Nucleation, stabilization and manipulation of magnetic skyrmions

Xiuzhen Yu
RIKEN Center for Emergent Matter Science
Electronic States Microscopy Research Team (ESMRT)

Microscope in RIKEN CEMS

Magnetic skyrmion
Multifunctional TEM/STEM (HREM, DPC-STEM, Lorentz TEM, EELS, EDS, SAED)

- Temperature range: 5K – 500 K
- DC current: 0 ± 100 mA
- DC voltage: 0 ± 40 V
- CCD camera, CMOS camera
- He holder with ten electrodes
Lorentz TEM (Fresnel mode) is a useful technique to realize magnetization texture

\[
\nabla \phi \quad M(x,y)
\]

◆Lorentz TEM sample geometry: 2D thin film
(sample thickness \(t < 200 \text{ nm} \) is much smaller than the sample size (from several tens to several hundreds micrometers)

\[
I(x, y, z_0 + \Delta z) \quad I(x, y, z_0 - \Delta z)
\]

\[
\frac{\partial I}{\partial z} \approx \frac{I(x, y, z_0 + \Delta z) - I(x, y, z_0 - \Delta z)}{2\Delta z}
\]

\(I(x, y, z) \): Electron intensity at image planes

\[
\frac{2\pi}{\lambda} \frac{\partial I(xyz)}{\partial z} = \nabla_{xy} [I(xyz) \nabla_{xy} \phi(xyz)]
\]

\(\phi(x,y,z) \): The phase distribution of electron wave

\[
\nabla \phi(xyz) = - \frac{e}{\hbar} (M \times n)t
\]

\(M \): Spontaneous magnetization in the sample
\(t \): Thickness of the sample
Magnetic twins can be projected by Lorentz TEM

In-plane (2D) spin texture of helical structure can be projected by LTEM

Schematic of helical structure

Lorentz TEM observations for skyrmion within magnetic field

Problems:
- The original Lorentz TEM is used to perform the spontaneous magnetic domain structure for the magnetic materials without bias fields by using the special Lorentz transmission electron microscope.
- However, we need bias fields to create skyrmions in B20 compounds.

Improvements:
- Lorentz TEM performance is carried out in commercial transmission electron microscopes.
- The tunable magnetic field is induced with changing the objective lens-current.

Changes of the lens-current

The tunable magnetic field is induced by the objective magnetic lens:

\[B_z \approx \frac{B_0}{1 + \left(\frac{z}{a} \right)^2} \]

- \(B_0 \): a maximum field (\(Z = Z_0 \))
- \(a \): the half-width at half maximum of \(B_z \)

\[B_0 \propto I_{\text{obj}} \]

Skyrmion: topological spin texture

Bloch-type skyrmion Neel-type skyrmion

Ω: solid angle Berry phase \rightarrow effective fictitious field

$N_s = \frac{1}{4\pi} \int \tilde{n} \cdot \left(\frac{\delta\tilde{n}}{\delta x} \times \frac{\delta\tilde{n}}{\delta y} \right) \delta x \delta y$

$\tilde{n} = \frac{\tilde{M}(r)}{|\tilde{M}(r)|}$

Emergent field

$B_{\text{eff}}^z = -\phi_0 / A$

$\phi_0 = h/e$

A: Surface area of skyrmion

Emergent field is in inverse proportional to the square of skyrmion radius

- Topological particle
- Emergent field

Nontrivial emergent phenomena

Electromagnetic induction
Moving magnetic flux produces the transverse electric field

\[e = -\frac{1}{c} [V \parallel \times h] \]

Topological Hall effect

Ultra-low Current-driven SkX motion in FeGe thin plate

J. Zhang, et al., PRL (2011)

Skyrmion Hall motion

\[J_{c, Sk} \sim 10^5 \text{ A/m}^2 \ll J_{c, FM} \]
Magnetically-induced the formation of skyrmion lattice in B20 compounds

Crystal structure
- Cubic
- Noncentrosymmetric

Spin Hamiltonian
\[H = \int \, dr \left[\frac{J}{2} (\nabla \mathbf{M})^2 + \alpha \mathbf{M} \cdot (\nabla \times \mathbf{M}) \right] \]

Ground state:
spiral with \(q \sim \alpha J \)

Magnetically-induced the formation of SkL

Phase diagram in a bulk MnSi
- First observation for SkL in a prototype skyrmion material
- It is hardly to confirm the topological spin texture for a single skyrmion by SANS
- Narrow window for SkL phase in a bulk MnSi

We need a imaging technique to confirm the topological nature of skyrmions as well as their lattice forms.
Nucleation of magnetic skyrmions in chiral-lattice magnets under magnetic field

A chiral-lattice FeGe, 260 K

The $B \perp \text{the plate plane}$ induces the phase transition in two magnetic systems:

Stripes \rightarrow SkX \rightarrow FM

First real-space observation of magnetic skyrmion in a chiral-lattice magnet Fe$_{0.5}$Co$_{0.5}$Si

Skyrmions in a (001) Fe$_{0.5}$Co$_{0.5}$Si thin plate

- 2D SkL is robust in a thin chiral-lattice magnet
- Isolated skyrmions have been realized

In collaborations with Profs. Tokura, Nagaosa, Onose, Han; Drs. Matsui, Kanazawa
Realization of isolated skyrmions

One to one correspondence of skyrmion helicity and crystal chirality in chiral-lattice systems

Over-focused image plane

Electron beam

B

RT, 240 mT

100 K, 50 mT

50 nm

150 nm

XY & Y. Tokura, JEOL news (2015)
The thinner the sample is, the more stable SkX is.

