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Outline

 Engineering and probing Majorana states in nhanowires

* Theory of two-terminal conductance of a wire across
the topological transition

 |Interpretation of existing experiments

e Electron correlations beyond perturbations in
tunneling



“Engineered” Majorana states: SO wire
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Andreev reflection: from trivial to topological state
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Majorana resonance in conduction: single junction

Single-junction conductance, N-I-S setting (Law, Lee, Ng, PRL 2009)
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Majorana resonance in conduction: single junction

Single-junction conductance, N-I-S setting (Law, Lee, Ng, PRL 2009)
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Zero-bias conductance peak

Mourik, Zuo, S.M. Frolov, Plissard,
Kouwenhoven, Science (2012)



Transport through a wire segment:
more knobs to turn
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Majoranas allow for resonant one-electron tunneling
(“teleportation” - L Fu, PRL 2010)
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Transport through a wire segment

Resonant one-electron tunneling (“teleportation” - L Fu, PRL 2010)

1
1
1
1
1
1
:
1
([
W
Q]

5
v(z,e — 0) o [{odd|y)T(x)|even)|?d(g) ~ |p(z)[*5(e) .
e

in)—|n + 1)—|n)
e €

i
= Viguree __I' Vo _m Vipain
L

Linear conductance G (V) reaches maxima at E(n, Vo) = E(n + 1, Vg)

This condition defines a periodic set of Vi (for non-overlapping Majoranas)
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Coulomb blockade peaks

Conductance reaches maximaat E(n,Vg) = E(n+1,Vg)

This condition defines a periodic set of V( (for non-overlapping Majoranas)
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Majoranas in a finite-length wire segment

Hybridization between the end states: period doubling
(even set shifts wrt odd set)
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T. Stanescu, R. Lutchyn, S. Das Sarma, PRB 2013



Specific motivation for this work: two-terminal
measurements (Qdev Lab, Copenhagen)

Skewed peaks

Short wires (L~250nm) Long wires (L~1um)
[Higginbotham et al, [Albrecht et al,
Nat. Phys., 11, 1017 (2015)] Nature 531, 206 (2016)]

Quantitative theory of two-terminal conductance



Energy scales - 1
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segments:
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Energy scales - 2

Conductance of
qr, QR .
single-channel

/ junctions, in units
of e?/h

Energy scale for quantum
fluctuations of charge (“charge-

Kondo”)
Tx S Ecexp{—7"/(g. + gr) }
[lon Garate, PRB 84, 085121(2011)]




Assumptions and aims of the theory

probability of
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We aim at evaluation of the two-terminal conductance G(V,,H) asa
function of gate voltage V, at a set of fixed values of H , in the leading
orders of small parameters: g , gr,and §/vVTA :

Coulomb blockade peaks: heights, widths, shapes
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Conclusions (abbreviated)
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To the order gz, - gr, and (6/VTA)?, conductance G(V,, H) is finite only in
the regimes A(H) > FE [Cooper pair transport] and A(H) < 0 [resonant
tunneling via Majorana states].



Some history: experiments and theory for A(H) > E¢

VOLUME 70, NUMBER 12 PHYSICAL REVIEW LETTERS 22 MARCH 1993

Even-Odd Asymmetry of a Superconductor Revealed by the Coulomb Blockade of Andreev Reflection

T. M. Eiles,® John M. Martinis, and Michel H. Devoret ®’

National Institute of Standards and Technology, Boulder, Colorado 80303
(Received 20 October 1992)

We have measured at low temperatures the current through a submicrometer superconducting island
connected to two normal metal leads by ultrasmall tunnel junctions. As the bias voltage is lowered well
below twice the superconducting energy gap, the current changes from being e periodic with gate charge
to 2e periodic. This behavior is clear evidence that there is a difference in the total energy between the
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FIG. 3. Current through the electrometer vs ¥, for bias volt-
age (a) V'=2A/e and (b) V = A/d4e. Arrow in (a) shows gate
voltage corresponding to e periodicity.

VOLUME 70, NUMBER 26 PHYSICAL REVIEW LETTERS

28 JUNE 1993

Federal Republic of Germany

Coulomb Blockade of Two-Electron Tunneling

F. W. J. Hekking,(!) L. I. Glazman,? K. A. Matveev,(?) and R. I. Shekhter(®
) fnstitut fiir Theoretische Festkérperphysik, Universitit Karlsruhe, Postfach 6980, 7500 Karlsruhe,

@ Theorel’ii'(\:ail Physics Ins#itute, University of Minnesota, Minneapolis, Minnesota 55455




Sequential tunneling of pairs, A(H) > E¢
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Conductance peaks at A(H) > E¢

The Andreev conductance near the charge degeneracy points at low temperatures:
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Glae (Ta 77) -
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Peak height is T-independent, peak width ~T
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Single-electron sequential tunneling, A(H) < E¢

0

charge degeneracy point, 77 = 0

Any one

may receive an electron only one state may
release an electron,
without breaking pairs

