

Finding Orders in Iron-based Superconductors

History of superconductivity

The families of iron-based superconductors

Outline

- Importance of <u>correlations</u> to superconductivity
 - Bandwidth-tuned superconductivity in RbFe₂Se₂
 - Overall correlation trends in FeSCs

- Finding electronic orders in iron-pnictides
 - Orbital anisotropy (spin coupling to orbital)
 - Charge order (spin coupling to charge)

Angle-Resolved PhotoEmission Spectroscopy (ARPES)

What ARPES measures

Photoemission Intensity: $I(k,w) = I_0 |M(k,w)|^2 f(w) A(k,w) \otimes R(\Delta k, \Delta \omega)$

 $\Sigma(\mathbf{k},\omega) = \Sigma'(\mathbf{k},\omega) + i\Sigma''(\mathbf{k},\omega)$

The "self-energy" captures the effects of interactions

Damascelli, Hussain, Shen, Rev. Mod. Phys. 75, 473 (2003)

What ARPES measures

Photoemission Intensity: $I(k,w) = I_0 |M(k,w)|^2 f(w) A(k,w) \otimes R(\Delta k, \Delta \omega)$

Single-particle spectral function

$$A(\mathbf{k},\omega) = \delta(\omega - \varepsilon_k)$$

Damascelli, Hussain, Shen, Rev. Mod. Phys. 75, 473 (2003)

What ARPES measures

Photoemission Intensity: $I(k,w)=I_0|M(k,w)|^2f(w)A(k,w) \otimes R(\Delta k, \Delta \omega)$

Damascelli, Hussain, Shen, Rev. Mod. Phys. 75, 473 (2003)

Correlation-tuned superconductivity in Rb_xFe₂Se₂

Berkeley

M. Wang, M. Yi et al. PRB 93, 075155 (2016)

Same Fermi surface topology

Berkeley

M. Yi et al. PRL 115, 256403 (2015)

Very different correlation strength!

Electron correlation is important for high temperature superconductivity!

M. Yi et al. PRL 115, 256403 (2015)

Correlation trends in all iron-pnictides

Berkeley

Bandwidth of all iron-based superconductors

Superconductivity and correlation strength

Outline

- Importance of <u>correlations</u> to superconductivity
 - Bandwidth-tuned superconductivity in RbFe₂Se₂
 - Overall correlation trends in FeSCs

- Finding electronic orders in iron-pnictides
 - Orbital anisotropy (spin coupling to orbital)
 - Charge order (spin coupling to charge)

Emergence – fundamental degrees of freedom

Re-introducing Iron-based superconductors

Part II Charge Lattice P G Q, O' et C et O e+ Part I Orbital Nematic fluctuations ZX YZ Paramagnetic tetragonal Spin down up Superconductivity C4 Superconductivity x (Hole doping) R. M. Fernandes et al. Nat. Phys. 10, 97 (2014). (electron doping) x

Conclusion: discovery of a charge order

Iron-based superconductors: known phases

Dominance of an electronic nematic phase: resistivity

Dominance of an electronic nematic phase: ARPES

Dominance of an electronic nematic phase: neutron

Strong coupling of the spin and orbital degrees of freedom

Distinct signatures of different order parameters

Orbital-dependent <u>band shift</u> associated with T_s particle-hole asymmetric gap associated with T_{SDW} $\frac{\text{particle-hole symmetric gap}}{\text{associated with } T_{C}}$

Competition of the magnetic order with superconductivity

magnetism and superconductivity coexist and compete

M. Yi et al. Nat. Comm. 5, 3711 (2014)

Part II: evidence for a charge order

The curious C₄ phase

Rotational C₄ symmetry is restored

S. Avci et al. Nat. Comm. 5, 3845 (2014 L. Wang et al. PRB 93, 014514 (2016)

The curious C₄ phase

Rotational C₄ symmetry is restored

S. Avci et al. Nat. Comm. 5, 3845 (2014 L. Wang et al. PRB 93, 014514 (2016)

Three doping regimes measured

A word on twinning effect

BN18: expected nematicity

BN18: expected nematicity

 T_S/T_N

 T_{DQ}

Simulations to identify the origin of the band doubling

(π , π) charge order accompanying the double-Q order

Blue sublattice: antiferromagnetic Red sublattice: no moments Unequal charges on blue/red sublattices

M. Gastiasoro, B. M. Andersen. PRB 92, 140506(R) (2015) R. Fernandes, S. Kivelson, E. Berg. PRB 93, 014511 (2016)

Resonant Elastic X-ray Scattering (REXS)

Hard X-Ray RXS at Fe K edge

New peak emerges corresponding to (π, π) order

(π, π) order peak resonance behavior

Charge order doping dependence

The charge order is predominantly coupled to the double-Q magnetic order.