Phase diagram in a bulk MnSi

MnSi thin plates

λ: period of helical structure

- $t \sim 5 \lambda$
- $t \sim 3 \lambda$
- $t < 3 \lambda$

- The thinner the crystal plate is, the wider SkX phase is in the T-B plane.
- Compared to Sk phase in (110) and (001) films, Sk phase shirked in the thicker (111) MnSi film (>75nm).
Transformation of square to triangular SkL in a Co-Zn-Mn

\[(001) \text{Co}_8\text{Zn}_9\text{Mn}_3\]

\[T = 295\text{K}\]
Transformation of a square lattice to a triangular lattice at the RT

(001) $\text{Co}_8\text{Zn}_9\text{Mn}_3$

$B = 20 \text{ mT}$

$B = 55 \text{ mT}$

H_Z

$K (D^2/J)$

I : spin spiral
II: squire lattice of skyrmions
III: hexagonal lattice of skyrmions
IV: spin spiral conical structure

XY, et al. in preparation
Various states of skyrmion aggregate at RT

20 mT
65 mT
90 mT
150 mT
Skyrmion strings at 250 K

$B = 90 \text{ mT}$

$B = 110 \text{ mT}$

Scale bars are 100 nm
Topic I -2: Nucleation of magnetic skyrmions under current excitation

Dc current-induced the formation of skyrmions
Electric current-induced topological phase transition

FeGe, 180 K, 160 mT

Co-Zn-Mn, RT, 100 mT

Conical phase
(q ⊥ plate plane)

Uniform contrast in defocused Lorentz TEM image

Skyrmion

500 nm

200 nm

Estimation of Joule heating effect

2~3 K @ 4 mA
Robust zero-field SkX in a FeGe thin plate

$B = 0, T = 6 \text{ K}$
Changes of the quenched SkX with an increase of the bias-field

XY, et al. in preparation

2017/7/27

SPICE Mainz
Crystallization of skyrmions and phase separation with a decrease of the bias field $T = 6$ K
Topic Ⅱ-1: skyrmion Hall motion with electric current flow

Skyrmion & Skyrmion lattice (observed by DPC-STEM)

B = 160 mT
T = 210 K

XY, et al. in preparation

\[J = 7.8 \times 10^7 \text{ A} \cdot \text{m}^{-2} \]

\[J = 8 \times 10^7 \text{ A} \cdot \text{m}^{-2} \]
Skyrmion Hall motion with electric current flow

FeGe, $J_C \sim 10^8 \text{A} \cdot \text{m}^{-2}$

$J = 7.8 \times 10^7 \text{A} \cdot \text{m}^{-2}$

$J = 8 \times 10^7 \text{A} \cdot \text{m}^{-2}$

$T (K)$

$J_C (10^8 \text{A} \cdot \text{m}^{-2})$

500 nm

210 K 160 mT

$t = 0$

$t = 50 \text{ ms}$

$t = 100 \text{ ms}$

$t = 150 \text{ ms}$

2017/7/27

SPICE Mainz
Unidirectional rotation of SkL in a Cu$_2$OSeO$_3$ thin plate

$\textbf{Cu}_2\textbf{OSeO}_3$: $d_{\text{sk}} \sim 50 \text{ nm}$ $T = 35 \text{ K}, B \otimes = 65 \text{ mT}$

- Concentric thermal gradient created by electron beam
- Unidirectional rotational motion of skyrmion lattice

Summary

- 2D SkX as well as isolated skyrmions has been realized over a wide temperature range (6K~350 K) by means of Lorentz TEM.
- The fertile lattice forms as well as the bound skyrmions have been realized with tuning magnetic anisotropy in chiral-lattice compounds.
- Zero-field SkX can be stabilized with quenching of thermodynamically stable SkX in chiral-lattice magnets.
- Magnetic skyrmions can be excited by electric current.
- The *in-situ* Lorentz TEM observations have demonstrated a current-induced dynamical phase transition from a non-topological phase (conical phase) to a topological SkX phase.
- Lorentz TEM observations captured the skyrmion Hall motion with low-current (∼10^8 A/m^2) and thermal current.
Acknowledgements

Profs. Yoshinori Tokura, Naoto Nagaosa, Masashi Kawasaki
Drs. Yasujiro Taguchi, Wataru Koshibae, Daisuke Morikawa, Kiyou Shibata, Takashi Kurumaji
Drs. Yoshio Kaneko, Fumitaka Kagawa, Masao Nakamura, Hiroshi Oike
Ms. Akiko Kikawa

CEMS Emergent Matter Science Research Support Team (TL: Dr. Akimoto)
CEMS Materials Characterization Support Unit (UL: Dr. Hashizume)
Acknowledgements

Univ. of Tokyo
Prof. Yoshinori Onose
Prof. Shintaro Ishiwata
Prof. Masahito Mochizuki
(present: Waseda Univ.)
Prof. Taka-hisa Arima
Prof. Yusuke Tokunaga
Dr. Naoya Kanazawa
Prof. Yoshichika Otani

SungKyunkwan Univ.
Prof. Jung Hong Han

Univ. of Groningen:
Prof. Maxim Mostovoy

Dr. Yoshio Matsui
Dr. Koji Kimoto
Dr. Toru Hara
Dr. Takuro Nagai
Ms. Weizhu Zhang

Prof. Akira Tonomura
Dr. Hyun Soon Park
Dr. Toshiaki Tanigaki
Thank you for your kind attention!

We are recruiting the young researchers who are interested in topological spin texture

yu_x@riken.jp