

STABILIZING AND CONTROLLING ROOM TEMPERATURE MAGNETIC SKYRMIONS

SUZANNE G.E. TE VELTHUIS

Materials Science Division Argonne National Laboratory

Supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

ACKNOWLEDGEMENTS

Axel HoffmannWanjun Jiang (now at Tsinghua U.)

Wei Zhang, M. Benjamin Jungfleisch, H. Somaily, Frank Y. Fradin, John E. Pearson, Olle Heinonen

Argonne National Laboratory

Xichao Zhang, Yan Zhou

University of Hong Kong

Xiao Wang, Xuemei Cheng

Bryn Mawr College

Pramey Upadhyaya, Guoqiang Yu, Yaroslav Tserkovnyak, and Kang L. Wang

University of California Los Angeles

DISCOVERY OF MAGNETIC SKYRMIONS

S. Mühlbauer et al., Science 323, 915 (2009)

MAGNETIC SKYRMIONS

Non-Trivial Topology

Stabilized by Chiral

Dzyaloshinkii-Moriya Interaction

Topological Charge

 $Q = \frac{1}{4\pi} \int \mathbf{m} \cdot \left(\partial_x \mathbf{m} \times \partial_y \mathbf{m}\right) dx dy$

$$Q = \pm 1$$

Efficient Manipulation by Electric Charge Currents

Emergent Magnetic Field

$$h \approx \frac{\Phi_0}{\pi R^2} \approx \frac{\Phi_0}{\pi a^2} (\frac{D}{J})^2 \qquad h \sim 100 \text{ T}$$

Motion due to Spin Hall Effect

$$\mathbf{D}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j)$$

A. Fert *et al.*, Nature Nano. 8, 152 (2013)

SKYRMIONS ARE STABILIZED BY CHIRAL INTERACTIONS

A. Fert et al., Nature Nano. 8, 152 (2013)

ENCODING INFORMATION IN SPIN TEXTURES

Racetrack Memory

Skyrmions

S. S. P. Parkin, M. Hayashi, and L. Thomas, A. Fert *et al.*, Nature Nano. 8, 152 (2013) Science 320, 190 (2008)

GENERATING INDIVIDUAL SKYRMIONS

Using spin-polarized scanning tunneling microscope

N. Romming, et al., Science 341, 636 (2013)

Spin-transfer torque switches skyrmion core reversibly

HOW TO EXPERIMENTALLY **CREATE AND/OR MANIPULATE ROOM-TEMPERATURE MOBILE SKYRMIONS** IN COMMON MATERIAL SYSTEMS.

Blowing Magnetic Skyrmion Bubbles

Skyrmion Hall Effect

FERROMAGNETIC FILMS WITH PERPENDICULAR ANISOTROPY

Polar Magneto Optic Kerr Effect (MOKE) Imaging

Increasing Magnetic Field

Argonne

DOMAIN EVOLUTION WITH MAGNETIC FIELD

BLOWING MAGNETIC SKYRMION BUBBLES

 $H_{\perp} = -0.5 \text{ mT}$ $J_{c} = +0.5 \text{ MA/cm}^{2}$

BLOWING MAGNETIC SKYRMION BUBBLES

 H_{\perp} = +0.5 mT $J_{\rm c}$ = +0.5 MA/cm² —

SKYRMION GENERATION PHASE DIAGRAM

LOW CURRENT TRANSFORMATION DYNAMICS

 B_{\perp} = +0.46 mT, *DC current* J_{e} = + 0.068 MA/cm²

SPIN HALL EFFECT

Spin Hall Charge Current

Spin Orbit Torque On Adjacent Ferromagnet

Recent Review: Axel Hoffmann, IEEE Trans. Magn. 49, 5172 (2013)

CHIRAL DOMAIN WALL TORQUES

DMI + Spin Hall = Efficient Torque

S. Emori, et al., Nat. Mater. **12**, 611 (2013) K.-S. Ryu, et al., Nat. Nanotechn. **8**, 527 (2013)

INHOMOGENEOUS CHIRAL SPIN ORBIT TORQUES

Stripe Domain with Homogeneous Current

Stripe Domain with Inhomogeneous Current

DIFFERENT GEOMETRIES

Skyrmion generation is robust Spatially divergent currents are the key

TOPOLOGICALLY TRIVIAL BUBBLES

(S = 0) bubble stabilized by in-plane magnetic fields

RESPONSE TO CURRENTS WITH IN-PLANE MAGNETIC FIELDS

NO BUBBLE FORMATION WITHOUT UNIFORM CHIRALITY

$$B_{//} = 5 \text{ mT}$$
 $J_e = + 0.5 \text{ MA/cm}^2$

INVESTIGATING INDIVIDUAL SKYRMIONS

W. Jiang *et al.*, AIP Advances 6, 055602 (2016)

MOTION OF INDIVIDUAL SKYRMIONS

W. Jiang et al., AIP Advances 6, 055602 (2016)

Blowing Magnetic Skyrmion Bubbles

Skyrmion Hall Effect

SKYRMION HALL EFFECT

Classic Hall effect *Electric charge* q_e *Lorentz force* $q_e(v \times B)$ Skyrmion Hall effect *Topological charge* q_t Magnus force $4\pi q_t (v \times e_z)$

K. Everschor-Sitte and M. Sitte, J. Appl. Phys. **115**, 172602 (2014)

TOPOLOGICAL CHARGE

Is there a Hall effect due to topological charge?

