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Spintronics — from materials and phenomena to applications

MTJ
Magnetic
tunneling

junction

Parkin & Yang, Nature Nanotechnology (March 2015)
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Innately 2D!
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* Bits = Domains in the tracks

3D Racetrack

Memory (RM) - A novel three-dimensional storage-

Parkin, US patents 6834005, 6898132. class memory

Parkin et al., Science 320, 190 (2008).

: o ) - The capacity of a hard disk drive
Parkin, Scientific American (2009).
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Spin polarized current - manipulate domain walls!

- electrical current in ferromagnetic metals is innately spin-polarized

Magnetization

o

- Current driven domain wall motion

current (J;)
———
conduction Domain Wall
electron (s)

—> > A4 X

localized moment (S)

- Giant magnetoresistance
—> Spin transfer switching

—> Current induced magnetization precession

- Domain wall moves in direction of flow of spin
angular momentum

- For Ni and Co based soft magnetic alloys domain
wall moves in direction of electron flow

- All domain walls move in same direction!
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First demonstration!

Racetrack Memory 1.0
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Memory on Racetrack!
4 stages

Innately 3D!

Garg et al. Science Adv. (2017)

Parkin & Yang, Nature Nano. (March 2015)
Yang, Ryu and Parkin, Nature Nano. (March 2015)
Ryu et al. Nature Nano. (2013)

Parkin et al. Science (2008)
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Racetrack Memory 3.0

- 20 domain walls moved in lock step with current pulses
-> High velocity at low current densities
- Narrow domain walls (~6 nm)

- Very thin racetracks (~1 nm)

Ryu et al. Nature Nanotechnology (2013) & 1aN
Yang et al. Nature Nanotechnology (February 2015) a )
Parkin et al. Nature Nanotechnology (March 2015) Bl sico

o

A Ni




(#1) Perpendicular Magnetic anisotropy (PMA)

- materials: Co/Ni, Co/Pt, Co/Pd, RE/TM multilayers, low symmetry magnetic materials
- racetracks magnetized perpendicular to the plane of the racetrack

- Bloch and Neel domain walls
- narrow domain walls [] caplayer
B co

- Dzyaloshinskii-Moriya Interaction
—> chiral domain walls

- Underlayer

Neel domain walls

clockwise

<= = anti- clockwise

[ ] Ni(Pt, Pd..)

Pt, b-W, b-Ta, WO,, Mn,lr

(#2) Dzyaloshinskii—Moriya interaction (DMI)
- chirality of domain walls set by interface(s) vector exchange interaction

(#3) Proximity Induced Magnetization (PIM)
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(#4) Spin Hall effect: conversion of charge to spin current

Spin Hall effect

Positive Spin Hall Angle

SHA: Spin Hall Angle
charge to spin conversion efficiency: ~10-30 %

Negative Spin Hall Angle
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Measurement of Spin orbit torque = Spin Hall angle

ST-FMR: Spin Torque Ferromagnetic Resonance

V4

[ Z y Ty Hext
X <=3 L45°

I

> Spin Hall torque and Oersted Field torque Liu et al., Phys. Rev. Lett. (2011)

» Ratio - charge to spin conversion efficiency
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ST-FMR: Spin Torque Ferromagnetic Resonance
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Interface is important!
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NiFe: Permalloy
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—> Transparency of NiFe/Pt and Co/Pt interfaces not 100 % - NiFe/Pt: 25%; Co/Pt: 50%
-> Correct for transparency then Spin Hall Angle: SHA of Pt = 0.20

Zhang et al., Nature Phys. (2015)
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IrMn, — fcc structure - a triangular antiferromagnet

7/

Lattice without magnetism

: Lattice with noncollinear AF
Four equivalent axes

[111] - one special plane

(t221 -

i
[11-1]

[1-1-1] [1-11]

Zhang et al. Sci. Adv. (2016)
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Strong effect on SHA of field annealing in perpendicular field -
change in AF domain structure in IrMn4
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- Tunes the AFM domain configuration at the IrMn; interface
- Only effective for thicknesses of IrMn3 for which the AF domains can be reset
i.e. the blocking temperature Tg<T,y

N.B. in-plane annealing - changes in-plane exchange bias field - no effect on SHA
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AFMI AFM2

(a) O4HC —0,41cC
OsHc OsHc

M or T
>

(b) (©)

Calculations by Binghai Yan et al.