5 1
tunnel —out rate o< |1 (Tjunction)|” X T 0
2
e grgr O
Gma,x(T) ~ = —
hgr+grT

vanish in the limit 6 — 0



Single-electron sequential tunneling, A(H) < E¢
n=1 Vi Vi
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charge degeneracy point, 77 = 0

Resonance at n=20Is p0|soned at finite T, conductance peak is suppressed and shifted to 77 < 0

i R h gr+grTY(6/2VTA) exp(—2nEc/T) + 1/ 2v/2wexp(2nEc/T) + e
D e ; —_— —_—
2
e grLgr O AT
Gma,x(T) ~ E_gL n IR ? Broad maXimUm, A’I] ~ |npea,k| ,at Npeak = _E?
P

vanish in the limit 6 — 0



Conductance peaks at A(H) < E¢
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Resonant tunneling via Majorana states (H > H,)
[Quantitative transport theory of “teleportation”, L. Fu, PRL 104, 056402 (2010)]
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Resonant tunneling via Majorana states (H > H,)
[Quantitative transport theory of “teleportation”, L. Fu, PRL 104, 056402 (2010)]
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Conductance peaks are symmetric in 77
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Resonant tunneling via Majorana states (H > H,)
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Outline

e Conductance in the weak-tunneling limit:
e Conduction by Cooper pairs (large induced gap)

e Single-electron transport (smaller gap):
conductance peaks - magnitude and shape

e Resonant tunneling via Majorana states

e Getting back to the results of experiment
e Beyond perturbation theory in tunneling



Peak asymmetry in short (L=250 nm) wires
Skewed peaks

Short wires (L~250nm)
[Higginbotham et al,
H =0 Nat. Phys., 11, 1017 (2015)]

Attempt to explain by T=0 theory



Peak asymmetry due to co-tunneling (A(H) < E¢)

Higher-order tunneling starting from even-charge state, 77 < 0 T =0 n=N,— N:
Vi Vk
: GN6_29LQR£<£)3/2 1
________ LSS = 7 h 4r?2 A \2E, UIRE

[to the first order in ¢,
divergentat n — 0]

# of almost-resonant states: ~ Ex1/

Higher-order tunneling starting from odd-charge state, 77 > ()

2 o
e e e G, ~ £ 9rir 9 0.57

________ o+ —————T—> e ______ - h 472 A

[small; same order as Averin-Nazarov
PRL 69, 1993, (1992)]

# of almost-resonant states: one

The even-charge side of the conductance peak is fat (odd side is thinner)



Peak asymmetry in short (L=250 nm) wires

Attempt to fit with T=0 theory



Non-monotonic conductance in long wires?

gL ~ 9r = 9
2 ~ T[T, 2 2
~ g <> o G (1) = & g8l
0 Hle—?e . H. . H
i I | A >
! | (_0;% T/Ec
For G.<(H) to be non-monotonic:
0
H=H: =< g

T
H=H.: |A(H)| > 46 (L Z4&y) OK

For a single-channel wire, Andreev peaks should be

lower and thinner than those for Majoranas,
as g < 1 and typically A(H)/T > 4
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Conductance peaks in a single-channel 1 pum wire

Multiple channels in a wire (?)
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Majoranas in long wires?

Albrecht et al, Nature 531, 206 (2016)
“Exponential protection of zero modes in Majorana islands”

E()dd - Eeven — fosc(La H) ’ eXp{—L/g(H)}

T. Stanescu, R. Lutchyn, S. Das Sarma, PRB 2013

Regretfully, the amplitude (A) of “wobble” is much smaller

than the peak width 77
on a brighter side, the peaks are symmetric (Lorentzian
shape), allowing to average over many peaks to extract A.
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Beyond perturbation theory in tunneling

Energy scale for many-body < 2
(“charge-Kondo”) effects: Ik~ Beexp { /g + gR)}

In the limit § — 0, universal behavior of conductance at 7/Tx < 1

In s-wave state: transfer of electron pairs between two normal Fermi liquids (R,L);
maps onto two-channel Kondo problem, arxiv 1706.04726

G(T,N,) = F(N,) - T*

TGm'LX/GOO F(N,) ismaxat N, = odd (generic g1, # gr)

2

2 2

00 ) € ngR
Gmax = Gme T > TK ~ — ;
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max

T/ Ty

7




Non-perturbative Andreev vs. Majorana

Energy scale for many-body < 2
(“charge-Kondo”) effects: Ik~ Beexp { /g + gR)}

H < H, : H>H, :

T/Ty | T/T
. 1
Two-electron (inelastic) tunneling Single-electron resonant tunneling

(generic g1, # gr)

gr—1or gr—1 leadto Tx ~ E¢



Conclusions

Quantitative predictions for peak conductance,
explanation of the non-monotonic variation of
peak conductance with magnetic field, B

Coulomb blockade peak asymmetry explained by
resonant elastic co-tunneling

Quantitative theory for two-terminal conductance via
a Majorana resonance

why the observed
(Majorana?) “peaks” are so dim
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