A New Spin on Superconductivity

Amir Yacoby, Harvard University

Breaking of an additional symmetry: translational symmetry; spin symmetry...

1964 – Fulde-Ferrell; Larkin-Ovchinnikov

Spatially varying order parameter

P. Fulde, R. A. Ferrell, Phys. Rev. 135, A550 (1964);A. I. Larkin, Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965).

Organic SC:

H. Shimahara, in A.G. Lebed (ed.): The Physics of Organic Superconductors and Conductors, Springer, Berlin (2008)

heavy-fermion material CeCoIn₅ Bianchi, A.; Movshovich, R.; Capan, C.; Pagliuso, P.G.; Sarrao, J.L. Phys. Rev. Lett 91, 03'.

Topological Insulators and Topological Superconductors

Topological insulators have electronic surface states

Topological superconductors have Majorana surface states

Bulk Topological Superconductivity

V=5/2 FQHE – Read and Green

Non Abelian particles – when exchanged wave function changes completely

e*:	=e	/4.
		/Τ.

M. Heiblum et al, 2010 V. Venkatachalam, AY, Nature 2010

J.S. Xia et al., PRL (2004).

SrRu4O2 Y. Maeno

• Superconductor – Ferromagnetic junctions

See review: Matthias Eschrig, Phys. Today 64(1), 43 (2011)

• Superconductor – Ferromagnetic junctions

See review: Matthias Eschrig, Phys. Today 64(1), 43 (2011)

Theory: Buzdin 1982

Experiments:2001-2 Ryazanov et al; Golubov et al; Kontos et al and Palevski

• Superconductor – Ferromagnetic junctions

See review: Matthias Eschrig, Phys. Today 64(1), 43 (2011)

• Superconductor – Ferromagnetic junctions

See review: Matthias Eschrig, Phys. Today 64(1), 43 (2011)

Unconventional Superconductivity from Hybrid Devices

Topological Insulators

Unconventional Superconductivity from Hybrid Devices

Unconventional Superconductivity from Hybrid Devices

Experimental Geometry

Experimental Geometry

Phase Diagram of B₁₁ perpendicular to current flow

Phase Diagram of B₁₁ perpendicular to current flow

B=0

 $e^{i\overrightarrow{\Delta K}\cdot \vec{r}}\left|\uparrow\downarrow
ight
angle-e^{-i\overrightarrow{\Delta K}\cdot \vec{r}}\left|\downarrow\uparrow
ight
angle$

Spin-Orbit Dominated Regime

Lower Density Regime

Zeeman Only

Rashba vs Zeeman

Rashba vs Zeeman

π phase shift and π junction

π phase shift and π junction

Rashba vs Zeeman

New Theoretical Insight

π

ò

-1

0

Topological transition only governed by Kx=0

• Narrow junction

2π

Neglect normal reflections

• Topological superconductor

2π

-1

0

π

ø

F. Pientka, AY, et al arXiv 2016

Topological Switch

Topological transition only governed by Kx=0

- $\phi = 0$ system *always* trivial
- $\phi = \pi$ system *always* topological

topology switch

F. Pientka, AY, et al arXiv 2016

Gap obtained numerically using scattering matrix approach, $\Delta = 1/mW^2$

Self Tuning into Topological Phase

Search for Majorana End States

Tunneling Spectroscopy

Flux control – 'a Topology Switch'

Planar Josephson junction devices with tunnel probes

Local Density of States Measurement and Calculation

Pientka, et. al. Arxiv:1609.09482.

Outlook:

- Can we use this measurement approach to determine the presence of p-type order?
- Can we determine what is the underlying p-type order (T+, T-, To)?

Outlook:

- Can we use this measurement approach to determine the presence of p-type order?
- Can we determine what is the underlying p-type order (T+, T-, To)?

Superconductor

A New Spin on Superconductivity

Sean Hart, Hechen Ren, Michael Kosowsky, Bert Halperin, Harvard University L. Molenkamp's group, <u>University of Wurzburg</u>

Triplet pairing

In collaboration with: F. Pientka, A. Keselman, A. Stern, E. Berg