Zhang et al. Sci. Adv. (2016)
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AHE in hexagonal Mn;Ge: a
triangular AF

- Results on single crystals

- Facet dependent AHE conductivity in Mn;Ge: a non-collinear AFM

—> Anticipate strong SHE/ SHC in this and related materials (h-Mn3Sb,
h-Mn;Sn)

Nayak et al. Sci. Adv. (2016)
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Spin Hall effect: dramatic evolution

Novel materials show large spin Hall effect
Triangular antiferromagnets

Novel crystalline phases

Important technological applications
Racetrack — DW velocities > 1,000 m/sec

3T Single DW Racetrack - replacement for SRAM

Zhang et al. Nat. Phys. (2015)
Demasius et al., Nat. Comm. (2016)
Nayak et al. Sci. Adv. (2016)

Zhang et a. Sci. Adv. (2016)
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Chiral Spin Torque - drives domain walls very fast!

Top view: Counter-clockwise chiralty
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- DMl local field - Neel domain walls

- DMl field Hpy, sets a specific chirality the Neel domain Walls

- spin Hall torque causes M to rotate towards spin accumulation S

- DMl field torque moves all the DWs along the current flow direction.

Ryu et al., Nat. Nanotech. (2013); Yang et al., Nat. Nanotech. (2015)
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Dipolar fringing fields emitted from Domains
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RM 4.0: Very High DW Speeds in SAF PMA racetracks
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- SAF: Synthetic antiferromagnet: upper racetrack = exact mirror image of lower

- DW velocity increases as degree of compensation of moments in upper and lower racetracks increased
- 4x highest DW velocity yet reported - Speeds exceed 1.5- 5 km/sec

- AF exchange field > DMI field

Yang et al. Nature Nanotechnology (2015)
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Racetrack Memory 4.0

- 20 domain walls moved in lock step with current pulses
- High velocity at low current densities
- Narrow domain walls (~6 nm)

- Very thin racetracks (~1 nm)

- Giant domain wall velocities in Synthetic Antiferromagnet racetracks [ Ru

Ryu et al. Nature Nanotechnology (2013)
Yang et al. Nature Nanotechnology (February 2015)
Parkin et al. Nature Nanotechnology (March 2015)
SORBET - complex interplay of 4 spin-orbit derived phenomena
1. Perpendicular magnetic anisotropy — from broken symmetry from interfaces
2. Proximity induced magnetization
3. Chiral domain walls — DMI
4. Spin currents — from spin Hall effect (SHE)



Dramatic dependence of DW velocity on Curvature

Before After

DW motion after 2 pulses (0.6 x 108 A/cm? for 100ns)

6oy L Sgic%h}éiemn - Domain size decreases or increase by 10 times depending on
1200 9B A curvature
: 80 R . . - DW velocities are different for all J.
) a0l _."// - CW (CCW) DW motion : x> 0 (x < 0)
"/;}” - Ol®k>0=Q| O k<0 -> slower
ol

03 06 09 12
J (10° Alem?)

O|l®k<0=Q | O k>0 -> faster

DW velocity in straight wire (x = 0) is in-between x > 0 and k < 0.

R=7umandw =2 um
Garg et al. Science Advances (May 5, 2017)
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Quasi 2D Model for curved wires with radius dependent current

Y(t) : in-plane magnetization angle in static frame

¢(t) : in-plane magnetization angle in moving frame
x(t): DW in-plane tilting angle in static frame

{(t): DW in-plane tilting angle in moving frame

q(t

2R gw 1 =
r) X —
JG) o

- DW is not straight but curved due to the cylindrical
symmetry of experimental parameters such as electrical
current, SHE and DMI.

- Key point - transformation between cylindrical moving
frame and cartesian static coordinates > DW
magnetization and DW tilting angle in static coordinates
are a function of DW position.
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Quasi Two Dimensional Model Results for curved wires: time-resolved

0 10 20 30 40 50
t(ns)

- Terminal velocity for © | @ with x > 0 is larger than that for @ | © with x > 0.
- It takes shorter for © | ® with k > 0 (~ 10 ns) to reach the terminal velocity than for ® | © with k > 0 (~20 ns).
- DW magnetization reaches steady state much faster (< 1ns) than DW tilting angle (> 20 ns).
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Torque along the radial direction in curved wires

analogy: rotation and linear
motion of a disk

DW velocity
% 35 40 45 5.0
r(um)
50 . : i
—v— U-D
A4O 3 —r-D-U
©
-
=20t ]
S
>
10F . ]
DW angular velocity
0 L . ,
3.0 3.5 4.0 4.5 50

r (um)
DW velocity (torque) at outer rim is
faster than at inner rim.

