

Bertrand Dupé

Institute of Physics, Johannes Gutenberg University of

Mainz, Germany

Acknowledgement

Charles Paillard

JGU

Markus Hoffmann

Stephan von Malottki

Stefan Heinze

Sebastian Meyer

Pavel Bessarab

Gustav Bihlmayer

Stefan Blügel

Joo-Von Kim

HÁSKÓLINN Í REYKJAVÍK REYKJAVÍK UNIVERSITY

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Jairo Sinova

Melanie Dupé

Ulrike Ritzmann

Marie Böttcher

- I. Introduction
- II. Methods
 - □ Spin spiral calculations applied on Pd/Fe/Ir(111)
 - DMI calculations applied on Pd/Fe/Ir(111)
 - □ Effective extended Heisenberg Hamiltonian for MC and spin dynamics
- III. Magnetic exchange frustration and its consequences
 - □ Energy barriers for the collapse of skyrmion and antiskyrmion
 - □ Temperature dependence of skyrmion and antiskyrmion densities
- IV. Conclusion

- I. Introduction
- II. Methods
 - □ Spin spiral calculations applied on Pd/Fe/Ir(111)
 - DMI calculations applied on Pd/Fe/Ir(111)
 - □ Effective extended Heisenberg Hamiltonian for MC and spin dynamics
- III. Magnetic exchange frustration and its consequences
 - □ Energy barriers for the collapse of skyrmion and antiskyrmion
 - □ Temperature dependence of skyrmion and antiskyrmion densities
- IV. Conclusion

Skyrmions in bulk magnetic materials

Micromagnetic model prediction

Existence of magnetic skyrmions

on a micrometer length scale

A. N. Bogdanov & D. A.Yablonskii, Sov. Phys. JETP 68, 101 (1989).

Experimental discovery

S. Mühlbauer *et al* Science **323**, 915 (2009).
X. Z. Yu *et al* Nature **465**, 901 (2010).
A. Neubauer *et al* PRL **102**, 186602 (2009).
M. Lee *et al* PRL **102**, 186601 (2009).

Skyrmion race-track

- S. Parkin *et al* Science **320,** 190 (2008).
- F. Jonietz et al Science 330, 1648 (2010).
- A. Fert et al Nature Nanotech. 8, 152 (2013).
- C. Moreau-Luchaire et al Nature Nanotech. 11, 444 (2016).
- W. Jiang et al Science 349, 283 (2015).

Skyrmions and topological charge

Skyrmion number (topological charge) of a vector field $\mathbf{n}(x,y)$:

$$S = \frac{1}{4\pi} \int \mathbf{n} \cdot \left(\frac{\partial \mathbf{n}}{\partial x} \times \frac{\partial \mathbf{n}}{\partial y}\right) \, dx \, dy$$

Ferromagnet (S=0): topologically trivial state

Skyrmion (S=+1)

Antiskyrmion (S=-1)

I. Introduction

II. Methods

- □ Spin spiral calculations applied on Pd/Fe/Ir(111)
- DMI calculations applied on Pd/Fe/Ir(111)
- Effective extended Heisenberg Hamiltonian for MC and spin dynamics
- III. Magnetic exchange frustration and its consequences
 - □ Energy barriers for the collapse of skyrmion and antiskyrmion
 - □ Temperature dependence of skyrmion and antiskyrmion densities
- IV. Conclusion

Versatility of magnetism in Fe ultra-thin films

First-principles based spin Hamiltonian

Example of DMI calculation

Density-functional theory (DFT) using the FLEUR code:

- energy of non-collinear magnetic structures
- energies of spiral spin-density waves
- with and without spin-orbit coupling

Spin spirals

First-principles based Hamiltonian

Spin Hamiltonian solved by Monte-Carlo & spin dynamics

$$H_i = -\sum_{j \in NN} J_{ij} \cdot \boldsymbol{M}_i \cdot \boldsymbol{M}_j$$

Magnetic exchange energy

$$-\sum_{j\in NN} \boldsymbol{D}_{ij}.(\boldsymbol{M}_i \times \boldsymbol{M}_j)$$

