

APL 97, 012904 (2010)

... something else ...

27. July 2017

Kunsthistorisches Museum Wien.

Jan Brueghel the Elder (1568 - 1625) Flowers in a Wooden Vessel, 1603 **Scanning Probe Microscopy** *a bouquet of possibilities for investigating samples*

> Lithium Niobate a rich playground for fascinating science

Scanning Probe Microscopy (SFM)

A bouquet of possibilties for investigating samples

Scanning Force Microscopy (SFM) Basics

F_{tor} defl

Scanning Force Microscopy (SFM)

Calibration of in-plane displacements (torsion & buckling)

- Use two identical piezoplates
- Use calibrated height scanner
 - to calibrate the piezoplate
- Find appropriate

amplitude & frequency $(2V_{pp} / 10 \text{kHz})$

Scanning Force Microscopy (SFM)

Crosstalk between the signals?

Misalignment → Crosstalk-compensator

Mechanical (sample topography) → Slow scanning

Electronical (manufacturer's fault) → Better shielding

Excite the cantilever at its resonance frequency

Scanning Force Microscopy (SFM) Electrostatic Force Microscopy (EFM)

SFM in non-contact mode: tip-sample distance z few nm

Lateral resolution $\propto r$ and z

Sensitivity: Single(!) charge detection (fN) Scanning Force Microscopy (SFM) Electrostatic Force Microscopy (EFM)

Scanning Force Microscopy (SFM) Electrostatic Force Microscopy (EFM)

Surface Charge Density

Determination of the Surface Charge Density (SCM)

Probe can no longer be
approximated by a sphere
→ Cone, cantilever, ...
have to be taken into account

Need of a calibration sample

- = a sample with known surface charge density
- \rightarrow impossible
- = a sample with known, controllable change of the surface charge density
- \rightarrow pyroelectric crystal

With a known pyroelectric coefficient dP_s/dT

a controlled change ΔT leads to a known $\Delta Q_{surface}$

Surface Charge Density

Calibration & Results for the SCD on LiNbO₃

LiNbO₃: $dP_s/dT = 80 \times 10^6 \text{ C/Km}^2$ LiTaO₃: $dP_s/dT = 190 \times 10^6 \text{ C/Km}^2$

stabilized Peltier [ΔT in min] heating resistor [ΔT in s]

Temp. steps ΔT : 0.5 to 2.5 K

 $[\Delta T \text{ in min}] \text{ or } [\Delta T \text{ in s}]$ yielded the same results.

Measurements with $LiTaO_3$ were consistent.

Surface Charge Density

Long-Term Measurement of the SCD on LiNbO₃

- Surface charge recovers
- Recovering takes half a day $[\tau = 1.7 \times 10^4 \text{ s}]$
- 0.5%Fe:LiNbO₃ shows fast recovery $[\sigma = 10^{-9} (\Omega \text{cm})^{-1}]$
- Dry atmosphere ٠ did not alter the result

APL 95, 232906 (2009) 15

Ferroelectric Workhorse

Lithium Niobate (LiNbO₃)

• Surface charge density: $\sigma = 0.7 \text{ C/m}^2$ Ferro-electric • Coercive field: $E_{\rm c}$ = 20 kV/mm • 180°-domains Pyro-electric $\Delta P_s = 80 \ \mu C/m^2 K$ $\begin{array}{c} d_{11} = 0 \\ d_{22} = 21 \\ d_{33} = 7 \end{array} \quad \begin{array}{c} d_{15} = 69 \\ d_{31} = -1 \end{array} \end{array} \right\} \text{pm/V}$ Piezo-electric Electro-optic $\Delta n = -\frac{1}{2} n_0^3 r_{13} E$ r_{13} = 11.9 pm/V -. . .

Piezoresponse Force Microscopy (PFM)

Basics

Topography and piezoresponse are readout simultaneously and independently

Lateral resolution ∞ tip radius \rightarrow typically 20 nm

Sensitivity of PFM: < 0.1 pm/V

Ti-indiffused waveguide

10 µm

PPLN

PFM versus EFM

Electrostatic contribution to PFM?

• Surface charge density:

 $\sigma = 140 \ \mu C/m^2$

(experimentally determined)

Pyroelectric coefficient: ٠ $\Delta P_{\rm s}$ = 80 µC/m²K (data sheet)

No change of the contrast upon cooling the crystal \rightarrow No effect of the surface charging on the PFM signal

PFM – Temperature-Dependent Measurements Domain evolution in barium titanate ($BaTiO_3$)

image size 20 x 20 µm²

APL 105, 152901 (2014) 20

PFM – Temperature-Dependent Measurements

Domain evolution in barium titanate (BaTiO₃)

image size 20 x 20 μm^2

Ferroelectrics & Scanning Force Microscopy

... using PFM and EFM

- Visualization of domain patterns
- Evolution of domain patterns across phase transitions
- Determination of the effective surface charge density

Properties of ferroelectric domain walls

Width? Few nm

And? ... they are conductive!

Domain Wall Conductivity

Status

DWC has first been observed in 2009 in thin film BFO

Since then: exponential increase of research (and publications)

Standard experimental setup: c-AFM

D. Meier et al. Nature Materials 11, 284 (2012)

... conductive = less insulating ...

Domain Wall Conductivity in Lithium Niobate

Temporal evolution over 1.5 days in a 30 μm thin sample

 $60 \times 60 \ \mu m^2$

Domain Wall Conductivity in Lithium Niobate

Quantitative estimates

Dark conductivity of Mg:LiNbO₃: $\sigma = 10^{-15} (\Omega \text{cm})^{-1}$

Conductivity of the 1° inclined domain walls: $\sigma = 0.03 (\Omega \text{cm})^{-1}$ (assuming a wall width of w = 10 nm)

Conductivity of something real (copper): $\sigma = 10^9 (\Omega \text{cm})^{-1}$

A conductive DW is just less insulating than its surroundings ...

... but it's non the less fun!

 \rightarrow Further investigations ...

From ferroelectric domain patterning ...

... towards nanostructuring

Domain Selective Etching

in 48% HF @RT +z does not etch -z etches 800 nm/h

Annealing at T < Tc

 \rightarrow Keeps the ferroelectric domains

 \rightarrow Smoothens the surface

Poling of Domains with an SFM Tip Basic principle

JAP 110, 052018 (2011) 27

Domains in He-Implanted LiNbO₃ Samples

Fabrication of Waveguides

UV-light induced domains & Domain selective etching

near-field profile @ 633 nm

SEM image of a ridge waveuide

APL 97, 151112 (2010) 30

Fabrication of Waveguides

UV-light induced domains & Domain selective etching

Fabrication of Photonic Micro-Structures

UV-light induced domains & Domain selective etching & Annealing

Opt. Express **18**, 11508-11513 (2010)

Physikalisches Institut AFM Group

Many thanks to the Bonn crew

A. Ofan, R. Osgood, Jr.

Optoelectronics Research Centre

Y. Jing, S. Mailis

Kunsthistorisches Museum Wien.

Pieter Brueghel the Elder (1530 – 1569) *Children's Games 1560*

The Brueghel Dynasty Genealogy