Summary – strong coupling of spin and charge

- Observed evidence of (π, π) <u>charge order</u>
 - Band folding (ARPES)
 - Ordering peak (REXS)
 - Resonant at the Fe K-edge involving transitions into the 3d states
- <u>Charge order</u> couples to the <u>double-Q</u> magnetic order analogously as the nematic order to the collinear antiferromagnetic order
- Strong coupling of spin and charge

Commonalities in high temperature superconductors

- Magnetically ordered parent phase
- Electronic nematic phase
- Charge order creating a dip in the superconducting dome

Collaborators

Alex Frano Meng Wang Ben Frandsen Dung-Hai Lee Bob Birgeneau

Stanford University

Yu He Zhi-Xun Shen

Stanford Synchrotron Radiation Lightsource

Donghui Lu Makoto Hashimoto

Technology

Liran Wang Mingquan He Frederic Hardy Peter Schweiss Peter Adelmann Thomas Wolf Matthieu Le Tacon Anna Böhmer Christoph Meingast

Advanced Light Source

Sung-Kwan Mo Zahid Hussain

NC STATE

North Carolina State University

Lex Kemper

RICE

<u>Rice University</u>

Qimiao Si

<u>Renmin University</u> Ron<u>g</u> Yu

National Synchrotron Light Source II Christie Nelson

CO/Double-Q analogous to nematicity/CAF

What about CO and double-Q magnetic order?

R. M. Fernandes et al. Nat. Phys. 10, 97 (2014).

CO appearing above double-Q magnetic order?

Structural transition

Remember the strain effect on nematic order

J.-H. Chu et al. Science 329, 824 (2010)

BN2 X, single gaussian fit

Temperature dependence at X- doping comparison

Х

BN18: expected nematicity

T_S/T_N C₂ CAF

BN25: double sets of bands

rivative are also shown in Fig. 2 (solid line). The calculated spectrum captures fairly well the observed B - F features. The C - F features above the edge are dipolar transitions to unoccupied Fe p projected states. An alternative simulation excluding $1s \rightarrow 3d$ quadrupolar transitions (not shown) shows a slightly weaker spectral weight for the Bshoulder, demonstrating that it originates partly from such transitions and partly from dipolar transitions allowed by 4p - 3d mixing in the Fe site without inversion symmetry [27,28]. The observed A preedge peak is completely absent in the simulation. This is possibly because charge-transfer effects in the absorption process, not fully taken into account in the simulation, pull down the 3d states yielding a combination of a well-screened peak B and a poorly screened peak A, as described in detail in Refs. [27,29].

Spectroscopic evidence for nematicity and SDW

M. Yi et al. Nat. Comm. In revision.

Spectroscopic evidence for nematicity and SDW

M. Yi et al. Nat. Comm. In revision.

Spin Density Wave gap

UNIVERSITY OF CALIFORNIA

M. Yi et al. Nat. Comm. In revision.

Electronic changes across T_c

UNIVERSITY OF CALIFORNIA

<u>58</u>

Tight-binding model with Δ_s , Δ_{sDW} , and Δ_{sC}

Both nematic order and SDW order are suppressed with onset of SC \rightarrow <u>SC and SDW/nematic orders compete!</u>

M. Yi et al. Nat. Comm. In revision.

Δ_{SDW} and Δ_{S} : temperature dependence

M. Yi et al. Nat. Comm. In revision.

Mean-Field calculations: competition of Δ_{sDW} and Δ_{sC}

UNIVERSITY OF CALIFORNIA

Phase separation versus microscopic coexistence

Implications for superconductivity

R.M. Fernandes and J. Schmalian. PRB 82, 014521 (2010)

Experimentally distinguishing the two scenarios

UNIVERSITY OF CALIFORNIA

Implications for superconductivity

R.M. Fernandes and J. Schmalian. PRB 82, 014521 (2010)

Simplified schematic of electronic structure

momentum

Angle-Resolved PhotoEmission Spectroscopy (ARPES)