Angular velocity is the same along the
DW in steady state.
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DW motion in synthetic antiferromagnetic curved wires - no change !
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Before After Before After
- Curvature does not affect DW motion in SAF nanowires.
- Exchange coupling torque dominant = insensitive to DW tilting _
Garg et al. Science Advances (May 5, 2017)
Stuart Parkin — Spin on Electronics!

Curvature induced lock-step motion breakdown problem resolved !!



3T-SOT- 3T-SOT-

ultra dense | IDWRM 6 | MRAM6Q | 1IDWRM 8 | MRAM 8 Q

SRAM Q layout layout Q layout layout
Fins/FET 1 1 1 2 2
Feature size (F)
(nm) 14 14 14 14 14
Fin pitch (FP) (nm) 42.67 42.67 42.67 42.67 42.67
contact poly pitch
(CPP) (nm) 80 80 80 80 80
Bit line pitch (BLP)
(FP) 8 4 4 4 4
Bit line pitch (BLP)
(nm) 341.3 170.7 170.7 170.7 170.7
Word line pitch
(WLP) (CPP) 2 1.5 1.5 2 2
Word line pitch
(WLP) (nm) 160 120 120 160 160
Cell (Q) 16 6 6 8 8
Cell (hm?2) 54613 20480 20480 27307 27307
Cell (F?) 278.6 104.5 104.5 139.3 139.3
Cell/SRAM 1 0.375 0.375 0.5 0.5
Energy (fJ) 96 9.6 9.6 19.2 19.2
Switching speed (ps) 667 < 200 < 200 <200 < 200
Max transistor
current (UA) 30 30 30 60 60

- 100 picosecond writing speed
- Non-volatile & very low energy
- 40% size of SRAM
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Skyrmions at room temperature in Mn,(Pd,,Ptgy) 41Sn

Nayak et al. (unpublished)
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Non collinear spin structures in Mn, ,(Pt, sPd, 4) Sn
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Skyrmions and anti-skyrmions
Bloch skyrmion antiskyrmion Néel skyrmion
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) A
Anti-
Skyrmions!
1st observation
- Stable above 300 K \T
E F G H

Nayak et al‘ (201 7) Stuart Parkin — Spin on Electronics!



Phase diagram: Mn, ,(Pt, ;Pd; {) Sn

Nayak et al. (submitted)
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Anti-
Skyrmions!

1st observation
- Stable above 300 K

Nayak et a/- (Sme|tted) Stuart Parkin — Spin on Electronics!



OOMMF simulation of phase change as a function of perpendicular field strength, with: (a) H,=0.09T,
helix+antiskyrmion phase, (b) H,=0.15T, helix+antiskyrmion phase, (c) H,=0.21T, antskyrmion phase, (d) H,=0.39T,
antikyrmion phase, (e) H,=0.47T, antiskyrmion + spin polarized phase and (f) H,=0.50T, spin polarized phase.
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Field dependence of the Field dependence of the

antiskyrmion size at various antiskyrmion lattice mean
temperatures. The error bar is the angle at several different
standard deviation of the size temperatures. The inset
distribution. show the corresponding

standard deviation of the
lattice angles.

Analysis of a LTEM image of the antiskyrmion lattice at
200K under a perpendicular field of H=0.23T. Stuart Parkin — Spin on Electronice!



Magnetic bubbles / skyrmions in W | CoFeB films

Hz

0 Oe : Stripe + Bubble 1.2 Oe : Stripe + Bubble

2 Oe : Bubble 4 Oe : Single domain
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“hedgehog” (Néel) type
Examples: thin Fe/Ir

- SOC + interface sets
chirality

“vortex type” (Bloch) chiral
phase examples: MnSi; films
with perpendicular anisotropy
plus magnetic dipolar
coupling (achiral)

Skyrmions in CoFeB - speed 0.000001 m/sec at j= 10% A/cm?

Jiang et al. Science (2015)
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Skyrmions in CoFeB thin films
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Chiral spin torque and giant exchange torque
Ultrafast current induced DW velocities in racetracks with no magnetization!

Curvature strongly affects DW velocity but eliminated in SAF racetrack

Novel materials show large spin Hall effect
Triangular antiferromagnets*

Novel crystalline phases **

Important technological applications
Racetrack — DW velocities > 1,000 m/sec

3T Single DW Racetrack - replacement for SRAM

Promises 3T device with SRAM performance
but increased density, much lower energy consumption
& non-volatility (fast start-up)

Non collinear spin textures!
Anti-skyrmions...

Zhang et al. Nature Phys.
Demasius et al. Nature Comm.
Nayak et al. Science Adv. (2016)
Zhang et al. Science Adv. (2016)
Nayak et al. (2017)
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