab spectrum of the slab spec-
trum, one can of course directly use a square column geometry
periodic only in z-direction, such that the surface is invariant
under ˆCz

4

ˆT . The spectrum then exhibits chiral edge modes
for H

TRB

(k) and Kramers pairs of edge modes for H
TRS

(k),
respectively (see Fig. 1a-c).

Quantized magnetic multipole moment — Topological
phenomena are often imprinted in universally quantized re-

sponse functions of a system. A standard example is the Hall
conductivity of a Chern insulator, given by Ce2/h, where
C 2 Z is the Chern number of the insulator. Another quantity
in which the same topological invariant appears is the mag-
netic dipole moment M of an insulator. For a 3D system,
the derivative of M with respect to the chemical potential
obeys @M/@µ / G, where G is a reciprocal lattice vector
with components given by the Chern numbers along the there
primitive directions.17 This gives a direct relation between the
Hall conductivity and @M/@µ. We show in appendix C that
the magnetic quadrupole moment Mkl of an insulator obeys

@Mkl

@µ
=

1

e
↵kl, (8)

where the tensor ↵kl is the magneto-optical polarizability of
the insulator18. We further show that for a system with ˆC

4

ˆT
symmetry along all three crystallographic directions, the latter
reduces to ↵lk = �lk

✓
2⇡

e2

h , where

✓ = �✏abc

Z
d

3

k

(2⇡)3
tr


Aa@bAc + i

2

3

AaAbAc

�
, (9)

is written in terms of the Berry gauge field Aa;n,n0
=

�i hun|@a|un0i, with n, n0 running over the occupied bands
of the insulator. With ˆT symmetry, Eq. (9) is the quantized
topological invariant for time-reversal symmetric topological
insulators, restricting ✓ to the values ✓ = 0,⇡mod2⇡. Im-
portantly, ˆC

4

ˆT symmetry (along one rotation axis) guaran-
tees the same quantization of ✓ as ˆT does. We thus found
in ✓ = 0,⇡ defined in Eq. (9) the Z

2

topological invariant
for TRB higher-order TIs. We explicitly evaluate ✓ for the
model (1) in appendix D. At the same time, we have charac-
terized TRB higher-order 3D TIs as magnetic multipole insu-
lators, in analogy to the characterization of the higher-order
TIs discussed in Ref. 8 as quantized electric multipole insula-
tors.

Topological characterization — The form of Eq. (9) is
impractical for an explicit computation of ✓ in generic insu-
lators. Thus, we now discuss alternative forms of the topo-
logical invariant of TRB higher-order TIs and also for TRS
higher-order TIs, which were not covered by the magnetic
multipole discussion. Alternative formulas for ✓ used in 3D
TIs, such as the Pfaffian invariant1,2 can be defined because
time-reversal obeys ˆT 2

= �1. However, since we have
an anti-unitary symmetry satisfying (

ˆC
4

ˆT )4 = �1 instead,
the Pfaffian-formulation cannot be used for TRB higher-order
TIs.

We start with the discussion of TRB higher-order TIs and
use Wilson loop eigenvalues to determine their topological
character. This time, for a ˆCz

4

ˆT invariant system, we employ
the Wilson loop W z

(kx, ky), in contrast to the Wilson loop
W x

(ky, kz) that was considered for the purpose of bound-
ary spectra. The spectrum of W z

(kx, ky) has Kramers-type
degeneracies protected by ˆCz

4

ˆT at exactly two points in the
2D BZ, namely at (kx, ky) = (0, 0) and (kx, ky) = (⇡,⇡),
which are invariant under ˆCz

4

ˆT . Taking into account that the
spectrum of W z

(kx, ky) lies on the unit circle, one can de-
duce that there are two topologically distinct ways to connect

Topological invariant:

✓ = 0,⇡ with time-reversal symmetry

Aa;n,n0 = �ihun|@a|un0i



Topological invariant of a 2nd order 3D TI

Case of additional inversion times TRS, IT, symmetry:

use                            with eigenvalues(IC4)

4 = �1 ⇠~k{e
i⇡/4, e�i⇡/4} ⇠~k = ±1

[IC4, IT ] = 0Due to                             ‘Kramers’ pairs with same                   are 
degenerate.

⇠~k = ±1

(�1)⌫ =
Y

~k2IĈz
4 T̂

⇠~k

Band inversion formula for topological index à la Fu Kane

for C4T invariant momenta

k
x

ky

kz

IĈz
4 T̂

= {(0, 0, 0), (⇡,⇡, 0), (0, 0,⇡), (⇡,⇡,⇡)}

Same quantization with C4T as with T alone:                 

                     is topological invariant✓ = 0,⇡ Z

top

= ei
✓

8⇡2

R
d

4
xE·B

(C4T )
4 = �1Different from existing indices, because



Gapless surfaces?

chiral 
gapless 
hingesurface turns gapless 

at some critical angle

consider adiabatically inserting a hinge

Critical angle nonuniversal, not fixed to particular crystallographic 
direction. Different from gapless surfaces of TCIs.
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2nd order 3D topological superconductor

H4(
~k) =
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has a particle hole symmetry P = ⌧y�yK

Interpretation: Superconductor with generic dispersion and 
superposition of two order parameters

�1 spin triplet, p-wave

Balian-Werthamer state in superfluid Helium-3-B

d~k,i = i�1 sin ki

�2 spin singlet dx²-y²-wave

p+ id              superconductor with chiral 
Majorana hinge modes



Time-reversal symmetric 2nd order 3D TI
Stabilized by mirror symmetries and TRS

One Kramers pair of modes on each hinge

Example:

helical 
hinge 
mode



Summary

Higher-order topological insulators
new paradigm for topological phases protected by spatial 
symmetries

• hinge modes protected by 3D bulk invariant

• superconducting variant with Majorana hinges

TRB version

• single hinge like edge of QHE

• realizations in AFM spin-orbit coupled semiconductors?

TRS version

• single hinge like edge of QSHE

Edge modes at TCI surface steps
• 200 meV bulk gap

• no backscattering observable in QPI

• temperature: almost unaltered at T = 80K

• TRS breaking: almost unaltered at B = 11T

• only 10 nm wide
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