Q = -1

Electrons (-1) / holes (+1)

Shizeng Lin

Skyrmion Hall Effect

Shi-Zeng Lin, Phys. Rev. B 94, 020402 (2016)

- Small J → creep motion
- Bigger J → steady motion (inaccessible)
- Complication from inhomogeneous currents

MICROMAGNETIC SIMULATION OF TRANSFORMATION


```
H = 5 Oe

M_s = 650 \text{ emu/cm}^3

H_a = 8868 \text{ Oe}

A = 3 µerg/cm

DMI = 0.5 erg/cm<sup>2</sup>

\alpha = 0.02

\sigma_{Ta} = 0.83 \text{ MS}

\theta_{sh} = 10\%
```

O. Heinonen et al., Phys. Rev. B 93, 094407 (2016)

CREATION OF SKYRMIONS VIA NONMAGNETIC CONTACTS

No stripe domains through No heat involved Only divergence of current Requires Larger Currents

Pulse current: 15 V of duration 1 ms at 1 Hz

Skyrmion Hall Effect

Topological charge behaves as electronic charge Skyrmion Hall effect in real space

SKYRMION MOTION WITH HOMOGENEOUS CURRENT $j_e = +2.8 \times 10^6 \text{ A/cm}^2$

CURRENT DEPENDENCE OF MOTION

 $j_e = +2.8 \times 10^6 \text{ A/cm}^2 \longrightarrow$

EVOLUTION OF VELOCITY/HALL ANGLE ON CURRENTS

Skyrmion is pinned

(stochastic) hopping

Drive-dependent Skyrmion Hall angle

rather than predicted constant value

$$\frac{v_y}{v_x} = \tan(\Phi_{sk}) = \frac{1}{\alpha D}$$

PARTICLE-BASED SIMULATION MODEL

- For small intrinsic Hall angles, the Hall angle increases linearly with external drive.
- At sufficiently high drives, the skyrmions enter a free flow regime,
 => R saturates to the disorder-free limit.

C. Reichhardt and C. J. Olson Reichhardt, New Journal of Physics, 18 (2016)

W. Jiang et al., Nature Physics 13, 162 (2017)

Skyrmion Hall angle eventually Flow regime

is reached

 $H = 5.4 \text{ Oe}, d = 800 \pm 300 \text{ nm}$

 $\Phi_{sk}=32\pm2^{\circ}$

 $H = 4.8 \text{ Oe}, d = 1100 \pm 300 \text{ nm}$

 $\Phi_{sk}=28\pm2^{\circ}$

Final Skyrmion Hall angle depends on the skyrifiedd Size?

The sign of the Skyrmion Hall angle changes with

The sign of the Skyrmion Hall angle changes with

- Current direction
- Topological charge Q

SKYRMION HALL EFFECT

W. Jiang et al., Nature Physics 13, 162 (2017)

DISSIPATIVE FORCE TERM – ISOLATED SKYRMIONS

$$\overleftrightarrow{\mathcal{D}} = 4\pi \begin{pmatrix} \widehat{\mathcal{D}}_{ii} & 0 \\ \widehat{\mathcal{D}}_{ji} & \mathcal{D} \end{pmatrix}_{jj}^{ij} \mathcal{D} = \mathcal{D}_{ij} = \frac{1}{4\pi} \int_{\text{unit cell}} \frac{\partial \mathbf{m}}{\partial i} \cdot \frac{\partial \mathbf{m}}{\partial j} dx dy$$

W. Jiang et al., Nature Physics 13, 162 (2017)

$$\mathcal{D} = \frac{\pi^2 d}{8\gamma_{dw}}$$

d	Y _{dw}	D	v _y /v _x	$\Phi_{\sf sk}$
10 nm	10 nm	1.2	40	89°
100 nm	10 nm	12	4	76°
1000 nm	10 nm	12 3	0.4	22°

Argonne

W. Jiang *et al.*, Nature Physics 13, **162** (2017)

Argonne

Classic Hall effect Electric charge q_e Lorentz force

Skyrmion Hall effect Topological charge Q Magnus force

SKYRMION ACCUMULATION

Accumulation of skrymions along one wire edge is observed.

SKYRMION MOTION: EDGE VS. INTERIOR

Oscillatory skyrmion edge transport: Competition between edge repulsive force and magnus force

CONCLUSIONS

- Magnetic Skyrmions at RT
 - Use inhomogeneous currents for generating skyrmions
- Skyrmion Hall Effect
 - Low current: Linear dependence of skrymion Hall angle (creep regime).
 - **High current**: Saturation of skyrmion Hall angle (flow regime).
 - Magnitude of skyrmion Hall angle Φ_{sk} consistent with size of skyrmion.
 - Sign of Φ_{sk} changes with sign of Q.

Cop a em TIC FIELD: 100.99mT | SUB: ستا20 on 50x, , 1.0x AVG:off,2x | BitS:4.0 08/17/15 17:13:59

