Nucleation, stabilization and manipulation of magnetic skyrmions

Xiuzhen Yu RIKEN Center for Emergent Matter Science Electronic States Microscopy Research Team (ESMRT)

SPICE Mainz

Multifunctional TEM/STEM(HREM, DPC-STEM, Lorentz TEM, EELS, EDS, SAED)

Nanofabrication (FIB, E-lithography)

Lorentz TEM (Fresnel mode) is a useful technique to realize magnetization texture

◆Lorentz TEM sample geometry: 2D thin film (sample thickness t (< 200 nm) is much smaller than the sample size (from several tens to several hundreds micrometers)

Magnetic twins can be projected by Lorentz TEM

Lorentz TEM observations for skyrmion within magnetic field

Problems:

- The original Lorentz TEM is used to perform the spontaneous magnetic domain structure for the magnetic materials without bias fields by using the <u>special</u> <u>Lorentz transmission electron microscope</u>
- However, we need bias fields to create skyrmions in B20 compounds

Improvements:

- Lorentz TEM performance is carried out in <u>commercial transmission electron</u> <u>microscopes</u>
- The tunable magnetic field is induced with changing the objective lens-current

Changes of the lens-current

The tunable magnetic field is induced by the objective magnetic lens

$$B_{\rm z} \approx \frac{B_0}{1+(z/a)}^2$$

 B_0 : a maximum field (Z = Z_0) a: the half-width at half maximum of Bz

 $B_0 \propto I_{\rm obj}$

XY., et al., JEM 45, 273 (2010); Nature 465, 901 (2010)

Skyrmion : topological spin texture

Nontrivial emergent phenomena

Magnetically-induced the formation of skyrmion lattice in B20 compounds

SPICE Mainz

S. Mühlbauer. *et al. Science* **323**, 915 (2009) 8

We need a imaging technique to confirm the topological nature of skyrmions as well as their lattice forms

Topics I - 1

Nucleation of magnetic skyrmions in chiral-lattice magnets under magnetic field

A chiral-lattice FeGe, 260 K

The **B** (⊥ the plate plane) induces the phase transition in two magnetic systems:

Stripes \rightarrow SkX \rightarrow FM

XZ. Yu, *et al.*, Nat. Commun (2012, 2014)

First real-space observation of magnetic skyrmion in a chiral-lattice magnet Fe_{0.5}Co_{0.5}Si

• Isolated skyrmions have been realized

SPICE Mainz

Realization of isolated skyrmions

Christian Pfleiderer and Achim Rosch

Skyrmions are a special type of particle that has long been predicted to exist in many fields of physics. Direct images of these structures have now been made in a magnetic material.

XY & Y. Tokura, JEOL news (2015)

One to one correspondence of skyrmion helicity and crystal chirality in chiral-lattice systems

S. Shibata, XY., et al., Nat. Nanotech. (2013); D. Morikawa, XY., et al., PRB (2013)

Stability of the thermodynamically stable SkX in FeGe

SkX phase diagrams depending on sample thickness (t)

- The thinner the crystal plate is, the wider SkX phase is in the T-B plane.
- Compared to Sk phase in (110) and (001) films, Sk phase shirked in the thicker (111) MnSi film (>75nm).

SPICE Mainz

Transformation of square to triangular SkL in a Co-Zn-Mn

Transformation of a square lattice to a triangular lattice at the RT

Phys. Rev. B: 80, 054416 (2009); 91, 224407 (2015)

SPICE Mainz

Various states of skyrmion aggregate at RT

Skyrmion strings at 250 K

Scale bars are 100 nm

Topic I -2: Nucleation of magnetic skyrmions under current excitation

19

Electric current-induced topological phase transition

Estimation of Joule heating effect

2~3 K @4 mA

Topics I - 3 Robust <u>zero-field SkX</u> in a FeGe thin plate

Changes of the quenched SkX with an increase of the bias-field

2017/7/27

Crystallization of skyrmions and phase separation with a decrease of the bias field

SPICE Mainz

 $\mathbf{B}//\mathbf{z}$

Topic II-1: skyrmion Hall motion with electric current flow

Skyrmion Hall motion with electric current flow

Unidirectional rotation of SkL in a Cu₂OSeO₃ thin plate

Cu₂OSeO₃: $d_{sk} \sim 50 \text{ nm}$ | $T = 35 \text{ K}, B \otimes = 65 \text{ mT}$

M. Mochizuki, *et al. Nat. Matter*. (2014) X.Z. Yu and Y. Tokura, JEOL news (2015) Concentric thermal gradient created by electron beam

Unidirectional rotational motion of skyrmion lattice

SPICE Mainz

Summary

- 2D SkX as well as isolated skyrmions has been realized over a wide temperature range (6K~ 350 K) by means of Lorentz TEM.
- The fertile lattice forms as well as the bound skyrmions have been realized with tuning magnetic anisotropy in chiral-lattice compounds.
- Zero-field SkX can be stabilized with quenching of thermodynamically stable SkX in chiral-lattice magnets.
- Magnetic skyrmions can be excited by electric current .
- The *in-situ* Lorentz TEM observations have demonstrated a current-induced dynamical phase transition from a non-topological phase (conical phase) to a topological SkX phase.
- Lorentz TEM observations captured the skyrmion Hall motion with lowcurrent ($\sim 10^8 \text{ A/m}^2$) and thermal current.

Acknowledgements

Profs . Yoshinori Tokura, Naoto Nagaosa, Masashi Kawasaki Drs. Yasujiro Taguchi, Wataru Koshibae, Daisuke Morikawa, Kiyou Shibata, Takashi Kurumaji Drs. Yoshio Kaneko, Fumitaka Kagawa, Masao Nakamura, Hiroshi Oike Ms. Akiko Kikawa

CEMS Emergent Matter Science Research Support Team (TL: Dr. Akimoto) CEMS Materials Characterization Support Unit (UL: Dr. Hashizume)

Acknowledgements

university of groningen

Univ. of Tokyo Prof. Yoshinori Onose Prof. Shintaro Ishiwata Prof. Masahito Mochizuki (present: Waseda Univ.) Prof. Taka-hisa Arima Prof. Yusuke Tokunaga Dr. Naoya Kanazawa Prof. Yoshichika Otani SungKyunkwan Univ. Prof. Jung Hong Han Univ. of Groningen: Prof. Maxim Mostovoy

Dr. Yoshio Matsui Dr. Koji Kimoto Dr. Toru Hara Dr. Takuro Nagai Ms. Weizhu Zhang

Prof. Akira Tonomura Dr. Hyun Soon Park Dr. Toshiaki Tanigaki

Thank you for your kind attention!

We are recruiting the young researchers who are interested in topological spin texture

yu_x@riken.jp