Dzyaloshinskii-Moriya energy

Zeeman energy

 $+K(\boldsymbol{\alpha}.\boldsymbol{M}_{i})^{2}$

 $-M_i$. B

Magnetocrystalline anisotropy energy

interaction constants calculated from DFT No dipole-dipole interaction included

Stability diagram of Pd/Fe/lr(111)

- I. Introduction
- II. Methods
 - □ Spin spiral calculations applied on Pd/Fe/Ir(111)
 - □ DMI calculations applied on Pd/Fe/Ir(111)
 - □ Effective extended Heisenberg Hamiltonian for MC and spin dynamics
- III. Magnetic exchange frustration and its consequences
 - Energy barriers for the collapse of skyrmion and antiskyrmion
 - □ Temperature dependence of skyrmion and antiskyrmion densities
- IV. Conclusion

Frustration of exchange interaction: J_{eff}

Spin spiral ground state

		hcp	fcc
J ₁ (meV)		13.2	14.8
J _{eff}	(meV)	5.0	-3.0

A=2.0±0.4 pJ.m⁻¹ from N. Romming et al. PRL 114, 177203 (2015)

 J_{eff} : approximation of spin

stiffness only close to q=0

Frustration of exchange interaction: J_{eff}

dno

SPINTRO

- I. Introduction
- II. Methods
 - □ Spin spiral calculations applied on Pd/Fe/Ir(111)
 - □ DMI calculations applied on Pd/Fe/Ir(111)
 - □ Effective extended Heisenberg Hamiltonian for MC and spin dynamics
- III. Magnetic exchange frustration and its consequences
 - □ Energy barriers for the collapse of skyrmion and antiskyrmion
 - □ Temperature dependence of skyrmion and antiskyrmion densities
- IV. Conclusion

Calculation of the energy barrier: GNEB

Geodesic nudged elastic band: GNEB

P. Bessarab *et al* Computer Physics Communications **196**, 335 (2015). Collapse of a skyrmion: first neighbor approximarion

S. Rohart *et al* Phys. Rev. B **93**, 214412 (2016).

Stability diagram of Pd/Fe/Ir(111)

T= 0K

J_{eff} has very little effects on the stability diagram

S. von Malottki et al submitted Arxiv 1705.08122

Radius depence with magnetic field

J_{eff} has very little effects on the stability diagram and very little effects on skyrmion properties with magnetic field at low temperature

S. von Malottki et al submitted Arxiv 1705.08122

Iroup

J_{eff} can not discribe excited states for a spin spiral ground state stabilized by magnetic exchange

S. von Malottki et al submitted Arxiv 1705.08122

Frustration of exchange interaction can stabilize higher order topologically protected magnetic states

S. von Malottki et al submitted Arxiv 1705.08122

- I. Introduction
- II. Methods
 - □ Spin spiral calculations applied on Pd/Fe/Ir(111)
 - □ DMI calculations applied on Pd/Fe/Ir(111)
 - □ Effective extended Heisenberg Hamiltonian for MC and spin dynamics
- III. Magnetic exchange frustration and its consequences
 - □ Energy barriers for the collapse of skyrmion and antiskyrmion
 - □ Temperature dependence of skyrmion and antiskyrmion densities
- IV. Conclusion

Previous works

Temperature dependence of order parameters

Parallel tempering

M. Böttcher et al submitted arXiv 1707.01708.

Skyrmion and anti-skyrmion density

Both skyrmion and antiskyrmion densities increase with temperature

SP/CE =

M. Böttcher et al submitted arXiv 1707.01708.

Visualization of Sk and aSk density

- Explain the occurrence of skyrmions based on ab initio calculations
- Tunability based on exchange and DMI
- Magnetic frustration can enhances stability
- Spin dynamics and MC simulations based of frustration of exchange and DMI in multilayer-like geometry

Parallel tempering Monte Carlo

Parallel tempering allows:

- To overcome local minima with temperature
- To calculate thermodynamical quantities over a large volume of the phase space